Skip to main content
Erschienen in: Cardiovascular Diabetology 1/2023

Open Access 01.12.2023 | Research

Effects of dapagliflozin and dapagliflozin-saxagliptin on erythropoiesis, iron and inflammation markers in patients with type 2 diabetes and chronic kidney disease: data from the DELIGHT trial

verfasst von: Akihiko Koshino, Brendon L. Neuen, Niels Jongs, Carol Pollock, Peter J. Greasley, Eva-Marie Andersson, Ann Hammarstedt, Cecilia Karlsson, Anna Maria Langkilde, Takashi Wada, Hiddo J.L. Heerspink

Erschienen in: Cardiovascular Diabetology | Ausgabe 1/2023

Abstract

Background

This post-hoc analysis of the DELIGHT trial assessed effects of the SGLT2 inhibitor dapagliflozin on iron metabolism and markers of inflammation.

Methods

Patients with type 2 diabetes and albuminuria were randomized to dapagliflozin, dapagliflozin and saxagliptin, or placebo. We measured hemoglobin, iron markers (serum iron, transferrin saturation, and ferritin), plasma erythropoietin, and inflammatory markers (urinary MCP-1 and urinary/serum IL-6) at baseline and week 24.

Results

360/461 (78.1%) participants had available biosamples. Dapagliflozin and dapagliflozin-saxagliptin, compared to placebo, increased hemoglobin by 5.7 g/L (95%CI 4.0, 7.3; p < 0.001) and 4.4 g/L (2.7, 6.0; p < 0.001) and reduced ferritin by 18.6% (8.7, 27.5; p < 0.001) and 18.4% (8.7, 27.1; p < 0.001), respectively. Dapagliflozin reduced urinary MCP-1/Cr by 29.0% (14.6, 41.0; p < 0.001) and urinary IL-6/Cr by 26.6% (9.1, 40.7; p = 0.005) with no changes in other markers.

Conclusions

Dapagliflozin increased hemoglobin and reduced ferritin and urinary markers of inflammation, suggesting potentially important effects on iron metabolism and inflammation.

Trial registration

ClinicalTrials.gov NCT02547935.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12933-023-02027-8.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

Anemia is common in patients with chronic kidney disease (CKD), particularly those with type 2 diabetes [1, 2]. Decreased erythropoietin (EPO) synthesis and abnormal iron metabolism caused by inflammation are important contributors to anemia in patients with CKD [1].
Sodium glucose co-transporter 2 (SGLT2) inhibitors reduce CKD progression and the risk of kidney failure in patients with type 2 diabetes and CKD [3]. Although the underlying mechanism of kidney protection with SGLT2 inhibitors is multifactorial and incompletely understood, effects on hematopoiesis and inflammation are potentially related to their benefit on clinical outcomes [46]. In patients with heart failure or type 2 diabetes, SGLT2 inhibitors reduced transferrin saturation (TSAT), ferritin, and hepcidin and transiently increased EPO, suggesting SGLT2 inhibition may facilitate iron utilization and promote erythropoiesis [79]. Clinical trials with SGLT2 inhibitors also reported reductions in circulating and urinary inflammatory mediators, including monocyte chemoattractant protein-1 (MCP-1) and Interleukin-6 (IL-6) [1012]. However, effects of SGLT2 inhibitors on iron metabolism and inflammation and how these are associated in patients with type 2 diabetes and CKD is lacking.
In this post-hoc analysis of the DELIGHT trial [13], we therefore evaluated the effects of the SGLT2 inhibitor dapagliflozin, with and without the dipeptidyl peptidase-4 (DPP-4) inhibitor saxagliptin compared to placebo, on markers of erythropoiesis, iron metabolism, and inflammation in patients with type 2 diabetes and CKD. We also assessed correlations between markers of iron metabolism and inflammation.

