Skip to main content
Erschienen in: BMC Cancer 1/2011

Open Access 01.12.2011 | Research article

Early metabolic response using FDG PET/CT and molecular phenotypes of breast cancer treated with neoadjuvant chemotherapy

verfasst von: Bhumsuk Keam, Seock-Ah Im, Youngil Koh, Sae-Won Han, Do-Youn Oh, Nariya Cho, Jee Hyun Kim, Wonshik Han, Keon Wook Kang, Woo Kyung Moon, Tae-You Kim, In Ae Park, Dong-Young Noh, June-Key Chung, Yung-Jue Bang

Erschienen in: BMC Cancer | Ausgabe 1/2011

Abstract

Background

This study was aimed 1) to investigate the predictive value of FDG PET/CT (fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography) for histopathologic response and 2) to explore the results of FDG PET/CT by molecular phenotypes of breast cancer patients who received neoadjuvant chemotherapy.

Methods

Seventy-eight stage II or III breast cancer patients who received neoadjuvant docetaxel/doxorubicin chemotherapy were enrolled in this study. FDG PET/CTs were acquired before chemotherapy and after the first cycle of chemotherapy for evaluating early metabolic response.

Results

The mean pre- and post-chemotherapy standard uptake value (SUV) were 7.5 and 3.9, respectively. The early metabolic response provided by FDG PET/CT after one cycle of neoadjuvant chemotherapy was correlated with the histopathologic response after completion of neoadjuvant chemotherapy (P = 0.002). Sensitivity and negative predictive value were 85.7% and 95.1%, respectively. The estrogen receptor negative phenotype had a higher pre-chemotherapy SUV (8.6 vs. 6.4, P = 0.047) and percent change in SUV (48% vs. 30%, P = 0.038). In triple negative breast cancer (TNBC), the pre-chemotherapy SUV was higher than in non-TNBC (9.8 vs. 6.4, P = 0.008).

Conclusions

The early metabolic response using FDG PET/CT could have a predictive value for the assessment of histopathologic non-response of stage II/III breast cancer treated with neoadjuvant chemotherapy. Our findings suggest that the initial SUV and the decline in SUV differed based on the molecular phenotype.

Trial Registration

ClinicalTrials.gov: NCT01396655
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2407-11-452) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Designing the concept of the study: SAI, BK. Provision of study patients and chemotherapy: SAI, SWH, DYO, JHK, TYK, YJB. Provision of study patients and surgery: WH, DYN. Pathologic examination and immunohistochemistry: IAP. Image analysis: NC, KWK, WKM, JKC. Data gathering, statistical analysis and interpretation: BK, YK. Manuscript writing: SAI, BK. All authors read and approved the final manuscript
Abkürzungen
FDG PET
fluorine-18 fluorodeoxyglucose positron emission tomography
CT
computed tomography
MRI
magnetic resonance imaging
ER
estrogen receptor
PR
progesterone receptor
HER2
human epidermal growth factor receptor 2
IHC
immunohistochemistry
TNBC
triple negative breast cancer
pCR
pathologic complete response
MRD
minimal residual disease
GRD
gross residual disease
SUV
standard uptake value
ROC
receiver-operating characteristics.

Background

Breast cancer is second most common cancer in Korean women [1]. Neoadjuvant chemotherapy, also called preoperative chemotherapy, has emerged as the preferred initial component of therapy for patients diagnosed with locally advanced breast cancer. In the treatment of locally advanced breast cancer, multimodality approach, including neoadjuvant chemotherapy, surgery, and radiotherapy, is needed [24].
Over the last decade, the clinical value of fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) in breast cancer has been widely studied [58]. However, a few studies have been conducted in stage II or III breast cancer patients receiving neoadjuvant chemotherapy, and the role of FDG PET remains inconclusive because of the small number of patients and heterogeneous regimens [913].
Furthermore, breast cancer is a heterogeneous disease with a demonstrated difference in prognosis based on molecular phenotypes. Many researchers have attempted to perform risk stratification and individualized treatment according to molecular phenotypes. We conducted a prospective phase II study of neoadjuvant docetaxel/doxorubicin chemotherapy in stage II or III breast cancer and recently reported the prognostic and predictive role of the molecular markers [14, 15].
However, little is known how we consider the molecular phenotypes of breast cancer in order to interpret FDG PET findings [16]. This lead us to further investigate FDG PET in stage II or III breast cancer patients who received neoadjuvant chemotherapy, and FDG PET/CT was performed as a part of large clinical phase II study. The objectives of this study were 1) to investigate the predictive value of FDG PET/CT for histopathologic responses and 2) to explore the results of FDG PET/CT by molecular phenotypes of breast cancer.

Methods

Patients and treatment

Between July 2006 and September 2008, a total of 78 stage II or III breast cancer patients who received neoadjuvant docetaxel/doxorubicin chemotherapy were enrolled in this prospective study. The primary endpoint of this trial was evaluating pathologic complete response (pCR) rate, because pCR is repeatedly confirmed most relievable prognostic factor for neoadjuvant chemotherapy [17, 18], and the best predictor of improved outcome and prolonged survival [3]. Secondary endpoints were evaluating survival, toxicity, predictive factors, and early metabolic response. The eligibility criteria were described in our prior reports [14, 15]. In brief, the eligibility criteria were as follows: 1) pathologically-confirmed breast cancer by core needle biopsy, 2) initial clinical stage II or III, 3) objective measurable lesion, 4) ECOG performance 0~2, 5) previously untreated, and 6) adequate bone marrow, hepatic, cardiac, and renal functions. The patients received three cycles of neoadjuvant docetaxel/doxorubicin chemotherapy. The chemotherapeutic regimen consisted of docetaxel (75 mg/m2) and doxorubicin (50 mg/m2) by intravenous infusion every 3 weeks. After three cycles of neoadjuvant chemotherapy, the patients were re-evaluated for response and underwent curative surgery. Radiologic response was evaluated using breast magnetic resonance imaging (MRI) for the primary breast tumor and chest computed tomography (CT) for axillary, supraclavicular, internal mammary lymph nodes with RECIST criteria [19]. Both breast MRI and chest CT were performed in all the 78 patients. Subsequently, the patients received three more cycles of docetaxel and doxorubicin as an adjuvant chemotherapy, followed by hormonal or radiation therapy, if indicated [20]. Figure 1 shows the scheme for this study protocol. This regimen is known to be effective as neoadjuvant chemotherapy for stage II or III breast cancer [14, 15, 21]. We performed retrospective descriptive analysis for PET/CTs within this prospective study. This study protocol was conducted under the approval of the Institutional Review Board of Seoul National University Hospital (IRB approval number: 0510-506-159).

