Skip to main content
Erschienen in: Clinical Pharmacokinetics 5/2021

16.03.2021 | Review Article

Drug-Metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes

verfasst von: Yurong Song, Chenxi Li, Guangzhi Liu, Rui Liu, Youwen Chen, Wen Li, Zhiwen Cao, Baosheng Zhao, Cheng Lu, Yuanyan Liu

Erschienen in: Clinical Pharmacokinetics | Ausgabe 5/2021

Einloggen, um Zugang zu erhalten

Abstract

Drug metabolism is a critical process for the removal of unwanted substances from the body. In humans, approximately 80% of oxidative metabolism and almost 50% of the overall elimination of commonly used drugs can be attributed to one or more of various cytochrome P450 (CYP) enzymes from CYP families 1–3. In addition to the basic metabolic effects for elimination, CYP enzymes in vivo are capable of affecting the treatment outcomes in many cases. Drug-metabolizing CYP enzymes are mainly expressed in the liver and intestine, the two principal drug oxidation and elimination organs, where they can significantly influence the drug action, safety, and bioavailability by mediating phase I metabolism and first-pass metabolism. Furthermore, CYP-mediated local drug metabolism in the sites of action may also have the potential to impact drug response, according to the literature in recent years. This article underlines the ability of CYP enzymes to influence treatment outcomes by discussing CYP-mediated diversified drug metabolism in primary metabolic sites (liver and intestine) and typical action sites (brain and tumors) according to their expression levels and metabolic activity. Moreover, intrinsic and extrinsic factors of personal differential CYP phenotypes that contribute to interindividual variation of treatment outcomes are also reviewed to introduce the multifarious pivotal role of CYP-mediated metabolism and clearance in drug therapy.
Literatur
1.
Zurück zum Zitat Rendic S, Guengerich FP. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem Res Toxicol. 2015;28(1):38–42.PubMedCrossRef Rendic S, Guengerich FP. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem Res Toxicol. 2015;28(1):38–42.PubMedCrossRef
2.
Zurück zum Zitat Guengerich FP, Waterman MR, Egli M. Recent structural insights into cytochrome P450 function. Trends Pharmacol Sci. 2016;37(8):625–40.PubMedCrossRef Guengerich FP, Waterman MR, Egli M. Recent structural insights into cytochrome P450 function. Trends Pharmacol Sci. 2016;37(8):625–40.PubMedCrossRef
3.
Zurück zum Zitat Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liv Dis. 2017;21(1):1–20.CrossRef Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liv Dis. 2017;21(1):1–20.CrossRef
4.
Zurück zum Zitat Ingelman-Sundberg M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedeberg Arch Pharmacol. 2004;369(1):89–104.CrossRef Ingelman-Sundberg M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedeberg Arch Pharmacol. 2004;369(1):89–104.CrossRef
5.
Zurück zum Zitat Albertolle ME, Phan TTN, Pozzi A, Guengerich FP. Sulfenylation of human liver and kidney microsomal cytochromes P450 and other drug-metabolizing enzymes as a response to redox alteration. Mol Cell Proteom. 2018;17(5):889–900.CrossRef Albertolle ME, Phan TTN, Pozzi A, Guengerich FP. Sulfenylation of human liver and kidney microsomal cytochromes P450 and other drug-metabolizing enzymes as a response to redox alteration. Mol Cell Proteom. 2018;17(5):889–900.CrossRef
6.
Zurück zum Zitat Xiao Y, Ge M, Xue X, Wang C, Wang H, Wu X, et al. Hepatic cytochrome P450s metabolize aristolochic acid and reduce its kidney toxicity. Kidney Int. 2008;73(11):1231–9.PubMedCrossRef Xiao Y, Ge M, Xue X, Wang C, Wang H, Wu X, et al. Hepatic cytochrome P450s metabolize aristolochic acid and reduce its kidney toxicity. Kidney Int. 2008;73(11):1231–9.PubMedCrossRef
7.
Zurück zum Zitat Goldstein I, Rivlin N, Shoshana OY, Ezra O, Madar S, Goldfinger N, et al. Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53. Carcinogenesis. 2013;34(1):190–8.PubMedCrossRef Goldstein I, Rivlin N, Shoshana OY, Ezra O, Madar S, Goldfinger N, et al. Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53. Carcinogenesis. 2013;34(1):190–8.PubMedCrossRef
8.
Zurück zum Zitat van Herwaarden AE, van Waterschoot RA, Schinkel AH. How important is intestinal cytochrome P450 3A metabolism? Trends Pharmacol Sci. 2009;30(5):223–7.PubMedCrossRef van Herwaarden AE, van Waterschoot RA, Schinkel AH. How important is intestinal cytochrome P450 3A metabolism? Trends Pharmacol Sci. 2009;30(5):223–7.PubMedCrossRef
9.
Zurück zum Zitat Miksys S, Tyndale RF. Brain drug-metabolizing cytochrome P450 enzymes are active in vivo, demonstrated by mechanism-based enzyme inhibition. Neuropsychopharmacology. 2009;34(3):634–40.PubMedCrossRef Miksys S, Tyndale RF. Brain drug-metabolizing cytochrome P450 enzymes are active in vivo, demonstrated by mechanism-based enzyme inhibition. Neuropsychopharmacology. 2009;34(3):634–40.PubMedCrossRef
10.
Zurück zum Zitat McMillan DM, Tyndale RF. CYP-mediated drug metabolism in the brain impacts drug response. Pharmacol Ther. 2018;184:189–200.PubMedCrossRef McMillan DM, Tyndale RF. CYP-mediated drug metabolism in the brain impacts drug response. Pharmacol Ther. 2018;184:189–200.PubMedCrossRef
11.
Zurück zum Zitat Gerets HH, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, et al. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol. 2012;28(2):69–87.PubMedPubMedCentralCrossRef Gerets HH, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, et al. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol. 2012;28(2):69–87.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Martínez C, García-Martín E, Pizarro RM, García-Gamito FJ, Agúndez JA. Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy. Br J Cancer. 2002;87(6):681–6.PubMedPubMedCentralCrossRef Martínez C, García-Martín E, Pizarro RM, García-Gamito FJ, Agúndez JA. Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy. Br J Cancer. 2002;87(6):681–6.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Fahy BN, Guo T, Ghose R. Impact of hepatic malignancy on CYP3A4 gene expression. J Surg Res. 2012;178(2):768–72.PubMedCrossRef Fahy BN, Guo T, Ghose R. Impact of hepatic malignancy on CYP3A4 gene expression. J Surg Res. 2012;178(2):768–72.PubMedCrossRef
14.
Zurück zum Zitat Gharavi N, El-Kadi AO. Expression of cytochrome P450 in lung tumor. Curr Drug Metab. 2004;5(2):203–10.PubMedCrossRef Gharavi N, El-Kadi AO. Expression of cytochrome P450 in lung tumor. Curr Drug Metab. 2004;5(2):203–10.PubMedCrossRef
15.
Zurück zum Zitat Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Ann Rev Med. 2006;57:119–37.PubMedCrossRef Eichelbaum M, Ingelman-Sundberg M, Evans WE. Pharmacogenomics and individualized drug therapy. Ann Rev Med. 2006;57:119–37.PubMedCrossRef
16.
Zurück zum Zitat Lin JH, Lu AY. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol. 2001;41:535–67.PubMedCrossRef Lin JH, Lu AY. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu Rev Pharmacol Toxicol. 2001;41:535–67.PubMedCrossRef
17.
Zurück zum Zitat Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet. 1998;35(5):361–90.PubMedCrossRef Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet. 1998;35(5):361–90.PubMedCrossRef
18.