Methods

Patients and study design

DELIGHT was a double-blind, placebo-controlled, multicenter trial that enrolled 461 patients from nine countries. The study was conducted from July 2015 to May 2018. Methods and results were previously published [13]. In short, DELIGHT trial assessed albuminuria lowering effect of dapagliflozin with and without saxagliptin. After a 4-week run-in period, participants were randomly assigned to 24 weeks treatment with 10 mg dapagliflozin, a combination of 10 mg dapagliflozin and 2.5 mg saxagliptin or matching placebo according to pre-enrolment glucose-lowering therapy strata. Eligible participants were aged ≥ 18 years and diagnosed with type 2 diabetes. Participants were required to have urinary albumin-creatinine ratio (UACR) of 30-3500 mg/g, eGFR of 20–80 ml/min/1.73 m², and HbA1c of 7.0–11.0% at screening.
Excluding criteria included a diagnosis of type 1 diabetes and non-diabetic kidney disease. Patients with hemoglobin < 9 g/dL before screening or long-term use of glucocorticoids were also excluded. All participants provided written informed consent. Participants were offered separate and optional informed consent to collect additional blood or urine samples for future biomarker research. DELIGHT trial was conducted according to the Declaration of Helsinki, registered with clinicaltrials.gov (NCT02547935), and approved by an ethics committee at each site.

Biomarker assessment

Urine and blood samples for exploratory biomarker research were obtained at baseline and week 24. Samples were stored at -80 °C until measurement. We measured the following iron and erythropoiesis markers: serum iron, ferritin, transferrin, and plasma EPO. TSAT was calculated with iron and transferrin concentrations [14]. We measured the following markers of kidney and systemic inflammation: urinary MCP-1, urinary and serum IL-6. Urinary biomarkers were indexed to urinary creatinine (Cr) concentration to adjust for hydration status. Hemoglobin and hematocrit levels were measured at baseline, weeks 1 and 4, and every 4 weeks thereafter according to the study protocol.

Statistical analysis

Baseline characteristics were reported in n (%) for categorical variables and in mean (SD) or median (IQR) for continuous variables. Biomarkers were log-transformed in the following analyses. We calculated mean percentage changes (95% CI) in biomarkers from baseline to week 24 by treatment allocation. Estimations were performed with analysis of covariance adjusted for randomization strata (insulin, metformin, sulfonylurea derivatives, thiazolidinediones, or other treatment-based regimens) and baseline value. Absolute mean changes (95% CI) in hemoglobin and hematocrit over time were assessed with repeated-measures models using a restricted maximum likelihood. The model consists of randomization strata, treatment allocation, visit and treatment-by-visit interaction as fixed effects, and baseline value as a covariate and baseline-by-visit interaction.
We calculated Pearson’s correlation coefficients to determine the relationship between markers of inflammation, iron metabolism and erythropoiesis at baseline. We also assessed correlations between changes in these markers by randomized treatment.
We considered p-values ≤ 0.05 as statistically significant. All analyses were performed with R Statistical Software version 4.2.1 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Of 461 participants, 360 (78.1%) had available biosamples for the current study. Baseline characteristics of subjects were similar to the overall DELIGHT population and were balanced between treatment allocation (Table 1). Correlation coefficients between inflammation markers and iron parameters and erythropoietin at baseline are shown in Additional file 1: Table S1. Serum IL-6 was negatively correlated with iron concentration (r= -0.18, p < 0.001) and TSAT (r= -0.14, p = 0.008). Urinary IL-6/Cr and erythropoietin did not correlate with any markers assessed.
Table 1
Baseline characteristics of participants with available biosamples and those in the entire trial
 
Participants with available biosamples
 
 
Placebo
Dapagliflozin
Dapagliflozin-saxagliptin
Entire DELIGHT trial
 
N = 119
 N = 115
 N = 126
 N = 448
Age – year
64.1 (8.7)
65.2 (8.2)
63.4 (9.1)
64.4 (8.8)
Women– no. (%)
32 (26.9)
35 (30.4)
35 (27.8)
131 (29.2)
Race – no. (%)
    
