Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2/2008

01.06.2008

Dual-specificity MAP kinase phosphatases (MKPs) and cancer

verfasst von: Stephen M. Keyse

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

There are ten mitogen-activated protein kinase (MAPK) phosphatases (MKPs) that act as negative regulators of MAPK activity in mammalian cells and these can be subdivided into three groups. The first comprises DUSP1/MKP-1, DUSP2/PAC1, DUSP4/MKP-2 and DUSP5/hVH-3, which are inducible nuclear phosphatases. With the exception of DUSP5, these MKPs display a rather broad specificity for inactivation of the ERK, p38 and JNK MAP kinases. The second group contains three closely related ERK-specific and cytoplasmic MKPs encoded by DUSP6/MKP-3, DUSP7/MKP-X and DUSP9/MKP-4. The final group consists of three MKPs DUSP8/hVH-5, DUSP10/MKP-5 and DUSP16/MKP-7 all of which preferentially inactivate the stress-activated p38 and JNK MAP kinases. Abnormal MAPK signalling will have important consequences for processes critical to the development and progression of human cancer. In addition, MAPK signalling also plays a key role in determining the response of tumour cells to conventional cancer therapies. The emerging roles of the dual-specificity MKPs in the regulation of MAPK activities in normal tissues has highlighted the possible pathophysiological consequences of either loss (or gain) of function of these enzymes as part of the oncogenic process. This review summarises the current evidence implicating the dual-specificity MKPs in the initiation and development of cancer and also on the outcome of treatment.
Literatur
1.
Zurück zum Zitat Wada, T., & Penninger, J. M. (2004). Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 23(16), 2838–2849.PubMedCrossRef Wada, T., & Penninger, J. M. (2004). Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 23(16), 2838–2849.PubMedCrossRef
2.
Zurück zum Zitat Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103(2), 239–252.PubMedCrossRef Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103(2), 239–252.PubMedCrossRef
3.
Zurück zum Zitat Chang, L., & Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature, 410(6824), 37–40.PubMedCrossRef Chang, L., & Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature, 410(6824), 37–40.PubMedCrossRef
4.
Zurück zum Zitat Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600), 1911–1912.PubMedCrossRef Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600), 1911–1912.PubMedCrossRef
5.
Zurück zum Zitat Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22(2), 153–183.PubMedCrossRef Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22(2), 153–183.PubMedCrossRef
6.
Zurück zum Zitat Marshall, C. J. (1994). MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Current Opinion in Genetics & Development, 4(1), 82–89.CrossRef Marshall, C. J. (1994). MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Current Opinion in Genetics & Development, 4(1), 82–89.CrossRef
7.
Zurück zum Zitat Cohen, P. (1997). The search for physiological substrates of the MAP and SAP kinases in mammalian cells. Trends in Cell Biology, 7, 353–361.PubMedCrossRef Cohen, P. (1997). The search for physiological substrates of the MAP and SAP kinases in mammalian cells. Trends in Cell Biology, 7, 353–361.PubMedCrossRef
8.
Zurück zum Zitat Dhillon, A. S., Hagan, S., Rath, O., & Kolch, W. (2007). MAP kinase signalling pathways in cancer. Oncogene, 26(22), 3279–3290.PubMedCrossRef Dhillon, A. S., Hagan, S., Rath, O., & Kolch, W. (2007). MAP kinase signalling pathways in cancer. Oncogene, 26(22), 3279–3290.PubMedCrossRef
9.
Zurück zum Zitat Kennedy, N. J., & Davis, R. J. (2003). Role of JNK in tumor development. Cell Cycle, 2(3), 199–201.PubMed Kennedy, N. J., & Davis, R. J. (2003). Role of JNK in tumor development. Cell Cycle, 2(3), 199–201.PubMed
10.
Zurück zum Zitat Kennedy, N. J., Sluss, H. K., Jones, S. N., Bar-Sagi, D., Flavell, R. A., & Davis, R. J. (2003). Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes & Development, 17(5), 629–637.CrossRef Kennedy, N. J., Sluss, H. K., Jones, S. N., Bar-Sagi, D., Flavell, R. A., & Davis, R. J. (2003). Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes & Development, 17(5), 629–637.CrossRef
11.