Zurück zum Zitat Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3(6):561–97.PubMedCrossRef Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3(6):561–97.PubMedCrossRef
19.
Zurück zum Zitat van Schaik RH. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist Updates. 2008;11(3):77–98.CrossRef van Schaik RH. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist Updates. 2008;11(3):77–98.CrossRef
20.
Zurück zum Zitat Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanism, and biochemistry. Cham: Springer International Publishing; 2015. p. 523–785.CrossRef Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanism, and biochemistry. Cham: Springer International Publishing; 2015. p. 523–785.CrossRef
21.
Zurück zum Zitat Zhang HF, Wang HH, Gao N, Wei JY, Tian X, Zhao Y, et al. Physiological content and intrinsic activities of 10 cytochrome P450 isoforms in human normal liver microsomes. J Pharmacol Exp Ther. 2016;358(1):83–93.PubMedCrossRef Zhang HF, Wang HH, Gao N, Wei JY, Tian X, Zhao Y, et al. Physiological content and intrinsic activities of 10 cytochrome P450 isoforms in human normal liver microsomes. J Pharmacol Exp Ther. 2016;358(1):83–93.PubMedCrossRef
22.
23.
Zurück zum Zitat Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie.” Drug Metab Dispos. 2006;34(5):880–6.PubMedCrossRef Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie.” Drug Metab Dispos. 2006;34(5):880–6.PubMedCrossRef
24.
Zurück zum Zitat Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 2009;61(5):541–58.PubMedCrossRef Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 2009;61(5):541–58.PubMedCrossRef
25.
Zurück zum Zitat Cizkova K, Konieczna A, Erdosova B, Ehrmann J. Time-dependent expression of cytochrome p450 epoxygenases during human prenatal development. Organogenesis. 2014;10(1):53–61.PubMedPubMedCentralCrossRef Cizkova K, Konieczna A, Erdosova B, Ehrmann J. Time-dependent expression of cytochrome p450 epoxygenases during human prenatal development. Organogenesis. 2014;10(1):53–61.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–91.PubMedCrossRef Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–91.PubMedCrossRef
29.
Zurück zum Zitat Guengerich FP, Yoshimoto FK. Formation and cleavage of C–C bonds by enzymatic oxidation–reduction reactions. Chem Rev. 2018;118(14):6573–655.PubMedCrossRef Guengerich FP, Yoshimoto FK. Formation and cleavage of C–C bonds by enzymatic oxidation–reduction reactions. Chem Rev. 2018;118(14):6573–655.PubMedCrossRef
30.
Zurück zum Zitat Lewis DF, Pratt JM. The P450 catalytic cycle and oxygenation mechanism. Drug Metab Rev. 1998;30(4):739–86.PubMedCrossRef Lewis DF, Pratt JM. The P450 catalytic cycle and oxygenation mechanism. Drug Metab Rev. 1998;30(4):739–86.PubMedCrossRef
31.
Zurück zum Zitat Benet LZ, Cummins CL, Wu CY. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int J Pharm. 2004;277:3–9.PubMedCrossRef Benet LZ, Cummins CL, Wu CY. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int J Pharm. 2004;277:3–9.PubMedCrossRef
32.
Zurück zum Zitat Alqahtani S, Bukhari I, Albassam A, Alenazi M. An update on the potential role of intestinal first-pass metabolism for the prediction of drug–drug interactions: the role of PBPK modeling. Expert Opin Drug Metab Toxicol. 2018;14(6):625–34.PubMedCrossRef Alqahtani S, Bukhari I, Albassam A, Alenazi M. An update on the potential role of intestinal first-pass metabolism for the prediction of drug–drug interactions: the role of PBPK modeling. Expert Opin Drug Metab Toxicol. 2018;14(6):625–34.PubMedCrossRef
33.
Zurück zum Zitat Dufek MB, Knight BM, Bridges AS, Thakker DR. P-glycoprotein increases portal bioavailability of loperamide in mouse by reducing first-pass intestinal metabolism. Drug Metab Dispos. 2013;41(3):642–50.PubMedCrossRef Dufek MB, Knight BM, Bridges AS, Thakker DR. P-glycoprotein increases portal bioavailability of loperamide in mouse by reducing first-pass intestinal metabolism. Drug Metab Dispos. 2013;41(3):642–50.PubMedCrossRef
34.
Zurück zum Zitat Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55(1):3–29.PubMedCrossRef Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55(1):3–29.PubMedCrossRef
35.
Zurück zum Zitat Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets. 2018;19(1):38–54.PubMedCrossRef Manikandan P, Nagini S. Cytochrome P450 structure, function and clinical significance: a review. Curr Drug Targets. 2018;19(1):38–54.PubMedCrossRef
36.
Zurück zum Zitat Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004;310(3):1062–75.PubMedCrossRef Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004;310(3):1062–75.PubMedCrossRef
37.
Zurück zum Zitat Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005;97(1):30–9.PubMedCrossRef Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005;97(1):30–9.PubMedCrossRef
38.
Zurück zum Zitat White IN. Tamoxifen: is it safe? Comparison of activation and detoxication mechanisms in rodents and in humans. Curr Drug Metab. 2003;4(3):223–39.PubMedCrossRef White IN. Tamoxifen: is it safe? Comparison of activation and detoxication mechanisms in rodents and in humans. Curr Drug Metab. 2003;4(3):223–39.PubMedCrossRef
39.
Zurück zum Zitat Dehal SS, Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res. 1997;57(16):3402–6.PubMed Dehal SS, Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res. 1997;57(16):3402–6.PubMed
40.
Zurück zum Zitat Purnapatre K, Khattar SK, Saini KS. Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett. 2008;259(1):1–15.PubMedCrossRef Purnapatre K, Khattar SK, Saini KS. Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett. 2008;259(1):1–15.PubMedCrossRef
41.
Zurück zum Zitat Kato M. Intestinal first-pass metabolism of CYP3A4 substrates. Drug Metab Pharmacokinet. 2008;23(2):87–94.PubMedCrossRef Kato M. Intestinal first-pass metabolism of CYP3A4 substrates. Drug Metab Pharmacokinet. 2008;23(2):87–94.PubMedCrossRef
42.
Zurück zum Zitat Doherty MM, Charman WN. The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? Clin Pharmacokinet. 2002;41(4):235–53.PubMedCrossRef Doherty MM, Charman WN. The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? Clin Pharmacokinet. 2002;41(4):235–53.PubMedCrossRef
43.
Zurück zum Zitat Miyoshi Y, Ando A, Takamura Y, Taguchi T, Tamaki Y, Noguchi S. Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int J Cancer. 2002;97(1):129–32.PubMedCrossRef Miyoshi Y, Ando A, Takamura Y, Taguchi T, Tamaki Y, Noguchi S. Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int J Cancer. 2002;97(1):129–32.PubMedCrossRef
44.
Zurück zum Zitat Varma MV, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem. 2010;53(3):1098–108.PubMedCrossRef Varma MV, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem. 2010;53(3):1098–108.PubMedCrossRef
45.
Zurück zum Zitat Yang J, Tucker GT, Rostami-Hodjegan A. Cytochrome P450 3A expression and activity in the human small intestine. Clin Pharmacol Ther. 2004;76(4):391.PubMedCrossRef Yang J, Tucker GT, Rostami-Hodjegan A. Cytochrome P450 3A expression and activity in the human small intestine. Clin Pharmacol Ther. 2004;76(4):391.PubMedCrossRef
46.
