Skip to main content
Erschienen in: Pediatric Radiology 12/2016

16.08.2016 | Original Article

Effect of the forward-projected model-based iterative reconstruction solution algorithm on image quality and radiation dose in pediatric cardiac computed tomography

verfasst von: Yukako Nishiyama, Keiji Tada, Yuichi Nishiyama, Hiroshi Mori, Mitsunari Maruyama, Takashi Katsube, Nobuko Yamamoto, Hidekazu Kanayama, Yasushi Yamamoto, Hajime Kitagaki

Erschienen in: Pediatric Radiology | Ausgabe 12/2016

Einloggen, um Zugang zu erhalten

Abstract

Background

Some iterative reconstruction algorithms are useful for reducing the radiation dose in pediatric cardiac CT. A new iterative reconstruction algorithm (forward-projected model-based iterative reconstruction solution) has been developed, but its usefulness for radiation dose reduction in pediatric cardiac CT is unknown.

Objective

To investigate the effect of the new algorithm on CT image quality and on radiation dose in pediatric cardiac CT.

Materials and methods

We obtained phantom data at six dose levels, as well as pediatric cardiac CT data, and reconstructed CT images using filtered back projection, adaptive iterative dose reduction 3-D (AIDR 3-D) and the new algorithm. We evaluated phantom image quality using physical assessment. Four radiologists performed visual evaluation of cardiac CT image quality.

Results

In the phantom study, the new algorithm effectively suppressed noise in the low-dose range and moderately generated modulation transfer function, yielding a higher signal-to-noise ratio compared with filtered back projection or AIDR 3-D. When clinical cardiac CT was performed, images obtained by the new method had less perceived image noise and better tissue contrast at similar resolution compared with AIDR 3-D images.