 White
55 (46.2)
47 (40.9)
69 (54.8)
196 (43.8)
 Black
8 (6.7)
6 (5.2)
5 (4.0)
26 (5.8)
 Asian
37 (31.1)
49 (42.6)
40 (31.7)
177 (39.5)
 Other
19 (16.0)
13 (11.3)
12 (9.5)
49 (10.9)
Diabetes duration - years
17.2 (9.4)
17.1 (7.9)
17.6 (7.9)
17.9 (8.5)
Body mass index – kg/m2
30.7 (5.5)
30.2 (5.4)
30.9 (5.4)
30.5 (5.4)
Systolic BP – mm Hg
140.6 (19.3)
138.7 (15.9)
139.5 (17.7)
139.2 (17.8)
Diastolic BP – mm Hg
76.0 (11.4)
77.1 (9.7)
77.4 (10.5)
76.6 (10.6)
Hematocrit – %
39.5 (5.4)
40.7 (4.8)
40.6 (5.4)
40.1 (5.1)
Hemoglobin – g/L
129.8 (18.1)
133.7 (16.4)
133.2 (18.1)
132.0 (17.3)
HbA1c - %
8.6 (1.2)
8.3 (1.0)
8.2 (1.0)
8.4 (1.1)
LDL cholesterol – mmol/L
2.3 (0.9)
2.3 (1.0)
2.2 (0.9)
2.3 (0.9)
HDL cholesterol – mmol/L
1.2 (0.4)
1.2 (0.3)
1.2 (0.4)
1.2 (0.4)
eGFR – mL/min/1.73 m2
46.8 (13.2)
48.8 (12.4)
48.4 (12.6)
49.0 (13.2)
UACR – mg/g (IQR)
283.7
(99.0, 986.8)
262.1
(64.5, 746.5)
222.2
(70.0, 786.8)
246.0
(73.0, 887.4)
Concomitant medication – no. (%)
    
 ESAs
1 (0.8)
1 (0.9)
0 (0.0)
2 (0.4)
 Iron preparation
13 (10.9)
6 (5.2)
7 (5.6)
40 (8.9)
Iron and inflammation markers (IQR)
    
 Iron – µmol/L
13.2 (11.1, 17.5)
13.9 (10.4, 16.8)
13.3 (11.1, 16.8)
 
 Transferrin – mg/dL
2.5 (2.3, 2.8)
2.5 (2.3, 2.8)
2.4 (2.3, 2.8)
 
 TSAT – %
21.3 (16.9, 27.3)
21.6 (16.2, 27.7)
21.9 (17.9, 26.5)
 
 Ferritin – µg/L
125.0 (65.5, 256.0)
112.5 (67.8, 230.8)
116.0 (62.5, 196.0)
 
 Erythropoietin – pg/mL
79.8 (59.6, 118.2)
82.9 (59.8, 123.2)
79.3 (61.9, 104.3)
 
 Urinary MCP-1/Cr – ng/g §
169.8 (100.4, 278.4)
134.5 (94.3, 287.4)
142.0 (80.7, 245.2)
 
 Urinary IL-6/Cr – ng/g §
0.7 (0.3, 1.5)
0.6 (0.4, 1.6)
0.6 (0.3, 1.4)
 
 Serum IL-6 – pg/mL
1.1 (0.6, 1.8)
1.0 (0.7, 1.6)
1.0 (0.6, 1.7)
 