Zurück zum Zitat Dolado, I., Swat, A., Ajenjo, N., De Vita, G., Cuadrado, A., & Nebreda, A. R. (2007). p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell, 11(2), 191–205.PubMedCrossRef Dolado, I., Swat, A., Ajenjo, N., De Vita, G., Cuadrado, A., & Nebreda, A. R. (2007). p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell, 11(2), 191–205.PubMedCrossRef
12.
Zurück zum Zitat Ventura, J. J., Tenbaum, S., Perdiguero, E., Huth, M., Guerra, C., Barbacid, M., et al. (2007). p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nature Genetics, 39(6), 750–758.PubMedCrossRef Ventura, J. J., Tenbaum, S., Perdiguero, E., Huth, M., Guerra, C., Barbacid, M., et al. (2007). p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nature Genetics, 39(6), 750–758.PubMedCrossRef
13.
Zurück zum Zitat Sun, P., Yoshizuka, N., New, L., Moser, B. A., Li, Y., Liao, R., et al. (2007). PRAK is essential for ras-induced senescence and tumor suppression. Cell, 128(2), 295–308.PubMedCrossRef Sun, P., Yoshizuka, N., New, L., Moser, B. A., Li, Y., Liao, R., et al. (2007). PRAK is essential for ras-induced senescence and tumor suppression. Cell, 128(2), 295–308.PubMedCrossRef
14.
Zurück zum Zitat Han, J., & Sun, P. (2007). The pathways to tumor suppression via route p38. Trends in Biochemical Sciences, 32(8), 364–371.PubMedCrossRef Han, J., & Sun, P. (2007). The pathways to tumor suppression via route p38. Trends in Biochemical Sciences, 32(8), 364–371.PubMedCrossRef
15.
Zurück zum Zitat Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80(2), 179–185.PubMedCrossRef Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80(2), 179–185.PubMedCrossRef
16.
Zurück zum Zitat Keyse, S. M. (2000). Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Current Opinion in Cell Biology, 12(2), 186–192.PubMedCrossRef Keyse, S. M. (2000). Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Current Opinion in Cell Biology, 12(2), 186–192.PubMedCrossRef
17.
Zurück zum Zitat Saxena, M., & Mustelin, T. (2000). Extracellular signals and scores of phosphatases: All roads lead to MAP kinase. Seminars in Immunology, 12(4), 387–396.PubMedCrossRef Saxena, M., & Mustelin, T. (2000). Extracellular signals and scores of phosphatases: All roads lead to MAP kinase. Seminars in Immunology, 12(4), 387–396.PubMedCrossRef
18.
Zurück zum Zitat Theodosiou, A., & Ashworth, A. (2002). MAP kinase phosphatases. Genome Biol, 3(7), REVIEWS3009. Theodosiou, A., & Ashworth, A. (2002). MAP kinase phosphatases. Genome Biol, 3(7), REVIEWS3009.
19.
Zurück zum Zitat Kondoh, K., & Nishida, E. (2007). Regulation of MAP kinases by MAP kinase phosphatases. Biochimica Et Biophysica Acta, 1773(8), 1227–1237.PubMed Kondoh, K., & Nishida, E. (2007). Regulation of MAP kinases by MAP kinase phosphatases. Biochimica Et Biophysica Acta, 1773(8), 1227–1237.PubMed
20.
Zurück zum Zitat Owens, D. M., & Keyse, S. M. (2007). Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene, 26(22), 3203–3213.PubMedCrossRef Owens, D. M., & Keyse, S. M. (2007). Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene, 26(22), 3203–3213.PubMedCrossRef
21.
Zurück zum Zitat Farooq, A., & Zhou, M. M. (2004). Structure and regulation of MAPK phosphatases. Cell Signal, 16(7), 769–779.PubMedCrossRef Farooq, A., & Zhou, M. M. (2004). Structure and regulation of MAPK phosphatases. Cell Signal, 16(7), 769–779.PubMedCrossRef
22.
Zurück zum Zitat Dickinson, R. J., & Keyse, S. M. (2006). Diverse physiological functions for dual-specificity MAP kinase phosphatases. Journal of Cell Science, 119(Pt 22), 4607–4615.PubMedCrossRef Dickinson, R. J., & Keyse, S. M. (2006). Diverse physiological functions for dual-specificity MAP kinase phosphatases. Journal of Cell Science, 119(Pt 22), 4607–4615.PubMedCrossRef
23.