Zurück zum Zitat Galetin A, Gertz M, Houston JB. Contribution of intestinal cytochrome p450-mediated metabolism to drug–drug inhibition and induction interactions. Drug Metab Pharmacokinet. 2010;25(1):28–47.PubMedCrossRef Galetin A, Gertz M, Houston JB. Contribution of intestinal cytochrome p450-mediated metabolism to drug–drug inhibition and induction interactions. Drug Metab Pharmacokinet. 2010;25(1):28–47.PubMedCrossRef
47.
Zurück zum Zitat van Waterschoot RA, Schinkel AH. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacol Rev. 2011;63(2):390–410.PubMedCrossRef van Waterschoot RA, Schinkel AH. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacol Rev. 2011;63(2):390–410.PubMedCrossRef
48.
Zurück zum Zitat Holtbecker N, Fromm MF, Kroemer HK, Ohnhaus EE, Heidemann H. The nifedipine–rifampin interaction: evidence for induction of gut wall metabolism. Drug Metab Dispos. 1996;24(10):1121–3.PubMed Holtbecker N, Fromm MF, Kroemer HK, Ohnhaus EE, Heidemann H. The nifedipine–rifampin interaction: evidence for induction of gut wall metabolism. Drug Metab Dispos. 1996;24(10):1121–3.PubMed
49.
Zurück zum Zitat Lampen A, Zhang Y, Hackbarth I, Benet LZ, Sewing KF, Christians U. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther. 1998;285(3):1104–12.PubMed Lampen A, Zhang Y, Hackbarth I, Benet LZ, Sewing KF, Christians U. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther. 1998;285(3):1104–12.PubMed
50.
Zurück zum Zitat Thummel KE, O’Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther. 1996;59(5):491–502.PubMedCrossRef Thummel KE, O’Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther. 1996;59(5):491–502.PubMedCrossRef
51.
Zurück zum Zitat Wu CY, Benet LZ, Hebert MF, Gupta SK, Rowland M, Gomez DY, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther. 1995;58(5):492–7.PubMedCrossRef Wu CY, Benet LZ, Hebert MF, Gupta SK, Rowland M, Gomez DY, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther. 1995;58(5):492–7.PubMedCrossRef
52.
Zurück zum Zitat Khokhar JY, Tyndale RF. Drug metabolism within the brain changes drug response: selective manipulation of brain CYP2B alters propofol effects. Neuropsychopharmacology. 2011;36(3):692–700.PubMedCrossRef Khokhar JY, Tyndale RF. Drug metabolism within the brain changes drug response: selective manipulation of brain CYP2B alters propofol effects. Neuropsychopharmacology. 2011;36(3):692–700.PubMedCrossRef
53.
Zurück zum Zitat Meyer RP, Gehlhaus M, Knoth R, Volk B. Expression and function of cytochrome p450 in brain drug metabolism. Curr Drug Metab. 2007;8(4):297–306.PubMedCrossRef Meyer RP, Gehlhaus M, Knoth R, Volk B. Expression and function of cytochrome p450 in brain drug metabolism. Curr Drug Metab. 2007;8(4):297–306.PubMedCrossRef
54.
Zurück zum Zitat Yu LJ, Matias J, Scudiero DA, Hite KM, Monks A, Sausville EA, et al. P450 enzyme expression patterns in the NCI human tumor cell line panel. Drug Metab Dispos. 2001;29(3):304–12.PubMed Yu LJ, Matias J, Scudiero DA, Hite KM, Monks A, Sausville EA, et al. P450 enzyme expression patterns in the NCI human tumor cell line panel. Drug Metab Dispos. 2001;29(3):304–12.PubMed
55.
Zurück zum Zitat Navarro-Mabarak C, Camacho-Carranza R, Espinosa-Aguirre JJ. Cytochrome P450 in the central nervous system as a therapeutic target in neurodegenerative diseases. Drug Metab Rev. 2018;50(2):95–108.PubMedCrossRef Navarro-Mabarak C, Camacho-Carranza R, Espinosa-Aguirre JJ. Cytochrome P450 in the central nervous system as a therapeutic target in neurodegenerative diseases. Drug Metab Rev. 2018;50(2):95–108.PubMedCrossRef
57.
Zurück zum Zitat Miksys S, Hoffmann E, Tyndale RF. Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicotine treatment. Biochem Pharmacol. 2000;59(12):1501–11.PubMedCrossRef Miksys S, Hoffmann E, Tyndale RF. Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicotine treatment. Biochem Pharmacol. 2000;59(12):1501–11.PubMedCrossRef
58.
Zurück zum Zitat Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood–brain barrier. J Neurochem. 2008;107(6):1518–28.PubMedCrossRef Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood–brain barrier. J Neurochem. 2008;107(6):1518–28.PubMedCrossRef
59.
Zurück zum Zitat Walther B, Ghersi-Egea JF, Minn A, Siest G. Subcellular distribution of cytochrome P-450 in the brain. Brain Res. 1986;375(2):338–44.PubMedCrossRef Walther B, Ghersi-Egea JF, Minn A, Siest G. Subcellular distribution of cytochrome P-450 in the brain. Brain Res. 1986;375(2):338–44.PubMedCrossRef
60.
Zurück zum Zitat Miksys S, Rao Y, Sellers EM, Kwan M, Mendis D, Tyndale RF. Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica. 2000;30(6):547–64.PubMedCrossRef Miksys S, Rao Y, Sellers EM, Kwan M, Mendis D, Tyndale RF. Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica. 2000;30(6):547–64.PubMedCrossRef
61.
Zurück zum Zitat Miksys S, Rao Y, Hoffmann E, Mash DC, Tyndale RF. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem. 2002;82(6):1376–87.PubMedCrossRef Miksys S, Rao Y, Hoffmann E, Mash DC, Tyndale RF. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem. 2002;82(6):1376–87.PubMedCrossRef
62.
Zurück zum Zitat Upadhya SC, Tirumalai PS, Boyd MR, Mori T, Ravindranath V. Cytochrome P4502E (CYP2E) in brain: constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch Biochem Biophys. 2000;373(1):23–34.PubMedCrossRef Upadhya SC, Tirumalai PS, Boyd MR, Mori T, Ravindranath V. Cytochrome P4502E (CYP2E) in brain: constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch Biochem Biophys. 2000;373(1):23–34.PubMedCrossRef
63.
Zurück zum Zitat Booth Depaz IM, Toselli F, Wilce PA, Gillam EM. Differential expression of human cytochrome P450 enzymes from the CYP3A subfamily in the brains of alcoholic subjects and drug-free controls. Drug Metab Dispos. 2013;41(6):1187–94.PubMedCrossRef Booth Depaz IM, Toselli F, Wilce PA, Gillam EM. Differential expression of human cytochrome P450 enzymes from the CYP3A subfamily in the brains of alcoholic subjects and drug-free controls. Drug Metab Dispos. 2013;41(6):1187–94.PubMedCrossRef
64.
Zurück zum Zitat Hedlund E, Gustafsson JA, Warner M. Cytochrome P450 in the brain; a review. Curr Drug Metab. 2001;2(3):245–63.PubMedCrossRef Hedlund E, Gustafsson JA, Warner M. Cytochrome P450 in the brain; a review. Curr Drug Metab. 2001;2(3):245–63.PubMedCrossRef
65.
Zurück zum Zitat Meyer RP, Lindberg RL, Hoffmann F, Meyer UA. Cytosolic persistence of mouse brain CYP1A1 in chronic heme deficiency. Biol Chem. 2005;386(11):1157–64.PubMedCrossRef Meyer RP, Lindberg RL, Hoffmann F, Meyer UA. Cytosolic persistence of mouse brain CYP1A1 in chronic heme deficiency. Biol Chem. 2005;386(11):1157–64.PubMedCrossRef
66.