Pathologic Assessment

The molecular markers that we have examined included estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67. We performed immunohistochemistry (IHC) using tissues obtained before treatment and evaluated the association with clinical outcomes. IHC was performed as previously described [15, 22]. The cut-off for ER and PR positivity was ≥ 10% positive tumor cells with nuclear staining. HER2 positivity was defined as either HER2 gene amplification by fluorescent in situ hybridization or scored as 3+ by IHC [23]. The molecular phenotypes of breast cancer were classified into luminal A, luminal B, HER2 and triple negative breast cancer (TNBC) [24]. TNBC was defined as ER(-), PR(-), and HER2(-). Luminal A phenotype was defined as ER(+) or PR(+) and HER2(-) tumor, and luminal B phenotype was defined as ER(+) or PR(+) and HER2(+). ER(-) and PR (-) and HER2+ tumor was classified as HER2 phenotype. Low expression of Ki-67 was defined as ≤5%. Histopathologic response was classified as proposed by Honkoop et al. [25] Specimens with no residual invasive carcinoma were classified as pCR. Residual ductal carcinoma in situ was included in the pCR category [26]. Specimens with only few scattered foci of microscopic residual invasive tumor were classified as minimal residual disease (MRD). Gross residual disease (GRD) comprised tumors showing macroscopic residual tumor or extensive residual tumor infiltration on microscopic examination. pCR and MRD were defined as histopathologic response and GRD as no histopathologic response.

FDG PET/CT studies

Whole-body fluorine-18 FDG PET/CT scans were acquired before and after neoadjuvant chemotherapy for early metabolic response prediction. On the 15th day of the first cycle of neoadjuvant chemotherapy, we obtained follow-up whole-body fluorine-18 FDG PET/CT scans. The CT scan protocol was as follows: tube voltage, 120 kV; current intensity, 50 mAs; scan time, 43.2 seconds; effective radiation dose, 4.8 mSv. FDG PET/CT was done using the same scanner (Gemini PET/CT system; Philips, Milpitas, CA, USA). Patients fasted for at least 6 hours before fluorine-18 FDG was injected intravenously. Patients were administered a weight-adjusted dosed of fluorine-18 FDG (5.18 MBq/kg), and images were acquired approximately 60 minutes (range: 50-75 minutes) after an intravenous injection of fluorine-18 FDG. Whole body emission scans were obtained for 2 minutes per bed position. PET/CT scanners automatically calculated the decay-corrected injected activity. We flushed the syringe and venous catheter three times, and residual activities in the syringe were less than 20 μCi and negligible. All patients were studied in the supine position with both arms raised above the head to pull their breast away.
Attenuation correction was based on the CT data, and PET data reconstruction was done by a 3-dimensional row action maximum likelihood algorithm. For quantitative assessment of tumor FDG uptake, region of interest were manually drawn on the slice with the highest radioactivity concentration of the primary breast tumor and in the adjacent slices.
The standard uptake values (SUVs) were calculated from the amount of FDG injected, body weight, and soft tissue uptake in the attenuation-corrected regional images as follows: SUV = (activity/unit volume)/(injected dose/body weight). Maximal SUV was defined as the SUV value on one pixel with the highest counts within the region of interest. The lesion chosen for analysis was the primary breast lesion with the highest SUV. The pre-treatment baseline maximal SUV of the tumor (pre-SUV) and the SUV of the tumor after the first cycle of chemotherapy (post-SUV) were compared with clinico-pathologic parameters. Calculation of the uptake index was as follows: ΔSUV% = 100 × (pre-SUV - post-SUV)/pre-SUV.

Statistical analysis

This is a subproject of a phase II trial. The primary endpoint of the main project was pCR, and we designed this trial to test null hypothesis that the pCR rate was at most 10% against the alternative hypothesis that it was at least 20%. A sample size of 78 patients provided 80% power to test this hypothesis and α 0.05, using Simon's two stage minimax design [27]. The statistical consideration was performed according to the main project. The subproject has investigated the early metabolic change as primary endpoint. This was an exploratory analysis only, without an own sample size calculation for subproject. The primary objective of this subproject was to find a correlation between early metabolic response and pathological response. The association between histopathologic and metabolic response were assessed by a chi-square test. The cut-off of the SUV change for metabolic response was not prospectively defined. Receiver-operating characteristics (ROC) analysis was performed to determine a threshold for the prediction of metabolic response. The Mann-Whitney U test or Kruskal-Wallis test were used to compare SUVs according to different molecular phenotypes. All statistical tests were two-sided, with the level of significance established at P < 0.05. SPSS software (SPSS, Inc., Chicago, IL, USA) was used for all statistical analyses.

Results

Patients and results of treatment

The pretreatment characteristics are given in Table 1. Twelve patients (15.7%) were initially staged clinical stage II and the others (84.3%) were initial staged clinical stage III. The median follow-up duration was 18.7 months (range, 4.9-30.9 months). The tumor size was a median of 4.5 cm in the greatest dimension (range, 2.0-11.0 cm). At the end of follow-up, eight patients had developed recurrent disease, and one patient had died. The overall histopathologic response rate was 17.9%. Table 2 shows the results to neoadjuvant chemotherapy.
Table 1
Baseline characteristics of 78 patients
Characteristics
No. of Pt (%)
Median age (range)
45 (range 29-69)
   Age < 50
56 (71.8)
   Age ≥50
22 (28.2)
Performance status
 
   ECOG 0
23 (29.5)
   ECOG 1
55 (70.5)
Pathologic characteristics
 
   Invasive ductal carcinoma
74 (94.9)
   Others
4 (5.1)
Initial clinical stage
 
   IIA
1 (1.3)
   IIB
11 (14.1)
   IIIA
47 (60.3)
   IIIB
13 (16.7)
   IIIC
6 (7.7)
Inflammatory breast cancer
 
   Yes
3 (3.8)
   No
75 (96.2)
Type of surgery
 
   Breast conserving
44 (56.4)
   Mastectomy
34 (43.6)
Adjuvant hormonal therapy
 
   Yes
52 (66.7)
   No
26 (33.3)
Adjuvant radiation therapy
 
   Yes
66 (84.6)
   No
12 (15.4)
ECOG, Eastern Cooperative Oncology Group.
Table 2
Results to docetaxel plus doxorubicin neoadjuvant chemotherapy
Response
No. of Pts (%)
Histopathologic response
 