Zurück zum Zitat Chi, H., Barry, S. P., Roth, R., Wu, J. J., Jones, E. A., Bennett, A. M., et al. (2006). Dynamic regulation of pro-and anti-inflammatory cytokines by MKP-1 in innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 103, 2274–2279.PubMedCrossRef Chi, H., Barry, S. P., Roth, R., Wu, J. J., Jones, E. A., Bennett, A. M., et al. (2006). Dynamic regulation of pro-and anti-inflammatory cytokines by MKP-1 in innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 103, 2274–2279.PubMedCrossRef
24.
Zurück zum Zitat Hammer, M., Mages, J., Dietrich, H., Servatius, A., Howells, N., Cato, A. C., et al. (2006). Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. Journal of Experimental Medicine, 203(1), 15–20.PubMedCrossRef Hammer, M., Mages, J., Dietrich, H., Servatius, A., Howells, N., Cato, A. C., et al. (2006). Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. Journal of Experimental Medicine, 203(1), 15–20.PubMedCrossRef
25.
Zurück zum Zitat Abraham, S. M., Lawrence, T., Kleiman, A., Warden, P., Medghalchi, M., Tuckermann, J., et al. (2006). Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. Journal of Experimental Medicine, 203(8), 1883–1889.PubMedCrossRef Abraham, S. M., Lawrence, T., Kleiman, A., Warden, P., Medghalchi, M., Tuckermann, J., et al. (2006). Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. Journal of Experimental Medicine, 203(8), 1883–1889.PubMedCrossRef
26.
Zurück zum Zitat Zhao, Q., Wang, X., Nelin, L. D., Yao, Y., Matta, R., Manson, M. E., et al. (2006). MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. Journal of Experimental Medicine, 203(1), 131–140.PubMedCrossRef Zhao, Q., Wang, X., Nelin, L. D., Yao, Y., Matta, R., Manson, M. E., et al. (2006). MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. Journal of Experimental Medicine, 203(1), 131–140.PubMedCrossRef
27.
Zurück zum Zitat Wu, J. J., Roth, R. J., Anderson, E. J., Hong, E. G., Lee, M. K., Choi, C. S., et al. (2006). Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metabolism, 4(1), 61–73.PubMedCrossRef Wu, J. J., Roth, R. J., Anderson, E. J., Hong, E. G., Lee, M. K., Choi, C. S., et al. (2006). Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metabolism, 4(1), 61–73.PubMedCrossRef
28.
Zurück zum Zitat Zhang, Y., Blattman, J. N., Kennedy, N. J., Duong, J., Nguyen, T., Wang, Y., et al. (2004). Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature, 430(7001), 793–797.PubMedCrossRef Zhang, Y., Blattman, J. N., Kennedy, N. J., Duong, J., Nguyen, T., Wang, Y., et al. (2004). Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature, 430(7001), 793–797.PubMedCrossRef
29.
Zurück zum Zitat Jeffrey, K. L., Brummer, T., Rolph, M. S., Liu, S. M., Callejas, N. A., Grumont, R. J., et al. (2006). Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nature Immunology, 7(3), 274–283.PubMedCrossRef Jeffrey, K. L., Brummer, T., Rolph, M. S., Liu, S. M., Callejas, N. A., Grumont, R. J., et al. (2006). Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nature Immunology, 7(3), 274–283.PubMedCrossRef
30.
Zurück zum Zitat Li, C., Scott, D. A., Hatch, E., Tian, X., & Mansour, S. L. (2007). Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development, 134(1), 167–176.PubMedCrossRef Li, C., Scott, D. A., Hatch, E., Tian, X., & Mansour, S. L. (2007). Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development, 134(1), 167–176.PubMedCrossRef
31.
Zurück zum Zitat Eblaghie, M. C., Lunn, J. S., Dickinson, R. J., Munsterberg, A. E., Sanz-Ezquerro, J. J., Farrell, E. R., et al. (2003). Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Current Biology, 13(12), 1009–1018.PubMedCrossRef Eblaghie, M. C., Lunn, J. S., Dickinson, R. J., Munsterberg, A. E., Sanz-Ezquerro, J. J., Farrell, E. R., et al. (2003). Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Current Biology, 13(12), 1009–1018.PubMedCrossRef
32.