Zurück zum Zitat Meyer RP, Podvinec M, Meyer UA. Cytochrome P450 CYP1A1 accumulates in the cytosol of kidney and brain and is activated by heme. Mol Pharmacol. 2002;62(5):1061–7.PubMedCrossRef Meyer RP, Podvinec M, Meyer UA. Cytochrome P450 CYP1A1 accumulates in the cytosol of kidney and brain and is activated by heme. Mol Pharmacol. 2002;62(5):1061–7.PubMedCrossRef
67.
Zurück zum Zitat Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(1):23–37.PubMedCrossRef Zanger UM, Raimundo S, Eichelbaum M. Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(1):23–37.PubMedCrossRef
68.
Zurück zum Zitat Chen ZR, Somogyi AA, Reynolds G, Bochner F. Disposition and metabolism of codeine after single and chronic doses in one poor and seven extensive metabolisers. Br J Clin Pharmacol. 1991;31(4):381–90.PubMedPubMedCentralCrossRef Chen ZR, Somogyi AA, Reynolds G, Bochner F. Disposition and metabolism of codeine after single and chronic doses in one poor and seven extensive metabolisers. Br J Clin Pharmacol. 1991;31(4):381–90.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Sindrup SH, Arendt-Nielsen L, Brøsen K, Bjerring P, Angelo HR, Eriksen B, et al. The effect of quinidine on the analgesic effect of codeine. Eur J Clin Pharmacol. 1992;42(6):587–91.PubMedCrossRef Sindrup SH, Arendt-Nielsen L, Brøsen K, Bjerring P, Angelo HR, Eriksen B, et al. The effect of quinidine on the analgesic effect of codeine. Eur J Clin Pharmacol. 1992;42(6):587–91.PubMedCrossRef
70.
Zurück zum Zitat Chen ZR, Irvine RJ, Bochner F, Somogyi AA. Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia. Life Sci. 1990;46(15):1067–74.PubMedCrossRef Chen ZR, Irvine RJ, Bochner F, Somogyi AA. Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia. Life Sci. 1990;46(15):1067–74.PubMedCrossRef
71.
Zurück zum Zitat Court MH, Duan SX, Hesse LM, Venkatakrishnan K, Greenblatt DJ. Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology. 2001;94(1):110–9.PubMedCrossRef Court MH, Duan SX, Hesse LM, Venkatakrishnan K, Greenblatt DJ. Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology. 2001;94(1):110–9.PubMedCrossRef
72.
Zurück zum Zitat Miksys S, Wadji FB, Tolledo EC, Remington G, Nobrega JN, Tyndale RF. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2017;78:140–8.PubMedCrossRef Miksys S, Wadji FB, Tolledo EC, Remington G, Nobrega JN, Tyndale RF. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2017;78:140–8.PubMedCrossRef
73.
Zurück zum Zitat Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol. 2003;43:149–73.PubMedCrossRef Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol. 2003;43:149–73.PubMedCrossRef
74.
Zurück zum Zitat Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006;25(11):1679–91.PubMedCrossRef Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006;25(11):1679–91.PubMedCrossRef
75.
Zurück zum Zitat Toussaint C, Albin N, Massaad L, Grunenwald D, Parise O, Morizet J, et al. Main drug- and carcinogen-metabolizing enzyme systems in human non-small cell lung cancer and peritumoral tissues. Cancer Res. 1993;53(19):4608–12.PubMed Toussaint C, Albin N, Massaad L, Grunenwald D, Parise O, Morizet J, et al. Main drug- and carcinogen-metabolizing enzyme systems in human non-small cell lung cancer and peritumoral tissues. Cancer Res. 1993;53(19):4608–12.PubMed
76.
Zurück zum Zitat Guo Z, Johnson V, Barrera J, Porras M, Hinojosa D, Hernández I, et al. Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer Metastasis Rev. 2018;37:409–23.PubMedCrossRef Guo Z, Johnson V, Barrera J, Porras M, Hinojosa D, Hernández I, et al. Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer Metastasis Rev. 2018;37:409–23.PubMedCrossRef
77.
Zurück zum Zitat Verma H, Singh Bahia M, Choudhary S, Kumar Singh P, Silakari O. Drug metabolizing enzymes-associated chemo resistance and strategies to overcome it. Drug Metab Rev. 2019;51(2):196–223.PubMedCrossRef Verma H, Singh Bahia M, Choudhary S, Kumar Singh P, Silakari O. Drug metabolizing enzymes-associated chemo resistance and strategies to overcome it. Drug Metab Rev. 2019;51(2):196–223.PubMedCrossRef
78.
Zurück zum Zitat Fleming I. The factor in EDHF: cytochrome P450 derived lipid mediators and vascular signaling. Vasc Pharmacol. 2016;86:31–40.CrossRef Fleming I. The factor in EDHF: cytochrome P450 derived lipid mediators and vascular signaling. Vasc Pharmacol. 2016;86:31–40.CrossRef
79.
Zurück zum Zitat Fleming I. Vascular cytochrome p450 enzymes: physiology and pathophysiology. Trends Cardiovasc Med. 2008;18(1):20–5.PubMedCrossRef Fleming I. Vascular cytochrome p450 enzymes: physiology and pathophysiology. Trends Cardiovasc Med. 2008;18(1):20–5.PubMedCrossRef
80.
Zurück zum Zitat Fleming I. The cytochrome P450 pathway in angiogenesis and endothelial cell biology. Cancer Metastasis Rev. 2011;30:541–55.PubMedCrossRef Fleming I. The cytochrome P450 pathway in angiogenesis and endothelial cell biology. Cancer Metastasis Rev. 2011;30:541–55.PubMedCrossRef
81.
Zurück zum Zitat Imig JD. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Ren Physiol. 2005;289(3):F496-503.CrossRef Imig JD. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Ren Physiol. 2005;289(3):F496-503.CrossRef
82.
Zurück zum Zitat Capdevila JH, Wang W, Falck JR. Arachidonic acid monooxygenase: genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins Other Lipid Mediat. 2015;120:40–9.PubMedPubMedCentralCrossRef Capdevila JH, Wang W, Falck JR. Arachidonic acid monooxygenase: genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins Other Lipid Mediat. 2015;120:40–9.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Capdevila J, Wang W. Role of cytochrome P450 epoxygenase in regulating renal membrane transport and hypertension. Curr Opin Nephrol Hypertens. 2013;22(2):163–9.PubMedPubMedCentralCrossRef Capdevila J, Wang W. Role of cytochrome P450 epoxygenase in regulating renal membrane transport and hypertension. Curr Opin Nephrol Hypertens. 2013;22(2):163–9.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Cheranov SY, Karpurapu M, Wang D, Zhang B, Venema RC, Rao GN. An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood. 2008;111(12):5581–91.PubMedPubMedCentralCrossRef Cheranov SY, Karpurapu M, Wang D, Zhang B, Venema RC, Rao GN. An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood. 2008;111(12):5581–91.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Mitra R, Guo Z, Milani M, Mesaros C, Rodriguez M, Nguyen J, et al. CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). J Biol Chem. 2011;286(20):17543–59.PubMedPubMedCentralCrossRef Mitra R, Guo Z, Milani M, Mesaros C, Rodriguez M, Nguyen J, et al. CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). J Biol Chem. 2011;286(20):17543–59.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Jiang JG, Chen CL, Card JW, Yang S, Chen JX, Fu XN, et al. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 2005;65(11):4707–15.PubMedCrossRef Jiang JG, Chen CL, Card JW, Yang S, Chen JX, Fu XN, et al. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 2005;65(11):4707–15.PubMedCrossRef
88.