Patients with any biomarker measurement at both baseline and week 24 were included
20 patients (8 in the placebo group; 5 in the dapagliflozin group; 7 in the dapagliflozin-saxagliptin group) did not have serum biomarker (Iron, Transferrin, TSAT, Ferritin and IL-6) measurements
16 patients (5 in the placebo group; 5 in the dapagliflozin group; 6 in the dapagliflozin-saxagliptin group) did not have available erythropoietin concentration
§ 71 patients (28 in the placebo group; 21 in the dapagliflozin group; 22 in the dapagliflozin-saxagliptin group) did not have urinary biomarker (MCP-1/Cr and IL-6/Cr) measurements
BP, blood pressure; Cr, creatinine; eGFR, estimated glomerular filtration ratio; ESAs, Erythropoiesis stimulating agents; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, Low-density lipoprotein; MCP-1, monocyte chemoattractant protein; IL-6, interleukin-6; TSAT, transferrin saturation; UACR, urinary albumin-creatinine ratio
Changes in biomarkers by treatment allocation and their differences relative to placebo are presented in Fig. 1. In the placebo group, hemoglobin decreased during the study period (mean change − 1.5 g/L [-2.5, -0.6], p < 0.001). Compared to placebo, dapagliflozin and dapagliflozin-saxagliptin increased hemoglobin by 5.7 g/L (4.0, 7.3), p < 0.001, and 4.4 g/L (2.7, 6.0), p < 0.001, respectively. There was no clear difference in hemoglobin change between dapagliflozin and dapagliflozin-saxagliptin (-1.3 g/L [-2.9, 0.34], p = 0.16) Similarly, both treatments also increased hematocrit compared to placebo.
There was a significant reduction in ferritin in both dapagliflozin alone and dapagliflozin-saxagliptin group compared to placebo (-18.6% [-27.5, -8.7], p < 0.001 and − 18.4% [-27.1, -8.7], p < 0.001, respectively) with no difference in iron concentration (Fig. 1). Transferrin increased in the dapagliflozin group (4.0% [1.3, 6.8], p = 0.004) compared to placebo, but not in the dapagliflozin-saxagliptin group (1.2% [-1.4, 3.9], p = 0.36). Accordingly, the increase in transferrin in dapagliflozin was higher than that in dapagliflozin-saxagliptin (2.7% [0.1,5.2], p = 0.04) There were numerical trends to decrease TSAT and increase EPO among patients treated with dapagliflozin, although these were not statistically significant. There was no clear difference between dapagliflozin and dapagliflozin saxagliptin on iron, TSAT, ferritin and EPO (all p values > = 0.15).
Dapagliflozin reduced urinary inflammatory markers (Fig. 1). Between-group differences in urinary MCP-1/Cr change versus placebo were − 29.0% (-41.0, -14.6), p < 0.001, and − 29.0% (-40.7, -14.9), p < 0.001 for dapagliflozin alone and the dapagliflozin-saxagliptin group, respectively. Changes in urinary IL-6/Cr with dapagliflozin and dapagliflozin-saxagliptin were − 26.6% (-40.7, -9.1), p = 0.005, and − 32.3% (-45.1, -16.6), p < 0.001, respectively. Serum IL-6 did not change in each treatment group. There was no difference in the effect on MCP-1/Cr, IL-6/Cr and serum IL-6 between dapagliflozin and dapagliflozin-saxagliptin (all p values > = 0.44).
Correlation coefficients between changes in makers from baseline to week 24 by treatment were shown in Table 2. Negative correlations between changes in serum IL-6 and iron and TSAT were observed in all treatment groups (all p ≤ 0.01). In the dapagliflozin group, decreases in urinary MCP-1/Cr and IL-6/Cr were correlated with increases in iron and transferrin. Urinary IL-6/Cr change was correlated with changes in TSAT and erythropoietin only in the dapagliflozin group.
Table 2
Correlation coefficients between changes in inflammation markers and those in iron markers and erythropoietin from baseline to week 24 by treatment group
Biomarkers changes
Placebo
 
Dapagliflozin
 
Dapagliflozin-saxagliptin
 
 
Correlation coefficient
p value
Correlation coefficient
p value
Correlation coefficient
p value
urinary MCP-1/Cr change
      
Iron change
0.04
0.72
-0.26
0.01
0.00
0.97
Transferrin change
0.04
0.68
-0.35
< 0.001
0.05
0.59
TSAT change
0.03
0.81
-0.17
0.12
-0.02
0.84
Ferritin change
0.17
0.12
0.15
0.15
-0.10
0.30
Erythropoietin change
-0.06
0.61
0.13
0.22
0.05
0.62
urinary IL-6/Cr change
      
Iron change
0.11
0.32
-0.37
< 0.001
0.04
0.69
Transferrin change
0.13
0.22
-0.24
0.02
0.11
0.30
TSAT change
0.07
0.52
-0.30
0.004
0.01
0.94
Ferritin change
0.02
0.83
0.02
0.84
0.04
0.68
Erythropoietin change
0.07
0.54
0.27
0.01
0.01
0.89
serum IL-6 change
      