Zurück zum Zitat Christie, G. R., Williams, D. J., Macisaac, F., Dickinson, R. J., Rosewell, I., & Keyse, S. M. (2005). The dual-specificity protein phosphatase DUSP9/MKP-4 is essential for placental function but is not required for normal embryonic development. Molecular and Cellular Biology, 25(18), 8323–8333.PubMedCrossRef Christie, G. R., Williams, D. J., Macisaac, F., Dickinson, R. J., Rosewell, I., & Keyse, S. M. (2005). The dual-specificity protein phosphatase DUSP9/MKP-4 is essential for placental function but is not required for normal embryonic development. Molecular and Cellular Biology, 25(18), 8323–8333.PubMedCrossRef
33.
Zurück zum Zitat Loda, M., Capodieci, P., Mishra, R., Yao, H., Corless, C., Grigioni, W., et al. (1996). Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. American Journal of Pathology, 149(5), 1553–1564.PubMed Loda, M., Capodieci, P., Mishra, R., Yao, H., Corless, C., Grigioni, W., et al. (1996). Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. American Journal of Pathology, 149(5), 1553–1564.PubMed
34.
Zurück zum Zitat Zhang, L., Zhou, W., Velculescu, V. E., Kern, S. E., Hruban, R. H., Hamilton, S. R., et al. (1997). Gene expression profiles in normal and cancer cells. Science, 276(5316), 1268–1272.PubMedCrossRef Zhang, L., Zhou, W., Velculescu, V. E., Kern, S. E., Hruban, R. H., Hamilton, S. R., et al. (1997). Gene expression profiles in normal and cancer cells. Science, 276(5316), 1268–1272.PubMedCrossRef
35.
Zurück zum Zitat Emslie, E. A., Jones, T. A., Sheer, D., & Keyse, S. M. (1994). The CL100 gene, which encodes a dual specificity (Tyr/Thr) MAP kinase phosphatase, is highly conserved and maps to human chromosome 5q34. Human Genetics, 93(5), 513–516.PubMedCrossRef Emslie, E. A., Jones, T. A., Sheer, D., & Keyse, S. M. (1994). The CL100 gene, which encodes a dual specificity (Tyr/Thr) MAP kinase phosphatase, is highly conserved and maps to human chromosome 5q34. Human Genetics, 93(5), 513–516.PubMedCrossRef
36.
Zurück zum Zitat Li, M., Zhou, J. Y., Ge, Y., Matherly, L. H., & Wu, G. S. (2003). The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. Journal of Biological Chemistry, 278(42), 41059–41068.PubMedCrossRef Li, M., Zhou, J. Y., Ge, Y., Matherly, L. H., & Wu, G. S. (2003). The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. Journal of Biological Chemistry, 278(42), 41059–41068.PubMedCrossRef
37.
Zurück zum Zitat Keyse, S. M., & Emslie, E. A. (1992). Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature, 359(6396), 644–647.PubMedCrossRef Keyse, S. M., & Emslie, E. A. (1992). Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature, 359(6396), 644–647.PubMedCrossRef
38.
Zurück zum Zitat Laderoute, K. R., Mendonca, H. L., Calaoagan, J. M., Knapp, A. M., Giaccia, A. J., & Stork, P. J. (1999). Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. Journal of Biological Chemistry, 274(18), 12890–12897.PubMedCrossRef Laderoute, K. R., Mendonca, H. L., Calaoagan, J. M., Knapp, A. M., Giaccia, A. J., & Stork, P. J. (1999). Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. Journal of Biological Chemistry, 274(18), 12890–12897.PubMedCrossRef
39.
Zurück zum Zitat Leav, I., Galluzzi, C. M., Ziar, J., Stork, P. J., Ho, S. M., & Loda, M. (1996). Mitogen-activated protein kinase and mitogen-activated kinase phosphatase-1 expression in the Noble rat model of sex hormone-induced prostatic dysplasia and carcinoma. Laboratory Investigation, 75(3), 361–370.PubMed Leav, I., Galluzzi, C. M., Ziar, J., Stork, P. J., Ho, S. M., & Loda, M. (1996). Mitogen-activated protein kinase and mitogen-activated kinase phosphatase-1 expression in the Noble rat model of sex hormone-induced prostatic dysplasia and carcinoma. Laboratory Investigation, 75(3), 361–370.PubMed
40.