   Pathologic complete response
4 (5.1)
   Minimal residual disease
10 (12.8)
   Gross residual disease
64 (82.1)

Changes in FDG PET/CT during neoadjuvant chemotherapy

The mean maximal SUVs ± standard deviation (SD) were as follows: pre-SUV = 7.5 ± 4.3 (range, 1.4~22.1), post-SUV = 3.9 ± 2.7 (range, 0~12), mean Δ SUV% = 40% (range, -260%~100%; SD = 46). The treatment response was assessed by breast MRI and chest CT for radiologic response and by FDG PET/CT for early metabolic response. Δ SUV% and decrease % of tumor diameter measured by RECIST criteria were well correlated (Pearson correlation coefficient = 0.267, P = 0.019).
ROC analysis were performed to determine optimal cut-off values of Δ SUV% to differentiate metabolic responder and non-responder, based on histopathologic response (Figure 2). The cut-off to achieve the highest positive predictive value was Δ SUV% of 50% (sensitivity of 85.7%, specificity of 60.9%). Among the all 78 patients, 37 patients (47.4%) achieved metabolic response, while 41 patients (52.6%) did not.
Δ SUV% was significantly greater in patients with histopathologic response than patients without histopathologic response (63% vs. 34%, P = 0.001, Table 3). Pre-SUVs were not different between histopathologic responder and non-responder, however post-SUVs were significantly differed, and this led to a difference of Δ SUV%. Histopathologic response was higher in early metabolic responders determined by FDG PET/CT after one cycle of neoadjuvant chemotherapy (P = 0.002) (Table 4). Among 14 histopathologic responder, 12 (85.7%) showed metabolic response. Importantly, 39 patients among the 41 metabolic non-responders (95.1%) were eventually revealed as histopathologic non-responder (Table 4).
Table 3
Correlation between response and SUV values.
Response
Pre-SUV
Post-SUV
ΔSUV%
Histopathologic response
   
   Responders
7.3 ± 4.2
2.2 ± 1.9
63 ± 48
   Non-responders
7.6 ± 4.4
4.3 ± 2.7
34 ± 47
 
P = 0.795
P = 0.004
P = 0.001
SUV, standard uptake value
P-value based on the Mann-Whitney U test, presuming to be non-parametric statistics
Table 4
Correlation between metabolic, and histopathologic response.
Response
Histopathologic responders *
Histopathologic
non-responders
P-value
Metabolic responders
   
   Responders
12 (32.4%)
25 (67.6%)
0.002
   Non-responders
2 (4.9%)
39 (95.1%)
 
 
For histopathologic responders
For histopathologic nonresponder
 
   Sensitivity
85.7% (12/14)
60.9% (39/64)
 
   Specificity
60.9% (39/64)
85.7% (12/14)
 
   Positive predictive value
32.4% (12/37)
95.1% (39/41)
 
   Negative predictive value
95.1% (39/41)
32.4% (12/37)
 
* Pathologic complete response or minimal residual disease were regarded as histopathologic responders, Gross residual disease were regarded as histopathologic non-responders.
P-value based on the Fisher's exact test

Changes in FDG PET/CT and histopathologic response according to molecular phenotype

The FDG PET/CT results were different according to the molecular phenotype of the breast cancer. The ER negative phenotype showed a higher pre-SUV (8.6 vs. 6.4, P = 0.047) and Δ SUV% (48% vs. 30%, P = 0.038) than ER positive phenotype. In patients with high Ki-67 expression, a similar phenomenon was observed in that the pre-SUV and Δ SUV% were higher than in the low Ki-67 expression group (8.5 vs. 6.2, P = 0.018; 49% vs. 27%, P = 0.052, respectively). In the TNBC group, the pre-chemotherapy SUV was higher than in the non-TNBC group (9.8 vs. 6.4, P = 0.008); however, the Δ SUV% was not different (P = 0.799). Table 5 and Figure 3 show the serial FDG PET/CT results according to molecular phenotypes. Histopathologic response rate was higher in ER negative patients than ER positive patients (27.5% vs. 7.9%, P = 0.037) and early metabolic response rate tend to higher in ER negative patients (57.5% vs. 36.8%, P = 0.068). In this context, histopathologic response rate was significantly different according to molecular phenotype (P = 0.018) and metabolic response tend to higher in HER2+ and TNBC subtypes than luminal type (66.7% vs. 50.0% vs. 40.0%, P = 0.255). Sensitivity and specificity of metabolic response for histopathologic response were higher in ER positive phenotype (100.0% and 68.6%, respectively) than those of ER negative phenotype (81.8% and 51.7%, respectively).
Table 5
SUV and changes in SUV based on molecular phenotypes
 
No. of Pts
Pre-SUV *
Post-SUV *
ΔSUV% *
HPR (%)
ER
     
   Positive
38
6.4 ± 3.3
3.7 ± 2.1
30 ± 57
3 (7.9)
   Negative
40
8.6 ± 4.9
4.1 ± 3.1
48 ± 37
11 (27.5)
  
P = 0.047
P = 0.936
P = 0.038
P = 0.037
PR
     
   Positive
30
6.5 ± 3.3
3.5 ± 2.4
36 ± 63
3 (10.0)
   Negative
48
8.2 ± 4.8
4.2 ± 2.8
42 ± 37
11 (22.9)
  
P = 0.187
P = 0.347
P = 0.837
P = 0.226
HER2
     
   Positive
17
6.8 ± 3.2
3.2 ± 2.6
51 ± 36
5 (29.4%)
   Negative
61
7.7 ± 4.6
4.1 ± 2.7
36 ± 51
9 (14.8%)
  
P = 0.818
P = 0.247
P = 0.189
P = 0.164
Triple negativity
     
   TNBC
26
9.8 ± 5.3
5.0 ± 3.0
42 ± 35
6 (23.1)
   Non-TNBC
52
6.4 ± 3.2
3.4 ± 2.3
38 ± 54
8 (15.4)
  
P = 0.008
P = 0.076
P = 0.799
P = 0.404
Molecular phenotype
     
   Luminal A/B
40
6.3 ± 3.3
3.6 ± 2.2
33 ± 57
3 (7.5)
   HER2
12
6.6 ± 3.2
2.8 ± 2.6
56 ± 39
5 (41.7)
   TNBC
26
9.8 ± 5.3
5.0 ± 3.0
42 ± 35
6 (23.1)
  
P = 0.016
P = 0.055
P = 0.150
P = 0.018
Ki-67
     
   Low expression §
30
6.2 ± 4.1
3.6 ± 2.6
27 ± 65
4 (13.3)
   High expression
41
8.5 ± 4.4
4.0 ± 2.8
49 ± 33
10 (24.4)
  
P = 0.018
P = 0.541
P = 0.052
P = 0.367
HPR, histopathologic responder; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; TNBC, triple negative breast cancer.
* Data are presented as the mean ± standard deviation.
P-values are based on Chi square or Fisher's exact test.
P-values are based on Kruskal-Wallis test, otherwise P-values are based on Mann-Whitney U test, presuming to be non-parametric statistics.
§ Low expression of Ki-67 was defined as ≤ 5%, and 7 patients were not available for Ki-67 results.