Zurück zum Zitat Webler AC, Michaelis UR, Popp R, Barbosa-Sicard E, Murugan A, Falck JR, et al. Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. Am J Physiol Cell Physiol. 2008;295(5):C1292–301.PubMedPubMedCentralCrossRef Webler AC, Michaelis UR, Popp R, Barbosa-Sicard E, Murugan A, Falck JR, et al. Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. Am J Physiol Cell Physiol. 2008;295(5):C1292–301.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Guo Z, Sevrioukova IF, Denisov IG, Zhang X, Chiu TL, Thomas DG, et al. Heme binding biguanides target cytochrome P450-dependent cancer cell mitochondria. Cell Chem Biol. 2017;24(10):1259-75.e6.PubMedPubMedCentralCrossRef Guo Z, Sevrioukova IF, Denisov IG, Zhang X, Chiu TL, Thomas DG, et al. Heme binding biguanides target cytochrome P450-dependent cancer cell mitochondria. Cell Chem Biol. 2017;24(10):1259-75.e6.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat McFadyen MC, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI. Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol. 2001;62(2):207–12.PubMedCrossRef McFadyen MC, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI. Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol. 2001;62(2):207–12.PubMedCrossRef
91.
Zurück zum Zitat Lin H, Hu B, He X, Mao J, Wang Y, Wang J, et al. Overcoming taxol-resistance in A549 cells: a comprehensive strategy of targeting P-gp transporter, AKT/ERK pathways, and cytochrome P450 enzyme CYP1B1 by 4-hydroxyemodin. Biochem Pharmacol. 2020;171:113733.PubMedCrossRef Lin H, Hu B, He X, Mao J, Wang Y, Wang J, et al. Overcoming taxol-resistance in A549 cells: a comprehensive strategy of targeting P-gp transporter, AKT/ERK pathways, and cytochrome P450 enzyme CYP1B1 by 4-hydroxyemodin. Biochem Pharmacol. 2020;171:113733.PubMedCrossRef
92.
Zurück zum Zitat Martinez VG, O’Connor R, Liang Y, Clynes M. CYP1B1 expression is induced by docetaxel: effect on cell viability and drug resistance. Br J Cancer. 2008;98(3):564–70.PubMedPubMedCentralCrossRef Martinez VG, O’Connor R, Liang Y, Clynes M. CYP1B1 expression is induced by docetaxel: effect on cell viability and drug resistance. Br J Cancer. 2008;98(3):564–70.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Dutour R, Roy J, Cortés-Benítez F, Maltais R, Poirier D. Targeting cytochrome P450 (CYP) 1B1 enzyme with four series of A-ring substituted estrane derivatives: design, synthesis, inhibitory activity, and selectivity. J Med Chem. 2018;61(20):9229–45.PubMedCrossRef Dutour R, Roy J, Cortés-Benítez F, Maltais R, Poirier D. Targeting cytochrome P450 (CYP) 1B1 enzyme with four series of A-ring substituted estrane derivatives: design, synthesis, inhibitory activity, and selectivity. J Med Chem. 2018;61(20):9229–45.PubMedCrossRef
94.
Zurück zum Zitat Swanson HI, Njar VC, Yu Z, Castro DJ, Gonzalez FJ, Williams DE, et al. Targeting drug-metabolizing enzymes for effective chemoprevention and chemotherapy. Drug Metab Dispos. 2010;38(4):539–44.PubMedPubMedCentralCrossRef Swanson HI, Njar VC, Yu Z, Castro DJ, Gonzalez FJ, Williams DE, et al. Targeting drug-metabolizing enzymes for effective chemoprevention and chemotherapy. Drug Metab Dispos. 2010;38(4):539–44.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Raccor BS, Kaspera R. Extra-hepatic isozymes from the CYP1 and CYP2 families as potential chemotherapeutic targets. Curr Top Med Chem. 2013;13(12):1441–53.PubMedCrossRef Raccor BS, Kaspera R. Extra-hepatic isozymes from the CYP1 and CYP2 families as potential chemotherapeutic targets. Curr Top Med Chem. 2013;13(12):1441–53.PubMedCrossRef
96.
Zurück zum Zitat Francis S, Delgoda R. A patent review on the development of human cytochrome P450 inhibitors. Expert Opin Ther Pat. 2014;24(6):699–717.PubMedCrossRef Francis S, Delgoda R. A patent review on the development of human cytochrome P450 inhibitors. Expert Opin Ther Pat. 2014;24(6):699–717.PubMedCrossRef
98.
Zurück zum Zitat Travica S, Pors K, Loadman PM, Shnyder SD, Johansson I, Alandas MN, et al. Colon cancer-specific cytochrome P450 2W1 converts duocarmycin analogues into potent tumor cytotoxins. Clin Cancer Res. 2013;19(11):2952–61.PubMedCrossRef Travica S, Pors K, Loadman PM, Shnyder SD, Johansson I, Alandas MN, et al. Colon cancer-specific cytochrome P450 2W1 converts duocarmycin analogues into potent tumor cytotoxins. Clin Cancer Res. 2013;19(11):2952–61.PubMedCrossRef
99.
Zurück zum Zitat Peter Guengerich F, Chun YJ, Kim D, Gillam EM, Shimada T. Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutat Res. 2003;523:173–82.PubMedCrossRef Peter Guengerich F, Chun YJ, Kim D, Gillam EM, Shimada T. Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutat Res. 2003;523:173–82.PubMedCrossRef
100.
Zurück zum Zitat Karlgren M, Ingelman-Sundberg M. Tumour-specific expression of CYP2W1: its potential as a drug target in cancer therapy. Expert Opin Ther Targets. 2007;11(1):61–7.PubMedCrossRef Karlgren M, Ingelman-Sundberg M. Tumour-specific expression of CYP2W1: its potential as a drug target in cancer therapy. Expert Opin Ther Targets. 2007;11(1):61–7.PubMedCrossRef
101.
Zurück zum Zitat Michaelis UR, Fisslthaler B, Barbosa-Sicard E, Falck JR, Fleming I, Busse R. Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. J Cell Sci. 2005;118:5489–98.PubMedCrossRef Michaelis UR, Fisslthaler B, Barbosa-Sicard E, Falck JR, Fleming I, Busse R. Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. J Cell Sci. 2005;118:5489–98.PubMedCrossRef
102.
Zurück zum Zitat Karkhanis A, Hong Y, Chan ECY. Inhibition and inactivation of human CYP2J2: implications in cardiac pathophysiology and opportunities in cancer therapy. Biochem Pharmacol. 2017;135:12–21.PubMedCrossRef Karkhanis A, Hong Y, Chan ECY. Inhibition and inactivation of human CYP2J2: implications in cardiac pathophysiology and opportunities in cancer therapy. Biochem Pharmacol. 2017;135:12–21.PubMedCrossRef
103.
Zurück zum Zitat Dutour R, Poirier D. Inhibitors of cytochrome P450 (CYP) 1B1. Eur J Med Chem. 2017;135:296–306.PubMedCrossRef Dutour R, Poirier D. Inhibitors of cytochrome P450 (CYP) 1B1. Eur J Med Chem. 2017;135:296–306.PubMedCrossRef
104.
Zurück zum Zitat Dhaini HR, Thomas DG, Giordano TJ, Johnson TD, Biermann JS, Leu K, et al. Cytochrome P450 CYP3A4/5 expression as a biomarker of outcome in osteosarcoma. J Clin Oncol. 2003;21(13):2481–5.PubMedCrossRef Dhaini HR, Thomas DG, Giordano TJ, Johnson TD, Biermann JS, Leu K, et al. Cytochrome P450 CYP3A4/5 expression as a biomarker of outcome in osteosarcoma. J Clin Oncol. 2003;21(13):2481–5.PubMedCrossRef
105.