Iron change
-0.33
< 0.001
-0.37
< 0.001
-0.29
0.002
Transferrin change
0.05
0.63
-0.20
0.04
-0.14
0.12
TSAT change
-0.34
< 0.001
-0.32
< 0.001
-0.23
0.01
Ferritin change
0.04
0.66
0.18
0.06
0.03
0.73
Erythropoietin change
-0.01
0.92
0.05
0.63
0.26
0.004
Correlation coefficients were shown as Pearson`s R
Cr, creatinine; MCP-1, monocyte chemoattractant protein; IL-6, interleukin-6; TSAT, transferrin saturation

Discussion

In this post-hoc analysis of the DELIGHT trial, dapagliflozin and a combination of dapagliflozin and saxagliptin increased hemoglobin/hematocrit and reduced ferritin in patients with type 2 diabetes and CKD. Dapagliflozin reduced urinary inflammatory markers, specifically MCP-1/Cr and IL-6/Cr.
The effect on iron homeostasis with SGLT2 inhibition has been assessed in patients with heart failure [7, 8]. We confirm that dapagliflozin reduces ferritin in patients with CKD and type 2 diabetes in whom anemia and disordered iron metabolism is highly prevalent [1]. Impacts on other markers, including numerical decrease in TSAT and increase in EPO, were also similar to those in other studies [7, 8]. Together with increases in hemoglobin and hematocrit, which cannot be explained only by hemoconcentration [15, 16], these results suggest that SGLT2 inhibitors might increase iron mobilization from intracellular storage. Iron utilization with SGLT2 inhibition is hypothesized to contribute to its cardiovascular protection via increased cytosolic iron and enhanced ATP production in the myocardium independent of increases in hemoglobin/hematocrit [17].
Dapagliflozin with and without saxagliptin reduced urinary inflammation markers of MCP-1/Cr and IL-6/Cr. Inflammation is strongly associated with diabetic kidney disease progression as well as cardiovascular events [18]. In preclinical models of diabetes, SGLT2 inhibition reduced hyperglycemia-induced oxidative stress and advanced glycation end products within proximal tubular cells and attenuated tubulointerstitial inflammation and fibrosis [5]. Although further study is warranted to assess how much the anti-inflammatory properties of SGLT2 inhibitor contributes kidney protection, an exploratory mediation analysis of a cardiovascular outcome trial reported that the effect of canagliflozin on urinary MCP-1 partly mediated reduction in kidney injury morecule-1, a marker of kidney damage, in patients with type 2 diabetes and CKD [19].
The current study does not support the additive effect of saxagliptin on markers of hematopoiesis, iron and inflammation when used in combination with SGLT2 inhibitors. In the current study, the reduction in HbA1c was more pronounced in the combination dapagiliflozin-saxigliptin group compared to dapagliflozin alone, suggesting that the decreases in iron and inflammation markers with dapagliflozin observed in this study are unlikely mediated by improved glycemic control.
Increased systemic inflammation worsens iron availability, partly via increased hepcidin [1]. The observed negative correlations between serum IL-6 and iron and TSAT at baseline, and the association between changes in serum/urine IL-6 and TSAT during dapagliflozin treatment were consistent with this notion. Although the effect of dapagliflozin on serum IL-6 was not significant in DELIGHT, the effect size was similar to data from a larger clinical trial with canagliflozin demonstrating a 5% decrease in plasma IL-6 in patients with type 2 diabetes at high cardiovascular risk [12]. Reductions in urinary inflammation markers were also correlated with increases in iron markers only in the dapagliflozin group. These data suggest an important link between SGLT2 inhibition, inflammation, erythropoiesis, and iron utilization, although they do not allow for conclusions about causality.
Limitations of this study include its post-hoc nature, which may increase chance findings. Secondly, the absence of hepcidin concentration precludes our ability to test the hypothesis that SGLT2 inhibition addresses functional iron deficiency by reducing hepcidin. Third, these analyses do not account for use of iron preparation or ESA therapy during the study. Possible unbalance in anemia treatment could bias the effect estimation on hematological and iron parameters, although the short follow up duration of 6 moths reduced that risk. Finally, urinary MCP-1 and IL-6 were measured in spot urine samples and indexed to urinary creatinine. This might decrease the precision of the observed effect estimates as the concentration of urinary analytes are more variable in spot urine than 24-hour samples. However, despite the potential decrease in statistical power, we observed statistically significant reduction in urinary inflammation markers.