Zurück zum Zitat Magi-Galluzzi, C., Montironi, R., Cangi, M. G., Wishnow, K., & Loda, M. (1998). Mitogen-activated protein kinases and apoptosis in PIN. Virchows Archiv, 432(5), 407–413.PubMedCrossRef Magi-Galluzzi, C., Montironi, R., Cangi, M. G., Wishnow, K., & Loda, M. (1998). Mitogen-activated protein kinases and apoptosis in PIN. Virchows Archiv, 432(5), 407–413.PubMedCrossRef
41.
Zurück zum Zitat Magi-Galluzzi, C., Mishra, R., Fiorentino, M., Montironi, R., Yao, H., Capodieci, P., et al. (1997). Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Laboratory Investigation, 76(1), 37–51.PubMed Magi-Galluzzi, C., Mishra, R., Fiorentino, M., Montironi, R., Yao, H., Capodieci, P., et al. (1997). Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Laboratory Investigation, 76(1), 37–51.PubMed
42.
Zurück zum Zitat Srikanth, S., Franklin, C. C., Duke, R. C., & Kraft, R. S. (1999). Human DU145 prostate cancer cells overexpressing mitogen-activated protein kinase phosphatase-1 are resistant to Fas ligand-induced mitochondrial perturbations and cellular apoptosis. Molecular and Cellular Biochemistry, 199(1–2), 169–178.PubMedCrossRef Srikanth, S., Franklin, C. C., Duke, R. C., & Kraft, R. S. (1999). Human DU145 prostate cancer cells overexpressing mitogen-activated protein kinase phosphatase-1 are resistant to Fas ligand-induced mitochondrial perturbations and cellular apoptosis. Molecular and Cellular Biochemistry, 199(1–2), 169–178.PubMedCrossRef
43.
Zurück zum Zitat Denkert, C., Schmitt, W. D., Berger, S., Reles, A., Pest, S., Siegert, A., et al. (2002). Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. International Journal of Cancer, 102(5), 507–513.CrossRef Denkert, C., Schmitt, W. D., Berger, S., Reles, A., Pest, S., Siegert, A., et al. (2002). Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. International Journal of Cancer, 102(5), 507–513.CrossRef
44.
Zurück zum Zitat Wang, H. Y., Cheng, Z., & Malbon, C. C. (2003). Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Letters, 191(2), 229–237.PubMedCrossRef Wang, H. Y., Cheng, Z., & Malbon, C. C. (2003). Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Letters, 191(2), 229–237.PubMedCrossRef
45.
Zurück zum Zitat Small, G. W., Shi, Y. Y., Higgins, L. S., & Orlowski, R. Z. (2007). Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Research, 67(9), 4459–4466.PubMedCrossRef Small, G. W., Shi, Y. Y., Higgins, L. S., & Orlowski, R. Z. (2007). Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Research, 67(9), 4459–4466.PubMedCrossRef
46.
Zurück zum Zitat Sanchez-Perez, I., Martinez-Gomariz, M., Williams, D., Keyse, S. M., & Perona, R. (2000). CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin. Oncogene, 19(45), 5142–5152.PubMedCrossRef Sanchez-Perez, I., Martinez-Gomariz, M., Williams, D., Keyse, S. M., & Perona, R. (2000). CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin. Oncogene, 19(45), 5142–5152.PubMedCrossRef
47.
Zurück zum Zitat Wang, Z., Xu, J., Zhou, J. Y., Liu, Y., & Wu, G. S. (2006). Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Research, 66(17), 8870–8877.PubMedCrossRef Wang, Z., Xu, J., Zhou, J. Y., Liu, Y., & Wu, G. S. (2006). Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Research, 66(17), 8870–8877.PubMedCrossRef
48.
Zurück zum Zitat Vicent, S., Garayoa, M., Lopez-Picazo, J. M., Lozano, M. D., Toledo, G., Thunnissen, F. B., et al. (2004). Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clinical Cancer Research, 10(11), 3639–3649.PubMedCrossRef Vicent, S., Garayoa, M., Lopez-Picazo, J. M., Lozano, M. D., Toledo, G., Thunnissen, F. B., et al. (2004). Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clinical Cancer Research, 10(11), 3639–3649.PubMedCrossRef
49.