Discussion

In the present study, we found that the early metabolic response using serial FDG PET/CT had a high predictive value for the histopathologic non-response of stage II/III breast cancer treated with neoadjuvant chemotherapy. Our study has demonstrated that the early metabolic response obtained on the 15th day of first cycle of neoadjuvant chemotherapy may be useful in determining histopathologic non-responders with high negative predictive value of 95.1%, however, its value to identify histopathologic responders was low with positive predictive value of 32.4%. Different molecular phenotypes based on IHC reflect different metabolic properties and different histopathologic response rate.
Because current methods to monitoring tumor response (i.e., physical examination and conventional imaging modalities) have potential limitations [12], early metabolic responses by serial FDG PET/CT would be a useful complementary tool. Assessment of therapeutic response with serial FDG PET/CT scans was possible earlier than with any other method. Early evaluation of chemosensitivity in vivo using serial FDG PET/CT would help to identify non-responding patients, to avoid ineffective chemotherapy [28, 29] and to decide the most appropriate therapeutic strategy. With given sensitivity of 85.7% and negative predictive value of 95.1%, metabolic non-responders identified by early serial FDG PET/CTs were likely to be histopathologic non-responders. In order to improve treatment outcome by risk stratification, the metabolic non-responder could be considered to have received another treatment strategy in earlier time course. It is necessary to design a future prospective randomized clinical trial comparing continuing standard cytotoxic chemotherapy alone versus incorporating new agents for metabolic non-responders to decide the clinical value of early determination of metabolic non-response.
Our study confirms previous reports [9, 10, 12, 13, 2936] on the predictive value of changes in glucose metabolism after neoadjuvant chemotherapy in a prospective setting. Rousseau et al. [12] reported sensitivity of 61%, specificity of 96%, and negative predictive value of 68% when using FDG PET/CT after the first cycle of chemotherapy with a SUV cut-off of 60%. When comparing PET/CTs obtained baseline and 2nd cycles of chemotherapy, sensitivity and specificity were reported 73% and 63% with a cut-off of 45% [35], 93% and 75% with a cut-off of 50% [29], 77% and 80% with a cut-off of 40% [31]. The previous studies using FDG PET in neoadjuvant settings have indicated that measurements of SUV or changes in SUV during neoadjuvant chemotherapy allow prediction of histopathologic response as well as survival [9, 10, 12, 13, 2937]. We used Δ SUV% because it was found to be the only independent predictive factor of histopathologic response in previous report [30]. Histopathologic response was higher in metabolic responder compared with metabolic non-responder (32.4% vs. 4.9%) although substantial portion of metabolic responder did not eventually get histopathologic response. Lower histopathologic response rate in our study was attributed to relatively short course of neoadjuvant chemotherapy in relatively advanced large tumors (median tumor size 4.5 cm). Importantly, 39 out of 41 metabolic non-responders did not get pathologic response which makes high negative predictive value (95.1%), and 85.7% of metabolic responders eventually showed pathologic response.
Bos et al. [16] reported that18FDG uptake in breast cancer was determined by the several biologic markers including glucose transporter-1, hexokinase I expression and mitotic activity index in breast cancer. Avril et al. [38] analyzed 56 operable breast cancer patients, and reported the positive correlation between baseline FDG uptake and tumor cell proliferation, which were similar with our results. In that report, hormone receptor negative breast cancer tended to have higher pre-SUV level than hormone receptor positive breast cancer, even though not reached statistical significance. However, little is currently known about the correlation between the SUV changes of FDG PET results and the meaning of molecular phenotype which is commonly used in the clinic to decide the treatment plan. In our study, breast cancer patients with high expression of Ki-67, which is regarded as highly proliferative and aggressive [39], showed a higher pre-SUV. ER negativity and high expression of Ki-67 was also associated with a high declining of the SUV. The pre-chemotherapy SUV of TNBC was higher than in non-TNBC, which was in line with other study [40].
Our study has some limitation. First, the median follow-up duration is relatively short with median follow-up duration of 18.7 months. As only few patients experienced relapses, we did not make an attempt to correlate the results of FDG PET/CT with survival. Second, the cut-off value of Δ SUV% should be validated in a larger study. Third, we did not obtain confirmatory statistical power for subgroup analysis.
However, our study was the first study exploring the metabolic uptake changes according to the clinically relevant molecular phenotype using serial FDG PET/CT before and after neoadjuvant chemotherapy. The patient population was highly homogenous in terms of stage and treated by same chemotherapy regimen and schedule. SUVs were obtained by the same PET/CT machine with the same protocol in a single institution. Metabolic lesions were well-matched because we used a combined PET/CT system.

Conclusions

Despite some limitations, this study suggests that early metabolic response assessment with FDG PET/CT after the first cycle of neoadjuvant chemotherapy accuratly predicted histopathologic non-response and could be useful to identify patients undergoing ineffective or needing more aggressive chemotherapy. We also observed that the initial SUV and declining of the SUV differed based on molecular phenotype. Further prospective studies confirming the retrospectively calculated cut-off of 50%, and using longer duration of neoadjuvant chemotherapy with serial FDG PET/CT including early time point and just prior to definitive surgery are warranted.