Conclusions

In patients with type 2 diabetes and CKD, dapagliflozin increased hemoglobin/hematocrit and reduced ferritin and urinary MCP-1/Cr and IL-6/Cr, suggesting potentially important effects on iron metabolism and inflammation.

Acknowledgements

The authors thank all investigators, trial teams, and patients for their participation in the trial.

Declarations

Local ethics committees approved all study procedures for the DELIGHT trial and subsequent analyses. Consent was obtained from all study participants.
Not applicable.

Competing interests

A. Koshino, N. Jongs and T. Wada have no conflicts of interest.B.L. Neuen has received fees for advisory boards, scientific presentations, speaker fees, steering committee roles and travel support from the American Diabetes Association, AstraZeneca, Bayer, Boehringer and Ingelheim, Cambridge Healthcare Research, Janssen and Medscape, with all honoraria paid to his institution. C. Pollock has served on the steering committee for CREDENCE trial of canagliflozin (sponsored by Janssen Cilag) and is an advisory board member and speaker for Astra Zeneca, and a speaker for Eli Lilly and Boehringer Ingelheim. P.J. Greasley, E.-M. Anderson, A. Hammarstedt, C. Karlsson and A.M. Langkilde are employees and shareholder of AstraZeneca.H.J.L. Heerspink is supported by a VIDI (917.15.306) grant from the Netherlands Organisation for Scientific Research and has served as a consultant for AbbVie, Astellas, AstraZeneca, Bayer, Boehringer Ingelheim, Chinook, CSL Pharma, Fresenius, Gilead, Janssen, Merck, Mundipharma, Mitsubishi Tanabe, and Retrophin; and has received grant support from AbbVie, AstraZeneca, Boehringer Ingelheim, and Janssen.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Babitt JL, Eisenga MF, Haase VH, Kshirsagar AV, Levin A, Locatelli F et al. Controversies in optimal anemia management: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney int. 2021;99(6):1280–95. Babitt JL, Eisenga MF, Haase VH, Kshirsagar AV, Levin A, Locatelli F et al. Controversies in optimal anemia management: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney int. 2021;99(6):1280–95.
3.
Zurück zum Zitat Nuffield Department of Population Health Renal Studies Group; SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium. Impact of Diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet. 2022;400(10365):1788–801.CrossRef Nuffield Department of Population Health Renal Studies Group; SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium. Impact of Diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet. 2022;400(10365):1788–801.CrossRef
4.
Zurück zum Zitat Li J, Neal B, Perkovic V, de Zeeuw D, Neuen BL, Arnott C, et al. Mediators of the effects of canagliflozin on kidney protection in patients with type 2 Diabetes. Kidney Int. 2020;98(3):769–77.CrossRefPubMed Li J, Neal B, Perkovic V, de Zeeuw D, Neuen BL, Arnott C, et al. Mediators of the effects of canagliflozin on kidney protection in patients with type 2 Diabetes. Kidney Int. 2020;98(3):769–77.CrossRefPubMed
5.
Zurück zum Zitat Sen T, Heerspink HJL. A kidney perspective on the mechanism of action of sodium glucose co-transporter 2 inhibitors. Cell Metab. 2021;33(4):732–9.CrossRefPubMed Sen T, Heerspink HJL. A kidney perspective on the mechanism of action of sodium glucose co-transporter 2 inhibitors. Cell Metab. 2021;33(4):732–9.CrossRefPubMed
6.
Zurück zum Zitat Packer M. Mechanisms of enhanced renal and hepatic erythropoietin synthesis by sodium-glucose cotransporter 2 inhibitors. Eur Heart J. 2023:ehad235. Packer M. Mechanisms of enhanced renal and hepatic erythropoietin synthesis by sodium-glucose cotransporter 2 inhibitors. Eur Heart J. 2023:ehad235.