Conclusion

The new algorithm reduced image noise at moderate resolution in low-dose CT scans and improved the perceived quality of cardiac CT images to some extent. This new algorithm might be superior to AIDR 3-D for radiation dose reduction in pediatric cardiac CT.
Literatur
1.
Zurück zum Zitat Juan CC, Hwang B, Lee PC et al (2011) Diagnostic application of multidetector-row computed tomographic coronary angiography to assess coronary abnormalities in pediatric patients: comparison with invasive coronary angiography. Pediatr Neonatol 52:208–213CrossRefPubMed Juan CC, Hwang B, Lee PC et al (2011) Diagnostic application of multidetector-row computed tomographic coronary angiography to assess coronary abnormalities in pediatric patients: comparison with invasive coronary angiography. Pediatr Neonatol 52:208–213CrossRefPubMed
2.
Zurück zum Zitat Kulkarni A, Hsu HH, Ou P et al (2016) Computed tomography in congenital heart disease: clinical applications and technical considerations. Echocardiography 33:629–640CrossRefPubMed Kulkarni A, Hsu HH, Ou P et al (2016) Computed tomography in congenital heart disease: clinical applications and technical considerations. Echocardiography 33:629–640CrossRefPubMed
3.
Zurück zum Zitat Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507CrossRefPubMed Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507CrossRefPubMed
4.
Zurück zum Zitat Dill T, Deetjen A, Ekinci O et al (2008) Radiation dose exposure in multislice computed tomography of the coronaries in comparison with conventional coronary angiography. Int J Cardiol 124:307–311CrossRefPubMed Dill T, Deetjen A, Ekinci O et al (2008) Radiation dose exposure in multislice computed tomography of the coronaries in comparison with conventional coronary angiography. Int J Cardiol 124:307–311CrossRefPubMed
5.
Zurück zum Zitat Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707CrossRefPubMedPubMedCentral Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Su YP, Niu HW, Chen JB et al (2014) Radiation dose in the thyroid and the thyroid cancer risk attributable to CT scans for pediatric patients in one general hospital of China. Int J Environ Res Public Health 11:2793–2803CrossRefPubMedPubMedCentral Su YP, Niu HW, Chen JB et al (2014) Radiation dose in the thyroid and the thyroid cancer risk attributable to CT scans for pediatric patients in one general hospital of China. Int J Environ Res Public Health 11:2793–2803CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Naoum C, Blanke P, Leipsic J (2015) Iterative reconstruction in cardiac CT. J Cardiovasc Comput Tomogr 9:255–263CrossRefPubMed Naoum C, Blanke P, Leipsic J (2015) Iterative reconstruction in cardiac CT. J Cardiovasc Comput Tomogr 9:255–263CrossRefPubMed
8.
Zurück zum Zitat Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28:94–108CrossRefPubMed Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28:94–108CrossRefPubMed
9.
Zurück zum Zitat Padole A, Ali Khawaja RD, Kalra MK et al (2015) CT radiation dose and iterative reconstruction techniques. AJR Am J Roentgenol 204:W384–W392CrossRefPubMed Padole A, Ali Khawaja RD, Kalra MK et al (2015) CT radiation dose and iterative reconstruction techniques. AJR Am J Roentgenol 204:W384–W392CrossRefPubMed
10.
Zurück zum Zitat McKnight CD, Watcharotone K, Ibrahim M et al (2014) Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination. Pediatr Radiol 44:997–1003CrossRefPubMed McKnight CD, Watcharotone K, Ibrahim M et al (2014) Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination. Pediatr Radiol 44:997–1003CrossRefPubMed
11.
Zurück zum Zitat Gay F, Pavia Y, Pierrat N et al (2014) Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT. Eur Radiol 24:102–111CrossRefPubMed Gay F, Pavia Y, Pierrat N et al (2014) Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT. Eur Radiol 24:102–111CrossRefPubMed
12.
Zurück zum Zitat Kalra MK, Woisetschläger M, Dahlström N et al (2012) Radiation dose reduction with sinogram affirmed iterative reconstruction technique for abdominal computed tomography. J Comput Assist Tomogr 36:339–346CrossRefPubMed Kalra MK, Woisetschläger M, Dahlström N et al (2012) Radiation dose reduction with sinogram affirmed iterative reconstruction technique for abdominal computed tomography. J Comput Assist Tomogr 36:339–346CrossRefPubMed
13.
Zurück zum Zitat Chen MY, Steigner ML, Leung SW et al (2013) Simulated 50% radiation dose reduction in coronary CT angiography using adaptive iterative dose reduction in three-dimensions (AIDR3D). Int J Cardiovasc Imaging 29:1167–1175CrossRefPubMedPubMedCentral Chen MY, Steigner ML, Leung SW et al (2013) Simulated 50% radiation dose reduction in coronary CT angiography using adaptive iterative dose reduction in three-dimensions (AIDR3D). Int J Cardiovasc Imaging 29:1167–1175CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Kijewski MF, Judy PF (1987) The noise power spectrum of CT images. Phys Med Biol 32:565–575CrossRefPubMed Kijewski MF, Judy PF (1987) The noise power spectrum of CT images. Phys Med Biol 32:565–575CrossRefPubMed
15.