Acknowledgements

This work was supported by the Seoul National University Brain Fusion Program 2010 Research Grant to SA Im, and was also supported by Basic Science Research Program Through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0022299). We would like to thank our clinical fellows (Dr. Dae-Young Kim, Dr. Myung-Deok Seo, Dr. Jong-Mu Sun, and Dr. Hye Jung Chang) and clinical research nurses (Kyung-Hee Lee, Ji-Sook Kim, and Hyun Sook Kang) for their assistance in the clinical trial. We also thank BioMed Proofreading LLC for English editing. This study was presented as oral presentation at the 33rd European Society for Medical Oncology Congress in Stockholm, Sweden (12-16 September 2008).
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Designing the concept of the study: SAI, BK. Provision of study patients and chemotherapy: SAI, SWH, DYO, JHK, TYK, YJB. Provision of study patients and surgery: WH, DYN. Pathologic examination and immunohistochemistry: IAP. Image analysis: NC, KWK, WKM, JKC. Data gathering, statistical analysis and interpretation: BK, YK. Manuscript writing: SAI, BK. All authors read and approved the final manuscript
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Shin HR, Won YJ, Jung KW, Kong HJ, Yim SH, Lee JK, Noh HI, Pisani P, Park JG: Nationwide cancer incidence in Korea, 1999~2001; first result using the national cancer incidence database. Cancer Res Treat. 2005, 37: 325-331. 10.4143/crt.2005.37.6.325.CrossRefPubMedPubMedCentral Shin HR, Won YJ, Jung KW, Kong HJ, Yim SH, Lee JK, Noh HI, Pisani P, Park JG: Nationwide cancer incidence in Korea, 1999~2001; first result using the national cancer incidence database. Cancer Res Treat. 2005, 37: 325-331. 10.4143/crt.2005.37.6.325.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Esteva FJ, Hortobagyi GN: Locally advanced breast cancer. Hematol Oncol Clin North Am. 1999, 13: 457-472. 10.1016/S0889-8588(05)70065-4. viiCrossRefPubMed Esteva FJ, Hortobagyi GN: Locally advanced breast cancer. Hematol Oncol Clin North Am. 1999, 13: 457-472. 10.1016/S0889-8588(05)70065-4. viiCrossRefPubMed
3.
Zurück zum Zitat Estevez LG, Gradishar WJ: Evidence-based use of neoadjuvant taxane in operable and inoperable breast cancer. Clin Cancer Res. 2004, 10: 3249-3261. 10.1158/1078-0432.CCR-03-0133.CrossRefPubMed Estevez LG, Gradishar WJ: Evidence-based use of neoadjuvant taxane in operable and inoperable breast cancer. Clin Cancer Res. 2004, 10: 3249-3261. 10.1158/1078-0432.CCR-03-0133.CrossRefPubMed
4.
Zurück zum Zitat Kaufmann M, von Minckwitz G, Smith R, Valero V, Gianni L, Eiermann W, Howell A, Costa SD, Beuzeboc P, Untch M, Blohmer JU, Sinn HP, Sittek R, Souchon R, Tulusan AH, Volm T, Senn HJ: International expert panel on the use of primary (preoperative) systemic treatment of operable breast cancer: Review and recommendations. J Clin Oncol. 2003, 21: 2600-2608. 10.1200/JCO.2003.01.136.CrossRefPubMed Kaufmann M, von Minckwitz G, Smith R, Valero V, Gianni L, Eiermann W, Howell A, Costa SD, Beuzeboc P, Untch M, Blohmer JU, Sinn HP, Sittek R, Souchon R, Tulusan AH, Volm T, Senn HJ: International expert panel on the use of primary (preoperative) systemic treatment of operable breast cancer: Review and recommendations. J Clin Oncol. 2003, 21: 2600-2608. 10.1200/JCO.2003.01.136.CrossRefPubMed
5.
Zurück zum Zitat Couturier O, Jerusalem G, N'Guyen JM, Hustinx R: Sequential positron emission tomography using [18f]fluorodeoxyglucose for monitoring response to chemotherapy in metastatic breast cancer. Clin Cancer Res. 2006, 12: 6437-6443. 10.1158/1078-0432.CCR-06-0383.CrossRefPubMed Couturier O, Jerusalem G, N'Guyen JM, Hustinx R: Sequential positron emission tomography using [18f]fluorodeoxyglucose for monitoring response to chemotherapy in metastatic breast cancer. Clin Cancer Res. 2006, 12: 6437-6443. 10.1158/1078-0432.CCR-06-0383.CrossRefPubMed
6.
Zurück zum Zitat Hodgson NC, Gulenchyn KY: Is there a role for positron emission tomography in breast cancer staging?. J Clin Oncol. 2008, 26: 712-720. 10.1200/JCO.2007.13.8412.CrossRefPubMed Hodgson NC, Gulenchyn KY: Is there a role for positron emission tomography in breast cancer staging?. J Clin Oncol. 2008, 26: 712-720. 10.1200/JCO.2007.13.8412.CrossRefPubMed
7.
Zurück zum Zitat Lee JH, Rosen EL, Mankoff DA: The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: Part 2--response to therapy, other indications, and future directions. J Nucl Med. 2009, 50: 738-748. 10.2967/jnumed.108.061416.CrossRefPubMed Lee JH, Rosen EL, Mankoff DA: The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: Part 2--response to therapy, other indications, and future directions. J Nucl Med. 2009, 50: 738-748. 10.2967/jnumed.108.061416.CrossRefPubMed
8.
Zurück zum Zitat Sloka JS, Hollett PD, Mathews M: A quantitative review of the use of fdg-pet in the axillary staging of breast cancer. Med Sci Monit. 2007, 13: RA37-46.PubMed Sloka JS, Hollett PD, Mathews M: A quantitative review of the use of fdg-pet in the axillary staging of breast cancer. Med Sci Monit. 2007, 13: RA37-46.PubMed
9.
Zurück zum Zitat Emmering J, Krak NC, Van der Hoeven JJ, Spreeuwenberg MD, Twisk JW, Meijer S, Pinedo HM, Hoekstra OS: Preoperative [18f] fdg-pet after chemotherapy in locally advanced breast cancer: Prognostic value as compared with histopathology. Ann Oncol. 2008, 19: 1573-1577. 10.1093/annonc/mdn185.CrossRefPubMed Emmering J, Krak NC, Van der Hoeven JJ, Spreeuwenberg MD, Twisk JW, Meijer S, Pinedo HM, Hoekstra OS: Preoperative [18f] fdg-pet after chemotherapy in locally advanced breast cancer: Prognostic value as compared with histopathology. Ann Oncol. 2008, 19: 1573-1577. 10.1093/annonc/mdn185.CrossRefPubMed
10.