Zurück zum Zitat Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41(2):89–295.PubMedCrossRef Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41(2):89–295.PubMedCrossRef
106.
Zurück zum Zitat Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41.PubMedCrossRef Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41.PubMedCrossRef
107.
Zurück zum Zitat Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet. 2002;360(9340):1155–62.PubMedCrossRef Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet. 2002;360(9340):1155–62.PubMedCrossRef
108.
Zurück zum Zitat Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116(3):496–526.PubMedCrossRef Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116(3):496–526.PubMedCrossRef
109.
Zurück zum Zitat Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci. 2004;25(4):193–200.PubMedCrossRef Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci. 2004;25(4):193–200.PubMedCrossRef
110.
Zurück zum Zitat Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenom J. 2005;5(1):6–13.CrossRef Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenom J. 2005;5(1):6–13.CrossRef
111.
Zurück zum Zitat Seripa D, Pilotto A, Panza F, Matera MG, Pilotto A. Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev. 2010;9(4):457–74.PubMedCrossRef Seripa D, Pilotto A, Panza F, Matera MG, Pilotto A. Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev. 2010;9(4):457–74.PubMedCrossRef
112.
Zurück zum Zitat Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287(13):1690–8.PubMedCrossRef Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287(13):1690–8.PubMedCrossRef
113.
Zurück zum Zitat Zineh I, Pacanowski M, Woodcock J. Pharmacogenetics and coumarin dosing–recalibrating expectations. N Engl J Med. 2013;369(24):2273–5.PubMedCrossRef Zineh I, Pacanowski M, Woodcock J. Pharmacogenetics and coumarin dosing–recalibrating expectations. N Engl J Med. 2013;369(24):2273–5.PubMedCrossRef
114.
Zurück zum Zitat Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294–303.PubMedCrossRef Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294–303.PubMedCrossRef
115.
Zurück zum Zitat Türk D, Hanke N, Wolf S, Frechen S, Eissing T, Wendl T, et al. Physiologically based pharmacokinetic models for prediction of complex CYP2C8 and OATP1B1 (SLCO1B1) drug–drug–gene interactions: a modeling network of gemfibrozil, repaglinide, pioglitazone, rifampicin, clarithromycin and itraconazole. Clin Pharmacokinet. 2019;58(12):1595–607.PubMedPubMedCentralCrossRef Türk D, Hanke N, Wolf S, Frechen S, Eissing T, Wendl T, et al. Physiologically based pharmacokinetic models for prediction of complex CYP2C8 and OATP1B1 (SLCO1B1) drug–drug–gene interactions: a modeling network of gemfibrozil, repaglinide, pioglitazone, rifampicin, clarithromycin and itraconazole. Clin Pharmacokinet. 2019;58(12):1595–607.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther. 2013;17(3):165–84.PubMedPubMedCentralCrossRef Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther. 2013;17(3):165–84.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Mann A, Miksys SL, Gaedigk A, Kish SJ, Mash DC, Tyndale RF. The neuroprotective enzyme CYP2D6 increases in the brain with age and is lower in Parkinson’s disease patients. Neurobiol Aging. 2012;33(9):2160–71.PubMedCrossRef Mann A, Miksys SL, Gaedigk A, Kish SJ, Mash DC, Tyndale RF. The neuroprotective enzyme CYP2D6 increases in the brain with age and is lower in Parkinson’s disease patients. Neurobiol Aging. 2012;33(9):2160–71.PubMedCrossRef
118.
Zurück zum Zitat Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199(3):193–209.PubMedCrossRef Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199(3):193–209.PubMedCrossRef
119.
Zurück zum Zitat Ferguson CS, Tyndale RF. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci. 2011;32(12):708–14.PubMedPubMedCentralCrossRef Ferguson CS, Tyndale RF. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci. 2011;32(12):708–14.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Guo Y, Hu B, Xie Y, Billiar TR, Sperry JL, Huang M, et al. Regulation of drug-metabolizing enzymes by local and systemic liver injuries. Expert Opin Drug Metab Toxicol. 2016;12(3):245–51.PubMedPubMedCentralCrossRef Guo Y, Hu B, Xie Y, Billiar TR, Sperry JL, Huang M, et al. Regulation of drug-metabolizing enzymes by local and systemic liver injuries. Expert Opin Drug Metab Toxicol. 2016;12(3):245–51.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Raunio H, Juvonen R, Pasanen M, Pelkonen O, Pääkkö P, Soini Y. Cytochrome P4502A6 (CYP2A6) expression in human hepatocellular carcinoma. Hepatology. 1998;27(2):427–32.PubMedCrossRef Raunio H, Juvonen R, Pasanen M, Pelkonen O, Pääkkö P, Soini Y. Cytochrome P4502A6 (CYP2A6) expression in human hepatocellular carcinoma. Hepatology. 1998;27(2):427–32.PubMedCrossRef
122.
Zurück zum Zitat Matsuda Y, Yamakawa K, Saoo K, Hosokawa K, Yokohira M, Kuno T, et al. CYP2A6 overexpression in human lung cancers correlates with a high malignant status. Oncol Rep. 2007;18(1):53–7.PubMed Matsuda Y, Yamakawa K, Saoo K, Hosokawa K, Yokohira M, Kuno T, et al. CYP2A6 overexpression in human lung cancers correlates with a high malignant status. Oncol Rep. 2007;18(1):53–7.PubMed
123.
Zurück zum Zitat Renton KW. Regulation of drug metabolism and disposition during inflammation and infection. Expert Opin Drug Metab Toxicol. 2005;1(4):629–40.PubMedCrossRef Renton KW. Regulation of drug metabolism and disposition during inflammation and infection. Expert Opin Drug Metab Toxicol. 2005;1(4):629–40.PubMedCrossRef
125.
Zurück zum Zitat Lee JI, Zhang L, Men AY, Kenna LA, Huang SM. CYP-mediated therapeutic protein–drug interactions: clinical findings, proposed mechanisms and regulatory implications. Clin Pharmacokinet. 2010;49(5):295–310.PubMedCrossRef Lee JI, Zhang L, Men AY, Kenna LA, Huang SM. CYP-mediated therapeutic protein–drug interactions: clinical findings, proposed mechanisms and regulatory implications. Clin Pharmacokinet. 2010;49(5):295–310.PubMedCrossRef
126.
Zurück zum Zitat Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response. Oncogene. 2006;25(51):6758–80.PubMedCrossRef Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response. Oncogene. 2006;25(51):6758–80.PubMedCrossRef
127.
Zurück zum Zitat Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009;85(4):434–8.PubMedCrossRef Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009;85(4):434–8.PubMedCrossRef
128.
Zurück zum Zitat Morgan ET, Goralski KB, Piquette-Miller M, Renton KW, Robertson GR, Chaluvadi MR, et al. Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab Dispos. 2008;36(2):205–16.PubMedCrossRef Morgan ET, Goralski KB, Piquette-Miller M, Renton KW, Robertson GR, Chaluvadi MR, et al. Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab Dispos. 2008;36(2):205–16.PubMedCrossRef
129.
Zurück zum Zitat Aitken AE, Morgan ET. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos. 2007;35(9):1687–93.PubMedCrossRef Aitken AE, Morgan ET. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos. 2007;35(9):1687–93.PubMedCrossRef
131.
Zurück zum Zitat Aitken AE, Richardson TA, Morgan ET. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol. 2006;46:123–49.PubMedCrossRef Aitken AE, Richardson TA, Morgan ET. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol. 2006;46:123–49.PubMedCrossRef
132.