Zurück zum Zitat Richard S, Husarik DB, Yadava G et al (2012) Toward task-based assessment of CT performance: system and object MTF across different reconstruction algorithms. Med Phys 39:4115–4122CrossRefPubMed Richard S, Husarik DB, Yadava G et al (2012) Toward task-based assessment of CT performance: system and object MTF across different reconstruction algorithms. Med Phys 39:4115–4122CrossRefPubMed
16.
Zurück zum Zitat Nikkagiren kannoukensa iinkai (1999) [Kannoukensa handbook]. Nikkagiren, Tokyo Nikkagiren kannoukensa iinkai (1999) [Kannoukensa handbook]. Nikkagiren, Tokyo
17.
Zurück zum Zitat Scheffe H (1952) An analysis of variance for paired comparisons. J Am Stat Assoc 47:381–400 Scheffe H (1952) An analysis of variance for paired comparisons. J Am Stat Assoc 47:381–400
18.
Zurück zum Zitat Tomizawa N, Nojo T, Akahane M et al (2012) Adaptive iterative dose reduction in coronary CT angiography using 320-row CT: assessment of radiation dose reduction and image quality. J Cardiovasc Comput Tomogr 6:318–324CrossRefPubMed Tomizawa N, Nojo T, Akahane M et al (2012) Adaptive iterative dose reduction in coronary CT angiography using 320-row CT: assessment of radiation dose reduction and image quality. J Cardiovasc Comput Tomogr 6:318–324CrossRefPubMed
19.
Zurück zum Zitat Renker M, Ramachandra A, Schoepf UJ et al (2011) Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr 5:225–230CrossRefPubMed Renker M, Ramachandra A, Schoepf UJ et al (2011) Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr 5:225–230CrossRefPubMed
20.
Zurück zum Zitat Tumur O, Soon K, Brown F et al (2013) New scanning technique using adaptive statistical iterative reconstruction (ASIR) significantly reduced the radiation dose of cardiac CT. J Med Imaging Radiat Oncol 57:292–296CrossRefPubMed Tumur O, Soon K, Brown F et al (2013) New scanning technique using adaptive statistical iterative reconstruction (ASIR) significantly reduced the radiation dose of cardiac CT. J Med Imaging Radiat Oncol 57:292–296CrossRefPubMed
21.
Zurück zum Zitat Löve A, Olsson ML, Siemund R et al (2013) Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels. Br J Radiol 86:20130388CrossRefPubMedPubMedCentral Löve A, Olsson ML, Siemund R et al (2013) Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels. Br J Radiol 86:20130388CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Suzuki S, Haruyama T, Morita H et al (2014) Initial performance evaluation of iterative model reconstruction in abdominal computed tomography. J Comput Assist Tomogr 38:408–414CrossRefPubMed Suzuki S, Haruyama T, Morita H et al (2014) Initial performance evaluation of iterative model reconstruction in abdominal computed tomography. J Comput Assist Tomogr 38:408–414CrossRefPubMed
23.
Zurück zum Zitat Miévillea FA, Gudinchetb F, Brunellec F et al (2013) Iterative reconstruction methods in two different MDCT scanners: physical metrics and 4-alternative forced-choice detectability experiments — a phantom approach. Phys Med 29:99–110CrossRef Miévillea FA, Gudinchetb F, Brunellec F et al (2013) Iterative reconstruction methods in two different MDCT scanners: physical metrics and 4-alternative forced-choice detectability experiments — a phantom approach. Phys Med 29:99–110CrossRef
25.
Zurück zum Zitat International Commission on Radiological Protection (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37:1–332 International Commission on Radiological Protection (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37:1–332
26.
Zurück zum Zitat Kligerman S, Mehta D, Farnadesh M et al (2013) Use of a hybrid iterative reconstruction technique to reduce image noise and improve image quality in obese patients undergoing computed tomographic pulmonary angiography. J Thorac Imaging 28:49–59CrossRefPubMed Kligerman S, Mehta D, Farnadesh M et al (2013) Use of a hybrid iterative reconstruction technique to reduce image noise and improve image quality in obese patients undergoing computed tomographic pulmonary angiography. J Thorac Imaging 28:49–59CrossRefPubMed
27.
Zurück zum Zitat Nelson RC, Feuerlein S, Boll DT (2011) New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr 5:286–292CrossRefPubMed Nelson RC, Feuerlein S, Boll DT (2011) New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr 5:286–292CrossRefPubMed
28.
Zurück zum Zitat Khawaja RD, Singh S, Otrakji A et al (2015) Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms. Pediatr Radiol 45:1046–1055CrossRefPubMed Khawaja RD, Singh S, Otrakji A et al (2015) Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms. Pediatr Radiol 45:1046–1055CrossRefPubMed
Metadaten
Titel
Effect of the forward-projected model-based iterative reconstruction solution algorithm on image quality and radiation dose in pediatric cardiac computed tomography
verfasst von
Yukako Nishiyama
Keiji Tada
Yuichi Nishiyama
Hiroshi Mori
Mitsunari Maruyama
Takashi Katsube
Nobuko Yamamoto
Hidekazu Kanayama
Yasushi Yamamoto
Hajime Kitagaki
Publikationsdatum
16.08.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 12/2016
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-016-3676-x

Weitere Artikel der Ausgabe 12/2016

Pediatric Radiology 12/2016 Zur Ausgabe

Hermes

Hermes

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.