Zurück zum Zitat Kim SJ, Kim SK, Lee ES, Ro J, Kang S: Predictive value of [18f]fdg pet for pathological response of breast cancer to neo-adjuvant chemotherapy. Ann Oncol. 2004, 15: 1352-1357. 10.1093/annonc/mdh345.CrossRefPubMed Kim SJ, Kim SK, Lee ES, Ro J, Kang S: Predictive value of [18f]fdg pet for pathological response of breast cancer to neo-adjuvant chemotherapy. Ann Oncol. 2004, 15: 1352-1357. 10.1093/annonc/mdh345.CrossRefPubMed
11.
Zurück zum Zitat Krak NC, Hoekstra OS, Lammertsma AA: Measuring response to chemotherapy in locally advanced breast cancer: Methodological considerations. Eur J Nucl Med Mol Imaging. 2004, 31 (Suppl 1): S103-111.CrossRefPubMed Krak NC, Hoekstra OS, Lammertsma AA: Measuring response to chemotherapy in locally advanced breast cancer: Methodological considerations. Eur J Nucl Med Mol Imaging. 2004, 31 (Suppl 1): S103-111.CrossRefPubMed
12.
Zurück zum Zitat Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, Ricaud M, Bourbouloux E, Doutriaux I, Clouet M, Berton-Rigaud D, Bouriel C, Delecroix V, Garin E, Rouquette S, Resche I, Kerbrat P, Chatal JF, Campone M: Monitoring of early response to neoadjuvant chemotherapy in stage ii and iii breast cancer by [18f]fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006, 24: 5366-5372. 10.1200/JCO.2006.05.7406.CrossRefPubMed Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, Ricaud M, Bourbouloux E, Doutriaux I, Clouet M, Berton-Rigaud D, Bouriel C, Delecroix V, Garin E, Rouquette S, Resche I, Kerbrat P, Chatal JF, Campone M: Monitoring of early response to neoadjuvant chemotherapy in stage ii and iii breast cancer by [18f]fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006, 24: 5366-5372. 10.1200/JCO.2006.05.7406.CrossRefPubMed
13.
Zurück zum Zitat Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, Werner M, Dose J, Janicke F, Graeff H, Schwaiger M: Positron emission tomography using [(18)f]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol. 2000, 18: 1689-1695.PubMed Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, Werner M, Dose J, Janicke F, Graeff H, Schwaiger M: Positron emission tomography using [(18)f]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol. 2000, 18: 1689-1695.PubMed
14.
Zurück zum Zitat Keam B, Im SA, Kim HJ, Oh DY, Kim JH, Lee SH, Chie EK, Han W, Kim DW, Cho N, Moon WK, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ: Clinical significance of axillary nodal ratio in stage II/III breast cancer treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2009, 116: 153-160. 10.1007/s10549-008-0160-9.CrossRefPubMed Keam B, Im SA, Kim HJ, Oh DY, Kim JH, Lee SH, Chie EK, Han W, Kim DW, Cho N, Moon WK, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ: Clinical significance of axillary nodal ratio in stage II/III breast cancer treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2009, 116: 153-160. 10.1007/s10549-008-0160-9.CrossRefPubMed
15.
Zurück zum Zitat Keam B, Im SA, Kim HJ, Oh DY, Kim JH, Lee SH, Chie EK, Han W, Kim DW, Moon WK, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ: Prognostic impact of clinicopathologic parameters in stage ii/iii breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: Paradoxical features of the triple negative breast cancer. BMC Cancer. 2007, 7: 203-10.1186/1471-2407-7-203.CrossRefPubMedPubMedCentral Keam B, Im SA, Kim HJ, Oh DY, Kim JH, Lee SH, Chie EK, Han W, Kim DW, Moon WK, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ: Prognostic impact of clinicopathologic parameters in stage ii/iii breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: Paradoxical features of the triple negative breast cancer. BMC Cancer. 2007, 7: 203-10.1186/1471-2407-7-203.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF, Joshi U, Semenza GL, Hoekstra OS, Lammertsma AA, Molthoff CF: Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol. 2002, 20: 379-387. 10.1200/JCO.20.2.379.CrossRefPubMed Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF, Joshi U, Semenza GL, Hoekstra OS, Lammertsma AA, Molthoff CF: Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol. 2002, 20: 379-387. 10.1200/JCO.20.2.379.CrossRefPubMed
17.
Zurück zum Zitat Kong X, Moran MS, Zhang N, Haffty B, Yang Q: Meta-analysis confirms achieving pathological complete response after neoadjuvant chemotherapy predicts favourable prognosis for breast cancer patients. Eur J Cancer. 2011, 47: 2084-2090. 10.1016/j.ejca.2011.06.014.CrossRefPubMed Kong X, Moran MS, Zhang N, Haffty B, Yang Q: Meta-analysis confirms achieving pathological complete response after neoadjuvant chemotherapy predicts favourable prognosis for breast cancer patients. Eur J Cancer. 2011, 47: 2084-2090. 10.1016/j.ejca.2011.06.014.CrossRefPubMed
18.
Zurück zum Zitat Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, Buchholz TA, Ross MI, McNeese MD, Buzdar AU, Hortobagyi GN, Singletary SE: Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol. 1999, 17: 460-469.PubMed Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, Buchholz TA, Ross MI, McNeese MD, Buzdar AU, Hortobagyi GN, Singletary SE: Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol. 1999, 17: 460-469.PubMed
19.
Zurück zum Zitat Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG: New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, national cancer institute of the united states, national cancer institute of canada. J Natl Cancer Inst. 2000, 92: 205-216. 10.1093/jnci/92.3.205.CrossRefPubMed Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG: New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, national cancer institute of the united states, national cancer institute of canada. J Natl Cancer Inst. 2000, 92: 205-216. 10.1093/jnci/92.3.205.CrossRefPubMed
20.