Zurück zum Zitat Lim, E. H., Aggarwal, A., Agasthian, T., Wong, P. S., Tan, C., Sim, E., et al. (2003). Feasibility of using low-volume tissue samples for gene expression profiling of advanced non-small cell lung cancers. Clinical Cancer Research, 9(16 Pt 1), 5980–5987.PubMed Lim, E. H., Aggarwal, A., Agasthian, T., Wong, P. S., Tan, C., Sim, E., et al. (2003). Feasibility of using low-volume tissue samples for gene expression profiling of advanced non-small cell lung cancers. Clinical Cancer Research, 9(16 Pt 1), 5980–5987.PubMed
50.
Zurück zum Zitat Chattopadhyay, S., Machado-Pinilla, R., Manguan-Garcia, C., Belda-Iniesta, C., Moratilla, C., Cejas, P., et al. (2006). MKP1/CL100 controls tumor growth and sensitivity to cisplatin in non-small-cell lung cancer. Oncogene, 25(23), 3335–3345.PubMedCrossRef Chattopadhyay, S., Machado-Pinilla, R., Manguan-Garcia, C., Belda-Iniesta, C., Moratilla, C., Cejas, P., et al. (2006). MKP1/CL100 controls tumor growth and sensitivity to cisplatin in non-small-cell lung cancer. Oncogene, 25(23), 3335–3345.PubMedCrossRef
51.
Zurück zum Zitat Small, G. W., Shi, Y. Y., Edmund, N. A., Somasundaram, S., Moore, D. T., & Orlowski, R. Z. (2004). Evidence that mitogen-activated protein kinase phosphatase-1 induction by proteasome inhibitors plays an antiapoptotic role. Molecular Pharmacology, 66(6), 1478–1490.PubMedCrossRef Small, G. W., Shi, Y. Y., Edmund, N. A., Somasundaram, S., Moore, D. T., & Orlowski, R. Z. (2004). Evidence that mitogen-activated protein kinase phosphatase-1 induction by proteasome inhibitors plays an antiapoptotic role. Molecular Pharmacology, 66(6), 1478–1490.PubMedCrossRef
52.
Zurück zum Zitat Sieben, N. L., Oosting, J., Flanagan, A. M., Prat, J., Roemen, G. M., Kolkman-Uljee, S. M., et al. (2005). Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors. Journal of Clinical Oncology, 23(29), 7257–7264.PubMedCrossRef Sieben, N. L., Oosting, J., Flanagan, A. M., Prat, J., Roemen, G. M., Kolkman-Uljee, S. M., et al. (2005). Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors. Journal of Clinical Oncology, 23(29), 7257–7264.PubMedCrossRef
53.
Zurück zum Zitat Yip-Schneider, M. T., Lin, A., & Marshall, M. S. (2001). Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2. Biochemical and Biophysical Research Communications, 280(4), 992–997.PubMedCrossRef Yip-Schneider, M. T., Lin, A., & Marshall, M. S. (2001). Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2. Biochemical and Biophysical Research Communications, 280(4), 992–997.PubMedCrossRef
54.
Zurück zum Zitat Givant-Horwitz, V., Davidson, B., Goderstad, J. M., Nesland, J. M., Trope, C. G., & Reich, R. (2004). The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma. Gynecologic Oncology, 93(2), 517–523.PubMedCrossRef Givant-Horwitz, V., Davidson, B., Goderstad, J. M., Nesland, J. M., Trope, C. G., & Reich, R. (2004). The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma. Gynecologic Oncology, 93(2), 517–523.PubMedCrossRef
55.
Zurück zum Zitat Kim, S. C., Hahn, J. S., Min, Y. H., Yoo, N. C., Ko, Y. W., & Lee, W. J. (1999). Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: Combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood, 93(11), 3893–3899.PubMed Kim, S. C., Hahn, J. S., Min, Y. H., Yoo, N. C., Ko, Y. W., & Lee, W. J. (1999). Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: Combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood, 93(11), 3893–3899.PubMed
56.