7.
Zurück zum Zitat Docherty KF, Welsh P, Verma S, De Boer RA, O’Meara E, Bengtsson O, et al. Iron Deficiency in Heart Failure and effect of Dapagliflozin: findings from DAPA-HF. Circulation. 2022;146(13):980–94.CrossRefPubMedPubMedCentral Docherty KF, Welsh P, Verma S, De Boer RA, O’Meara E, Bengtsson O, et al. Iron Deficiency in Heart Failure and effect of Dapagliflozin: findings from DAPA-HF. Circulation. 2022;146(13):980–94.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Fuchs Andersen C, Omar M, Glenthoj A, El Fassi D, Moller HJ, Lindholm Kurtzhals JA, et al. Effects of empagliflozin on erythropoiesis in Heart Failure: data from the Empire HF trial. Eur J Heart Fail. 2023;25(2):226–34.CrossRefPubMed Fuchs Andersen C, Omar M, Glenthoj A, El Fassi D, Moller HJ, Lindholm Kurtzhals JA, et al. Effects of empagliflozin on erythropoiesis in Heart Failure: data from the Empire HF trial. Eur J Heart Fail. 2023;25(2):226–34.CrossRefPubMed
9.
Zurück zum Zitat Ghanim H, Abuaysheh S, Hejna J, Green K, Batra M, Makdissi A et al. Dapagliflozin suppresses Hepcidin and increases erythropoiesis. J Clin Endocrinol Metab. 2020;105(4). Ghanim H, Abuaysheh S, Hejna J, Green K, Batra M, Makdissi A et al. Dapagliflozin suppresses Hepcidin and increases erythropoiesis. J Clin Endocrinol Metab. 2020;105(4).
10.
Zurück zum Zitat Dekkers CCJ, Petrykiv S, Laverman GD, Cherney DZ, Gansevoort RT, Heerspink HJL. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab. 2018;20(8):1988–93.CrossRefPubMedPubMedCentral Dekkers CCJ, Petrykiv S, Laverman GD, Cherney DZ, Gansevoort RT, Heerspink HJL. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab. 2018;20(8):1988–93.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Heerspink HJL, Perco P, Mulder S, Leierer J, Hansen MK, Heinzel A, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic Kidney Disease. Diabetologia. 2019;62(7):1154–66.CrossRefPubMedPubMedCentral Heerspink HJL, Perco P, Mulder S, Leierer J, Hansen MK, Heinzel A, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic Kidney Disease. Diabetologia. 2019;62(7):1154–66.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Koshino A, Schechter M, Sen T, Vart P, Neuen BL, Neal B, et al. Interleukin-6 and Cardiovascular and kidney outcomes in patients with type 2 Diabetes: New insights from CANVAS. Diabetes Care. 2022;45(11):2644–52.CrossRefPubMedPubMedCentral Koshino A, Schechter M, Sen T, Vart P, Neuen BL, Neal B, et al. Interleukin-6 and Cardiovascular and kidney outcomes in patients with type 2 Diabetes: New insights from CANVAS. Diabetes Care. 2022;45(11):2644–52.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Pollock C, Stefansson B, Reyner D, Rossing P, Sjostrom CD, Wheeler DC, et al. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 Diabetes and chronic Kidney Disease (DELIGHT): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7(6):429–41.CrossRefPubMed Pollock C, Stefansson B, Reyner D, Rossing P, Sjostrom CD, Wheeler DC, et al. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 Diabetes and chronic Kidney Disease (DELIGHT): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7(6):429–41.CrossRefPubMed
14.
Zurück zum Zitat Eleftheriadis T, Liakopoulos V, Antoniadi G, Stefanidis I. Which is the best way for estimating transferrin saturation? Ren Fail. 2010;32(8):1022–3.CrossRefPubMed Eleftheriadis T, Liakopoulos V, Antoniadi G, Stefanidis I. Which is the best way for estimating transferrin saturation? Ren Fail. 2010;32(8):1022–3.CrossRefPubMed
15.