Zurück zum Zitat Recht A, Edge SB, Solin LJ, Robinson DS, Estabrook A, Fine RE, Fleming GF, Formenti S, Hudis C, Kirshner JJ, Krause DA, Kuske RR, Langer AS, Sledge GW, Whelan TJ, Pfister DG: Postmastectomy radiotherapy: Clinical practice guidelines of the american society of clinical oncology. J Clin Oncol. 2001, 19: 1539-1569.PubMed Recht A, Edge SB, Solin LJ, Robinson DS, Estabrook A, Fine RE, Fleming GF, Formenti S, Hudis C, Kirshner JJ, Krause DA, Kuske RR, Langer AS, Sledge GW, Whelan TJ, Pfister DG: Postmastectomy radiotherapy: Clinical practice guidelines of the american society of clinical oncology. J Clin Oncol. 2001, 19: 1539-1569.PubMed
21.
Zurück zum Zitat Han S, Kim SB, Kang SS, Noh WC, Paik NS, Chang ES, Kim JR, Lim SH, Park HS: A phase ii study of neoadjuvant docetaxel plus doxorubicin (kbcs-01) in stage ii, iii breast cancer. Breast Cancer Res Treat. 2006, 98: 57-61. 10.1007/s10549-005-9131-6.CrossRefPubMed Han S, Kim SB, Kang SS, Noh WC, Paik NS, Chang ES, Kim JR, Lim SH, Park HS: A phase ii study of neoadjuvant docetaxel plus doxorubicin (kbcs-01) in stage ii, iii breast cancer. Breast Cancer Res Treat. 2006, 98: 57-61. 10.1007/s10549-005-9131-6.CrossRefPubMed
22.
Zurück zum Zitat Lee KH, Im SA, Oh DY, Lee SH, Chie EK, Han W, Kim DW, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ: Prognostic significance of bcl-2 expression in stage iii breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy. BMC Cancer. 2007, 7: 63-10.1186/1471-2407-7-63.CrossRefPubMedPubMedCentral Lee KH, Im SA, Oh DY, Lee SH, Chie EK, Han W, Kim DW, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ: Prognostic significance of bcl-2 expression in stage iii breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy. BMC Cancer. 2007, 7: 63-10.1186/1471-2407-7-63.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Perez EA, Roche PC, Jenkins RB, Reynolds CA, Halling KC, Ingle JN, Wold LE: Her2 testing in patients with breast cancer: Poor correlation between weak positivity by immunohistochemistry and gene amplification by fluorescence in situ hybridization. Mayo Clin Proc. 2002, 77: 148-154. 10.4065/77.2.148.CrossRefPubMed Perez EA, Roche PC, Jenkins RB, Reynolds CA, Halling KC, Ingle JN, Wold LE: Her2 testing in patients with breast cancer: Poor correlation between weak positivity by immunohistochemistry and gene amplification by fluorescence in situ hybridization. Mayo Clin Proc. 2002, 77: 148-154. 10.4065/77.2.148.CrossRefPubMed
24.
Zurück zum Zitat Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM: The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007, 13: 2329-2334. 10.1158/1078-0432.CCR-06-1109.CrossRefPubMed Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM: The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007, 13: 2329-2334. 10.1158/1078-0432.CCR-06-1109.CrossRefPubMed
25.
Zurück zum Zitat Honkoop AH, van Diest PJ, de Jong JS, Linn SC, Giaccone G, Hoekman K, Wagstaff J, Pinedo HM: Prognostic role of clinical, pathological and biological characteristics in patients with locally advanced breast cancer. Br J Cancer. 1998, 77: 621-626. 10.1038/bjc.1998.99.CrossRefPubMedPubMedCentral Honkoop AH, van Diest PJ, de Jong JS, Linn SC, Giaccone G, Hoekman K, Wagstaff J, Pinedo HM: Prognostic role of clinical, pathological and biological characteristics in patients with locally advanced breast cancer. Br J Cancer. 1998, 77: 621-626. 10.1038/bjc.1998.99.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Mazouni C, Peintinger F, Wan-Kau S, Andre F, Gonzalez-Angulo AM, Symmans WF, Meric-Bernstam F, Valero V, Hortobagyi GN, Pusztai L: Residual ductal carcinoma in situ in patients with complete eradication of invasive breast cancer after neoadjuvant chemotherapy does not adversely affect patient outcome. J Clin Oncol. 2007, 25: 2650-2655. 10.1200/JCO.2006.08.2271.CrossRefPubMed Mazouni C, Peintinger F, Wan-Kau S, Andre F, Gonzalez-Angulo AM, Symmans WF, Meric-Bernstam F, Valero V, Hortobagyi GN, Pusztai L: Residual ductal carcinoma in situ in patients with complete eradication of invasive breast cancer after neoadjuvant chemotherapy does not adversely affect patient outcome. J Clin Oncol. 2007, 25: 2650-2655. 10.1200/JCO.2006.08.2271.CrossRefPubMed
27.
Zurück zum Zitat Simon R: Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989, 10: 1-10. 10.1016/0197-2456(89)90015-9.CrossRefPubMed Simon R: Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989, 10: 1-10. 10.1016/0197-2456(89)90015-9.CrossRefPubMed
28.
Zurück zum Zitat Avril N, Rose CA, Schelling M, Dose J, Kuhn W, Bense S, Weber W, Ziegler S, Graeff H, Schwaiger M: Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: Use and limitations. J Clin Oncol. 2000, 18: 3495-3502.PubMed Avril N, Rose CA, Schelling M, Dose J, Kuhn W, Bense S, Weber W, Ziegler S, Graeff H, Schwaiger M: Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: Use and limitations. J Clin Oncol. 2000, 18: 3495-3502.PubMed
29.
Zurück zum Zitat Kumar A, Kumar R, Seenu V, Gupta SD, Chawla M, Malhotra A, Mehta SN: The role of (18)f-fdg pet/ct in evaluation of early response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Eur Radiol. 2009 Kumar A, Kumar R, Seenu V, Gupta SD, Chawla M, Malhotra A, Mehta SN: The role of (18)f-fdg pet/ct in evaluation of early response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Eur Radiol. 2009
30.
Zurück zum Zitat Berriolo-Riedinger A, Touzery C, Riedinger JM, Toubeau M, Coudert B, Arnould L, Boichot C, Cochet A, Fumoleau P, Brunotte F: [18f]fdg-pet predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2007, 34: 1915-1924. 10.1007/s00259-007-0459-5.CrossRefPubMed Berriolo-Riedinger A, Touzery C, Riedinger JM, Toubeau M, Coudert B, Arnould L, Boichot C, Cochet A, Fumoleau P, Brunotte F: [18f]fdg-pet predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2007, 34: 1915-1924. 10.1007/s00259-007-0459-5.CrossRefPubMed
31.