Zurück zum Zitat Furukawa, T., Yatsuoka, T., Youssef, E. M., Abe, T., Yokoyama, T., Fukushige, S., et al. (1998). Genomic analysis of DUSP6, a dual specificity MAP kinase phosphatase, in pancreatic cancer. Cytogenetics and Cell Genetics, 82(3–4), 156–159.PubMed Furukawa, T., Yatsuoka, T., Youssef, E. M., Abe, T., Yokoyama, T., Fukushige, S., et al. (1998). Genomic analysis of DUSP6, a dual specificity MAP kinase phosphatase, in pancreatic cancer. Cytogenetics and Cell Genetics, 82(3–4), 156–159.PubMed
57.
Zurück zum Zitat Warmka, J. K., Mauro, L. J., & Wattenberg, E. V. (2004). Mitogen-activated protein kinase phosphatase-3 is a tumor promoter target in initiated cells that express oncogenic Ras. Journal of Biological Chemistry, 279(32), 33085–33092.PubMedCrossRef Warmka, J. K., Mauro, L. J., & Wattenberg, E. V. (2004). Mitogen-activated protein kinase phosphatase-3 is a tumor promoter target in initiated cells that express oncogenic Ras. Journal of Biological Chemistry, 279(32), 33085–33092.PubMedCrossRef
58.
Zurück zum Zitat Croonquist, P. A., Linden, M. A., Zhao, F., & Van Ness, B. G. (2003). Gene profiling of a myeloma cell line reveals similarities and unique signatures among IL-6 response, N-ras-activating mutations, and coculture with bone marrow stromal cells. Blood, 102(7), 2581–2592.PubMedCrossRef Croonquist, P. A., Linden, M. A., Zhao, F., & Van Ness, B. G. (2003). Gene profiling of a myeloma cell line reveals similarities and unique signatures among IL-6 response, N-ras-activating mutations, and coculture with bone marrow stromal cells. Blood, 102(7), 2581–2592.PubMedCrossRef
59.
Zurück zum Zitat Bloethner, S., Chen, B., Hemminki, K., Muller-Berghaus, J., Ugurel, S., Schadendorf, D., et al. (2005). Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis, 26(7), 1224–1232.PubMedCrossRef Bloethner, S., Chen, B., Hemminki, K., Muller-Berghaus, J., Ugurel, S., Schadendorf, D., et al. (2005). Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis, 26(7), 1224–1232.PubMedCrossRef
60.
Zurück zum Zitat Marchetti, S., Gimond, C., Roux, D., Gothie, E., Pouyssegur, J., & Pages, G. (2004). Inducible expression of a MAP kinase phosphatase-3-GFP chimera specifically blunts fibroblast growth and ras-dependent tumor formation in nude mice. Journal of Cellular Physiology, 199(3), 441–450.PubMedCrossRef Marchetti, S., Gimond, C., Roux, D., Gothie, E., Pouyssegur, J., & Pages, G. (2004). Inducible expression of a MAP kinase phosphatase-3-GFP chimera specifically blunts fibroblast growth and ras-dependent tumor formation in nude mice. Journal of Cellular Physiology, 199(3), 441–450.PubMedCrossRef
61.
Zurück zum Zitat Furukawa, T., Sunamura, M., Motoi, F., Matsuno, S., & Horii, A. (2003). Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. American Journal of Pathology, 162(6), 1807–1815.PubMed Furukawa, T., Sunamura, M., Motoi, F., Matsuno, S., & Horii, A. (2003). Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. American Journal of Pathology, 162(6), 1807–1815.PubMed
62.
Zurück zum Zitat Furukawa, T., Fujisaki, R., Yoshida, Y., Kanai, N., Sunamura, M., Abe, T., et al. (2005). Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Modern Pathology, 18(8), 1034–1042.PubMedCrossRef Furukawa, T., Fujisaki, R., Yoshida, Y., Kanai, N., Sunamura, M., Abe, T., et al. (2005). Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Modern Pathology, 18(8), 1034–1042.PubMedCrossRef
63.
Zurück zum Zitat Xu, S., Furukawa, T., Kanai, N., Sunamura, M., & Horii, A. (2005). Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. Journal of Human Genetics, 50(4), 159–167.PubMedCrossRef Xu, S., Furukawa, T., Kanai, N., Sunamura, M., & Horii, A. (2005). Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. Journal of Human Genetics, 50(4), 159–167.PubMedCrossRef
64.