Zurück zum Zitat El-Kadi AO, Bleau AM, Dumont I, Maurice H, du Souich P. Role of reactive oxygen intermediates in the decrease of hepatic cytochrome P450 activity by serum of humans and rabbits with an acute inflammatory reaction. Drug Metab Dispos. 2000;28(9):1112–20.PubMed El-Kadi AO, Bleau AM, Dumont I, Maurice H, du Souich P. Role of reactive oxygen intermediates in the decrease of hepatic cytochrome P450 activity by serum of humans and rabbits with an acute inflammatory reaction. Drug Metab Dispos. 2000;28(9):1112–20.PubMed
133.
Zurück zum Zitat Neyrinck AM, Cani PD, Dewulf EM, De Backer F, Bindels LB, Delzenne NM. Critical role of Kupffer cells in the management of diet-induced diabetes and obesity. Biochem Biophys Res Commun. 2009;385(3):351–6.PubMedCrossRef Neyrinck AM, Cani PD, Dewulf EM, De Backer F, Bindels LB, Delzenne NM. Critical role of Kupffer cells in the management of diet-induced diabetes and obesity. Biochem Biophys Res Commun. 2009;385(3):351–6.PubMedCrossRef
134.
Zurück zum Zitat Tindberg N, Bengtsson I, Hu Y. A novel lipopolysaccharide-modulated Jun binding repressor in intron 2 of CYP2E1. J Neurochem. 2004;89(6):1336–46.PubMedCrossRef Tindberg N, Bengtsson I, Hu Y. A novel lipopolysaccharide-modulated Jun binding repressor in intron 2 of CYP2E1. J Neurochem. 2004;89(6):1336–46.PubMedCrossRef
136.
Zurück zum Zitat Go RE, Hwang KA, Choi KC. Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 2015;147:24–30.PubMedCrossRef Go RE, Hwang KA, Choi KC. Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 2015;147:24–30.PubMedCrossRef
137.
Zurück zum Zitat Shimada T, Hayes CL, Yamazaki H, Amin S, Hecht SS, Guengerich FP, et al. Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res. 1996;56(13):2979–84.PubMed Shimada T, Hayes CL, Yamazaki H, Amin S, Hecht SS, Guengerich FP, et al. Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res. 1996;56(13):2979–84.PubMed
138.
Zurück zum Zitat Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6(12):947–60.PubMedCrossRef Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6(12):947–60.PubMedCrossRef
139.
Zurück zum Zitat Jiang JG, Ning YG, Chen C, Ma D, Liu ZJ, Yang S, et al. Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res. 2007;67(14):6665–74.PubMedCrossRef Jiang JG, Ning YG, Chen C, Ma D, Liu ZJ, Yang S, et al. Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res. 2007;67(14):6665–74.PubMedCrossRef
140.
Zurück zum Zitat Shu Y, He D, Li W, Wang M, Zhao S, Liu L, et al. Hepatoprotective effect of Citrus aurantium L. against APAP-induced liver injury by regulating liver lipid metabolism and apoptosis. Int J Biol Sci. 2020;16(5):752–65.PubMedPubMedCentralCrossRef Shu Y, He D, Li W, Wang M, Zhao S, Liu L, et al. Hepatoprotective effect of Citrus aurantium L. against APAP-induced liver injury by regulating liver lipid metabolism and apoptosis. Int J Biol Sci. 2020;16(5):752–65.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Horley NJ, Beresford KJ, Chawla T, McCann GJ, Ruparelia KC, Gatchie L, et al. Discovery and characterization of novel CYP1B1 inhibitors based on heterocyclic chalcones: overcoming cisplatin resistance in CYP1B1-overexpressing lines. Eur J Med Chem. 2017;129:159–74.PubMedCrossRef Horley NJ, Beresford KJ, Chawla T, McCann GJ, Ruparelia KC, Gatchie L, et al. Discovery and characterization of novel CYP1B1 inhibitors based on heterocyclic chalcones: overcoming cisplatin resistance in CYP1B1-overexpressing lines. Eur J Med Chem. 2017;129:159–74.PubMedCrossRef
142.
Zurück zum Zitat Cui J, Meng Q, Zhang X, Cui Q, Zhou W, Li S. Design and synthesis of new α-naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J Med Chem. 2015;58(8):3534–47.PubMedCrossRef Cui J, Meng Q, Zhang X, Cui Q, Zhou W, Li S. Design and synthesis of new α-naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J Med Chem. 2015;58(8):3534–47.PubMedCrossRef
143.
Zurück zum Zitat Wang YM, Lin W, Chai SC, Wu J, Ong SS, Schuetz EG, et al. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1. Toxicol Appl Pharmacol. 2013;272(1):96–107.PubMedPubMedCentralCrossRef Wang YM, Lin W, Chai SC, Wu J, Ong SS, Schuetz EG, et al. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1. Toxicol Appl Pharmacol. 2013;272(1):96–107.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Hisaka A, Nakamura M, Tsukihashi A, Koh S, Suzuki H. Assessment of intestinal availability (FG) of substrate drugs of cytochrome p450s by analyzing changes in pharmacokinetic properties caused by drug–drug interactions. Drug Metab Dispos. 2014;42(10):1640–5.PubMedCrossRef Hisaka A, Nakamura M, Tsukihashi A, Koh S, Suzuki H. Assessment of intestinal availability (FG) of substrate drugs of cytochrome p450s by analyzing changes in pharmacokinetic properties caused by drug–drug interactions. Drug Metab Dispos. 2014;42(10):1640–5.PubMedCrossRef
145.
Zurück zum Zitat Ioannides C. Effect of diet and nutrition on the expression of cytochromes P450. Xenobiotica. 1999;29(2):109–54.PubMedCrossRef Ioannides C. Effect of diet and nutrition on the expression of cytochromes P450. Xenobiotica. 1999;29(2):109–54.PubMedCrossRef
146.
Zurück zum Zitat Yue J, Khokhar J, Miksys S, Tyndale RF. Differential induction of ethanol-metabolizing CYP2E1 and nicotine-metabolizing CYP2B1/2 in rat liver by chronic nicotine treatment and voluntary ethanol intake. Eur J Pharmacol. 2009;609:88–95.PubMedPubMedCentralCrossRef Yue J, Khokhar J, Miksys S, Tyndale RF. Differential induction of ethanol-metabolizing CYP2E1 and nicotine-metabolizing CYP2B1/2 in rat liver by chronic nicotine treatment and voluntary ethanol intake. Eur J Pharmacol. 2009;609:88–95.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Zhong Y, Dong G, Luo H, Cao J, Wang C, Wu J, et al. Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem. Toxicology. 2012;302:275–84.PubMedCrossRef Zhong Y, Dong G, Luo H, Cao J, Wang C, Wu J, et al. Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem. Toxicology. 2012;302:275–84.PubMedCrossRef
148.
Zurück zum Zitat Miksys S, Lerman C, Shields PG, Mash DC, Tyndale RF. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology. 2003;45(1):122–32.PubMedCrossRef Miksys S, Lerman C, Shields PG, Mash DC, Tyndale RF. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology. 2003;45(1):122–32.PubMedCrossRef
149.
Zurück zum Zitat Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4(10):825–33.PubMedCrossRef Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4(10):825–33.PubMedCrossRef
150.
Zurück zum Zitat Verbeurgt P, Mamiya T, Oesterheld J. How common are drug and gene interactions? Prevalence in a sample of 1143 patients with CYP2C9, CYP2C19 and CYP2D6 genotyping. Pharmacogenomics. 2014;15(5):655–65.PubMedCrossRef Verbeurgt P, Mamiya T, Oesterheld J. How common are drug and gene interactions? Prevalence in a sample of 1143 patients with CYP2C9, CYP2C19 and CYP2D6 genotyping. Pharmacogenomics. 2014;15(5):655–65.PubMedCrossRef
151.