Zurück zum Zitat Duch J, Fuster D, Munoz M, Fernandez PL, Paredes P, Fontanillas M, Guzman F, Rubi S, Lomena FJ, Pons F: (18)f-fdg pet/ct for early prediction of response to neoadjuvant chemotherapy in breast cancer. Eur J Nucl Med Mol Imaging. 2009 Duch J, Fuster D, Munoz M, Fernandez PL, Paredes P, Fontanillas M, Guzman F, Rubi S, Lomena FJ, Pons F: (18)f-fdg pet/ct for early prediction of response to neoadjuvant chemotherapy in breast cancer. Eur J Nucl Med Mol Imaging. 2009
32.
Zurück zum Zitat Dunnwald LK, Gralow JR, Ellis GK, Livingston RB, Linden HM, Specht JM, Doot RK, Lawton TJ, Barlow WE, Kurland BF, Schubert EK, Mankoff DA: Tumor metabolism and blood flow changes by positron emission tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol. 2008, 26: 4449-4457. 10.1200/JCO.2007.15.4385.CrossRefPubMedPubMedCentral Dunnwald LK, Gralow JR, Ellis GK, Livingston RB, Linden HM, Specht JM, Doot RK, Lawton TJ, Barlow WE, Kurland BF, Schubert EK, Mankoff DA: Tumor metabolism and blood flow changes by positron emission tomography: Relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol. 2008, 26: 4449-4457. 10.1200/JCO.2007.15.4385.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Schubert EK, Tseng J, Lawton TJ, Linden HM, Livingston RB: Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med. 2003, 44: 1806-1814.PubMed Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Schubert EK, Tseng J, Lawton TJ, Linden HM, Livingston RB: Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med. 2003, 44: 1806-1814.PubMed
34.
Zurück zum Zitat McDermott GM, Welch A, Staff RT, Gilbert FJ, Schweiger L, Semple SI, Smith TA, Hutcheon AW, Miller ID, Smith IC, Heys SD: Monitoring primary breast cancer throughout chemotherapy using fdg-pet. Breast Cancer Res Treat. 2007, 102: 75-84. 10.1007/s10549-006-9316-7.CrossRefPubMed McDermott GM, Welch A, Staff RT, Gilbert FJ, Schweiger L, Semple SI, Smith TA, Hutcheon AW, Miller ID, Smith IC, Heys SD: Monitoring primary breast cancer throughout chemotherapy using fdg-pet. Breast Cancer Res Treat. 2007, 102: 75-84. 10.1007/s10549-006-9316-7.CrossRefPubMed
35.
Zurück zum Zitat Schwarz-Dose J, Untch M, Tiling R, Sassen S, Mahner S, Kahlert S, Harbeck N, Lebeau A, Brenner W, Schwaiger M, Jaenicke F, Avril N: Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18f]fluorodeoxyglucose. J Clin Oncol. 2009, 27: 535-541.CrossRefPubMed Schwarz-Dose J, Untch M, Tiling R, Sassen S, Mahner S, Kahlert S, Harbeck N, Lebeau A, Brenner W, Schwaiger M, Jaenicke F, Avril N: Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18f]fluorodeoxyglucose. J Clin Oncol. 2009, 27: 535-541.CrossRefPubMed
36.
Zurück zum Zitat Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F, Waikar S, Whitaker T, Ah-See AK, Eremin O, Heys SD, Gilbert FJ, Sharp PF: Positron emission tomography using [(18)f]-fluorodeoxy-d-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol. 2000, 18: 1676-1688.PubMed Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F, Waikar S, Whitaker T, Ah-See AK, Eremin O, Heys SD, Gilbert FJ, Sharp PF: Positron emission tomography using [(18)f]-fluorodeoxy-d-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol. 2000, 18: 1676-1688.PubMed
37.
Zurück zum Zitat Jung SY, Kim SK, Nam BH, Min SY, Lee SJ, Park C, Kwon Y, Kim EA, Ko KL, Park IH, Lee KS, Shin KH, Lee S, Kim SW, Kang HS, Ro J: Prognostic impact of [(18)f] fdg-pet in operable breast cancer treated with neoadjuvant chemotherapy. Ann Surg Oncol. 2009 Jung SY, Kim SK, Nam BH, Min SY, Lee SJ, Park C, Kwon Y, Kim EA, Ko KL, Park IH, Lee KS, Shin KH, Lee S, Kim SW, Kang HS, Ro J: Prognostic impact of [(18)f] fdg-pet in operable breast cancer treated with neoadjuvant chemotherapy. Ann Surg Oncol. 2009
38.
Zurück zum Zitat Avril N, Menzel M, Dose J, Schelling M, Weber W, Janicke F, Nathrath W, Schwaiger M: Glucose metabolism of breast cancer assessed by 18f-fdg pet: Histologic and immunohistochemical tissue analysis. J Nucl Med. 2001, 42: 9-16.PubMed Avril N, Menzel M, Dose J, Schelling M, Weber W, Janicke F, Nathrath W, Schwaiger M: Glucose metabolism of breast cancer assessed by 18f-fdg pet: Histologic and immunohistochemical tissue analysis. J Nucl Med. 2001, 42: 9-16.PubMed
39.
Zurück zum Zitat Jung SY, Han W, Lee JW, Ko E, Kim E, Yu JH, Moon HG, Park IA, Oh DY, Im SA, Kim TY, Hwang KT, Kim SW, Noh DY: Ki-67 expression gives additional prognostic information on st. Gallen 2007 and adjuvant! Online risk categories in early breast cancer. Ann Surg Oncol. 2009 Jung SY, Han W, Lee JW, Ko E, Kim E, Yu JH, Moon HG, Park IA, Oh DY, Im SA, Kim TY, Hwang KT, Kim SW, Noh DY: Ki-67 expression gives additional prognostic information on st. Gallen 2007 and adjuvant! Online risk categories in early breast cancer. Ann Surg Oncol. 2009
40.
Zurück zum Zitat Basu S, Chen W, Tchou J, Mavi A, Cermik T, Czerniecki B, Schnall M, Alavi A: Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/her2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: A potentially useful method for disease characterization. Cancer. 2008, 112: 995-1000. 10.1002/cncr.23226.CrossRefPubMed Basu S, Chen W, Tchou J, Mavi A, Cermik T, Czerniecki B, Schnall M, Alavi A: Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/her2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: A potentially useful method for disease characterization. Cancer. 2008, 112: 995-1000. 10.1002/cncr.23226.CrossRefPubMed
Metadaten
Titel
Early metabolic response using FDG PET/CT and molecular phenotypes of breast cancer treated with neoadjuvant chemotherapy
verfasst von
Bhumsuk Keam
Seock-Ah Im
Youngil Koh
Sae-Won Han
Do-Youn Oh
Nariya Cho
Jee Hyun Kim
Wonshik Han
Keon Wook Kang
Woo Kyung Moon
Tae-You Kim
In Ae Park
Dong-Young Noh
June-Key Chung
Yung-Jue Bang
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2011
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-452

Weitere Artikel der Ausgabe 1/2011

BMC Cancer 1/2011 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.