Zurück zum Zitat Leach, S. D. (2004). Mouse models of pancreatic cancer: the fur is finally flying!. Cancer Cell, 5(1), 7–11.PubMedCrossRef Leach, S. D. (2004). Mouse models of pancreatic cancer: the fur is finally flying!. Cancer Cell, 5(1), 7–11.PubMedCrossRef
65.
Zurück zum Zitat Levy-Nissenbaum, O., Sagi-Assif, O., Raanani, P., Avigdor, A., Ben-Bassat, I., & Witz, I. P. (2003). cDNA microarray analysis reveals an overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukemia. Methods in Enzymology, 366, 103–113.PubMedCrossRef Levy-Nissenbaum, O., Sagi-Assif, O., Raanani, P., Avigdor, A., Ben-Bassat, I., & Witz, I. P. (2003). cDNA microarray analysis reveals an overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukemia. Methods in Enzymology, 366, 103–113.PubMedCrossRef
66.
Zurück zum Zitat Levy-Nissenbaum, O., Sagi-Assif, O., Raanani, P., Avigdor, A., Ben-Bassat, I., & Witz, I. P. (2003). Overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukemia. Cancer Letters, 199(2), 185–192.PubMedCrossRef Levy-Nissenbaum, O., Sagi-Assif, O., Raanani, P., Avigdor, A., Ben-Bassat, I., & Witz, I. P. (2003). Overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukemia. Cancer Letters, 199(2), 185–192.PubMedCrossRef
67.
Zurück zum Zitat Levy-Nissenbaum, O., Sagi-Assif, O., Kapon, D., Hantisteanu, S., Burg, T., Raanani, P., et al. (2003). Dual-specificity phosphatase Pyst2-L is constitutively highly expressed in myeloid leukemia and other malignant cells. Oncogene, 22(48), 7649–7660.PubMedCrossRef Levy-Nissenbaum, O., Sagi-Assif, O., Kapon, D., Hantisteanu, S., Burg, T., Raanani, P., et al. (2003). Dual-specificity phosphatase Pyst2-L is constitutively highly expressed in myeloid leukemia and other malignant cells. Oncogene, 22(48), 7649–7660.PubMedCrossRef
68.
Zurück zum Zitat Muda, M., Boschert, U., Smith, A., Antonsson, B., Gillieron, C., Chabert, C., et al. (1997). Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. Journal of Biological Chemistry, 272(8), 5141–5151.PubMedCrossRef Muda, M., Boschert, U., Smith, A., Antonsson, B., Gillieron, C., Chabert, C., et al. (1997). Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. Journal of Biological Chemistry, 272(8), 5141–5151.PubMedCrossRef
69.
Zurück zum Zitat Dickinson, R. J., Williams, D. J., Slack, D. N., Williamson, J., Seternes, O. M., & Keyse, S. M. (2002). Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase. Biochemical Journal, 364(Pt 1), 145–155.PubMed Dickinson, R. J., Williams, D. J., Slack, D. N., Williamson, J., Seternes, O. M., & Keyse, S. M. (2002). Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase. Biochemical Journal, 364(Pt 1), 145–155.PubMed
70.
Zurück zum Zitat Liu, Y., Lagowski, J., Sundholm, A., Sundberg, A., & Kulesz-Martin, M. (2007). Microtubule disruption and tumor suppression by mitogen-activated protein kinase phosphatase 4. Cancer Research, 67(22), 10711–10719.PubMedCrossRef Liu, Y., Lagowski, J., Sundholm, A., Sundberg, A., & Kulesz-Martin, M. (2007). Microtubule disruption and tumor suppression by mitogen-activated protein kinase phosphatase 4. Cancer Research, 67(22), 10711–10719.PubMedCrossRef
Metadaten
Titel
Dual-specificity MAP kinase phosphatases (MKPs) and cancer
verfasst von
Stephen M. Keyse
Publikationsdatum
01.06.2008
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2/2008
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9123-1

Weitere Artikel der Ausgabe 2/2008

Cancer and Metastasis Reviews 2/2008 Zur Ausgabe

PREFACE

Preface

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.