Zurück zum Zitat Zhou S, Yung Chan S, Cher Goh B, Chan E, Duan W, Huang M, et al. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet. 2005;44(3):279–304.PubMedCrossRef Zhou S, Yung Chan S, Cher Goh B, Chan E, Duan W, Huang M, et al. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet. 2005;44(3):279–304.PubMedCrossRef
152.
Zurück zum Zitat Ogilvie BW, Zhang D, Li W, Rodrigues AD, Gipson AE, Holsapple J, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug–drug interactions. Drug Metabol Dispos. 2006;34(1):191–7.CrossRef Ogilvie BW, Zhang D, Li W, Rodrigues AD, Gipson AE, Holsapple J, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug–drug interactions. Drug Metabol Dispos. 2006;34(1):191–7.CrossRef
153.
Zurück zum Zitat Karonen T, Filppula A, Laitila J, Niemi M, Neuvonen PJ, Backman JT. Gemfibrozil markedly increases the plasma concentrations of montelukast: a previously unrecognized role for CYP2C8 in the metabolism of montelukast. Clin Pharmacol Ther. 2010;88(2):223–30.PubMedCrossRef Karonen T, Filppula A, Laitila J, Niemi M, Neuvonen PJ, Backman JT. Gemfibrozil markedly increases the plasma concentrations of montelukast: a previously unrecognized role for CYP2C8 in the metabolism of montelukast. Clin Pharmacol Ther. 2010;88(2):223–30.PubMedCrossRef
154.
Zurück zum Zitat Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016;68(1):168–241.PubMedCrossRef Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016;68(1):168–241.PubMedCrossRef
155.
Zurück zum Zitat Riess H, Prandoni P, Harder S, Kreher S, Bauersachs R. Direct oral anticoagulants for the treatment of venous thromboembolism in cancer patients: potential for drug–drug interactions. Crit Rev Oncol Hematol. 2018;132:169–79.PubMedCrossRef Riess H, Prandoni P, Harder S, Kreher S, Bauersachs R. Direct oral anticoagulants for the treatment of venous thromboembolism in cancer patients: potential for drug–drug interactions. Crit Rev Oncol Hematol. 2018;132:169–79.PubMedCrossRef
156.
Zurück zum Zitat Larson KB, Wang K, Delille C, Otofokun I, Acosta EP. Pharmacokinetic enhancers in HIV therapeutics. Clin Pharmacokinet. 2014;53(10):865–72.PubMedCrossRef Larson KB, Wang K, Delille C, Otofokun I, Acosta EP. Pharmacokinetic enhancers in HIV therapeutics. Clin Pharmacokinet. 2014;53(10):865–72.PubMedCrossRef
157.
Zurück zum Zitat Moore LB, Goodwin B, Jones SA, Wisely GB, Serabjit-Singh CJ, Willson TM, et al. St John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci USA. 2000;97(13):7500–2.PubMedCrossRefPubMedCentral Moore LB, Goodwin B, Jones SA, Wisely GB, Serabjit-Singh CJ, Willson TM, et al. St John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci USA. 2000;97(13):7500–2.PubMedCrossRefPubMedCentral
158.
Zurück zum Zitat Williamson B, Dooley KE, Zhang Y, Back DJ, Owen A. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob Agents Chemother. 2013;57(12):6366–9.PubMedPubMedCentralCrossRef Williamson B, Dooley KE, Zhang Y, Back DJ, Owen A. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob Agents Chemother. 2013;57(12):6366–9.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Jana S, Paliwal J. Molecular mechanisms of cytochrome p450 induction: potential for drug–drug interactions. Curr Protein Pept Sci. 2007;8(6):619–28.PubMedCrossRef Jana S, Paliwal J. Molecular mechanisms of cytochrome p450 induction: potential for drug–drug interactions. Curr Protein Pept Sci. 2007;8(6):619–28.PubMedCrossRef
160.
Zurück zum Zitat Handschin C, Meyer UA. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev. 2003;55(4):649–73.PubMedCrossRef Handschin C, Meyer UA. Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev. 2003;55(4):649–73.PubMedCrossRef
161.
Zurück zum Zitat Mutoh S, Sobhany M, Moore R, Perera L, Pedersen L, Sueyoshi T, et al. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling. Sci Signal. 2013;6(274):ra31.PubMedPubMedCentralCrossRef Mutoh S, Sobhany M, Moore R, Perera L, Pedersen L, Sueyoshi T, et al. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling. Sci Signal. 2013;6(274):ra31.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Kocarek TA, Zangar RC, Novak RF. Post-transcriptional regulation of rat CYP2E1 expression: role of CYP2E1 mRNA untranslated regions in control of translational efficiency and message stability. Arch Biochem Biophys. 2000;376(1):180–90.PubMedCrossRef Kocarek TA, Zangar RC, Novak RF. Post-transcriptional regulation of rat CYP2E1 expression: role of CYP2E1 mRNA untranslated regions in control of translational efficiency and message stability. Arch Biochem Biophys. 2000;376(1):180–90.PubMedCrossRef
163.
164.
Zurück zum Zitat Malki MA, Pearson ER. Drug–drug–gene interactions and adverse drug reactions. Pharmacogenom J. 2020;20(3):355–66.CrossRef Malki MA, Pearson ER. Drug–drug–gene interactions and adverse drug reactions. Pharmacogenom J. 2020;20(3):355–66.CrossRef
165.
Zurück zum Zitat Storelli F, Samer C, Reny JL, Desmeules J, Daali Y. Complex drug–drug–gene-disease interactions involving cytochromes P450: systematic review of published case reports and clinical perspectives. Clin Pharmacokinet. 2018;57(10):1267–93.PubMedCrossRef Storelli F, Samer C, Reny JL, Desmeules J, Daali Y. Complex drug–drug–gene-disease interactions involving cytochromes P450: systematic review of published case reports and clinical perspectives. Clin Pharmacokinet. 2018;57(10):1267–93.PubMedCrossRef
166.
Zurück zum Zitat Laine K, Tybring G, Härtter S, Andersson K, Svensson JO, Widén J, et al. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test. Clin Pharmacol Ther. 2001;70(4):327–35.PubMedCrossRef Laine K, Tybring G, Härtter S, Andersson K, Svensson JO, Widén J, et al. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test. Clin Pharmacol Ther. 2001;70(4):327–35.PubMedCrossRef
167.
Zurück zum Zitat Bahar MA, Setiawan D, Hak E, Wilffert B. Pharmacogenetics of drug–drug interaction and drug–drug–gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics. 2017;18(7):701–39.PubMedCrossRef Bahar MA, Setiawan D, Hak E, Wilffert B. Pharmacogenetics of drug–drug interaction and drug–drug–gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics. 2017;18(7):701–39.PubMedCrossRef
168.
Zurück zum Zitat Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67(3):275–82.PubMedCrossRef Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67(3):275–82.PubMedCrossRef
Metadaten
Titel
Drug-Metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes
verfasst von
Yurong Song
Chenxi Li
Guangzhi Liu
Rui Liu
Youwen Chen
Wen Li
Zhiwen Cao
Baosheng Zhao
Cheng Lu
Yuanyan Liu
Publikationsdatum
16.03.2021
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 5/2021
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-021-01001-5

Weitere Artikel der Ausgabe 5/2021

Clinical Pharmacokinetics 5/2021 Zur Ausgabe