Zurück zum Zitat Koshino A, Schechter M, Chertow GM, Vart P, Jongs N, Toto RD, et al. Dapagliflozin and Anemia in patients with chronic Kidney Disease. NEJM Evid. 2023;2(6):EVIDoa2300049.CrossRef Koshino A, Schechter M, Chertow GM, Vart P, Jongs N, Toto RD, et al. Dapagliflozin and Anemia in patients with chronic Kidney Disease. NEJM Evid. 2023;2(6):EVIDoa2300049.CrossRef
16.
Zurück zum Zitat Heerspink HJL, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853–62.CrossRefPubMedCentral Heerspink HJL, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853–62.CrossRefPubMedCentral
17.
Zurück zum Zitat Packer M. Potential interactions when prescribing SGLT2 inhibitors and Intravenous Iron in Combination in Heart Failure. JACC Heart Fail. 2023;11(1):106–14.CrossRefPubMed Packer M. Potential interactions when prescribing SGLT2 inhibitors and Intravenous Iron in Combination in Heart Failure. JACC Heart Fail. 2023;11(1):106–14.CrossRefPubMed
18.
Zurück zum Zitat Hofherr A, Williams J, Gan LM, Soderberg M, Hansen PBL, Woollard KJ. Targeting inflammation for the treatment of Diabetic Kidney Disease: a five-compartment mechanistic model. BMC Nephrol. 2022;23(1):208.CrossRefPubMedPubMedCentral Hofherr A, Williams J, Gan LM, Soderberg M, Hansen PBL, Woollard KJ. Targeting inflammation for the treatment of Diabetic Kidney Disease: a five-compartment mechanistic model. BMC Nephrol. 2022;23(1):208.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Sen T, Koshino A, Neal B, Bijlsma MJ, Arnott C, Li J, et al. Mechanisms of action of the sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin on tubular inflammation and damage: a post hoc mediation analysis of the CANVAS trial. Diabetes Obes Metab. 2022;24(10):1950–6.CrossRefPubMedPubMedCentral Sen T, Koshino A, Neal B, Bijlsma MJ, Arnott C, Li J, et al. Mechanisms of action of the sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin on tubular inflammation and damage: a post hoc mediation analysis of the CANVAS trial. Diabetes Obes Metab. 2022;24(10):1950–6.CrossRefPubMedPubMedCentral
Metadaten
Titel
Effects of dapagliflozin and dapagliflozin-saxagliptin on erythropoiesis, iron and inflammation markers in patients with type 2 diabetes and chronic kidney disease: data from the DELIGHT trial
verfasst von
Akihiko Koshino
Brendon L. Neuen
Niels Jongs
Carol Pollock
Peter J. Greasley
Eva-Marie Andersson
Ann Hammarstedt
Cecilia Karlsson
Anna Maria Langkilde
Takashi Wada
Hiddo J.L. Heerspink
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Cardiovascular Diabetology / Ausgabe 1/2023
Elektronische ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-023-02027-8

Weitere Artikel der Ausgabe 1/2023

Cardiovascular Diabetology 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Auf Antibiotika verzichten? Was bei unkomplizierter Zystitis hilft

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Intervallfasten zur Regeneration des Herzmuskels?

14.05.2024 Herzinfarkt Nachrichten

Die Nahrungsaufnahme auf wenige Stunden am Tag zu beschränken, hat möglicherweise einen günstigen Einfluss auf die Prognose nach akutem ST-Hebungsinfarkt. Darauf deutet eine Studie an der Uniklinik in Halle an der Saale hin.

Klimaschutz beginnt bei der Wahl des Inhalators

14.05.2024 Klimawandel Podcast

Auch kleine Entscheidungen im Alltag einer Praxis können einen großen Beitrag zum Klimaschutz leisten. Die neue Leitlinie zur "klimabewussten Verordnung von Inhalativa" geht mit gutem Beispiel voran, denn der Wechsel vom klimaschädlichen Dosieraerosol zum Pulverinhalator spart viele Tonnen CO2. Leitlinienautor PD Dr. Guido Schmiemann erklärt, warum nicht nur die Umwelt, sondern auch Patientinnen und Patienten davon profitieren.

Zeitschrift für Allgemeinmedizin, DEGAM

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.