Skip to main content
Erschienen in: Journal of Cardiothoracic Surgery 1/2020

Open Access 01.12.2020 | Research article

Effects of inhaled nitric oxide for postoperative hypoxemia in acute type A aortic dissection: a retrospective observational study

verfasst von: Hang Zhang, Yaoyang Liu, Xiangdong Meng, Dicheng Yang, Sheng Shi, Jian Liu, Zhongxiang Yuan, Tongtong Gu, Lin Han, Fanglin Lu, Zhiyun Xu, Yang Liu, Min Yu

Erschienen in: Journal of Cardiothoracic Surgery | Ausgabe 1/2020

Abstract

Background

Postoperative hypoxemia in acute type A aortic dissection (AADA) is a common complication and is associated with negative outcomes. This study aimed to analyze the efficacy of low-dose (5–10 ppm) inhaled nitric oxide (iNO) in the management of hypoxemia after AADA surgery.

Methods

In this retrospective observational study, Medical records of patients who underwent AADA surgery at two institutions between January 2015 and January 2018 were collected. Patients with postoperative hypoxemia were classified as iNO and control groups. Clinical characteristics and outcomes were compared using a propensity score-matched (PSM) analysis.

Results

Among 436 patients who underwent surgical repair, 187 (42.9%) had hypoxemia and 43 were treated with low-dose iNO. After PSM, patients were included in the iNO treatment (n = 40) and PSM control (n = 94) groups in a 1:3 ratio. iNO ameliorated hypoxemia at 6, 24, 48, and 72 h after initiation, and shortened the durations of ventilator support (39.0 h (31.3–47.8) vs. 69.0 h (47.8–110.3), p < 0.001) and ICU stay (122.0 h (80.8–155.0) vs 179.5 h (114.0–258.0), p < 0.001). There were no significant between-group differences in mortality, complications, or length of hospital stay.

Conclusions

In this study, we found that low-dose iNO improved oxygenation in patients with hypoxemia after AADA surgery and shortened the durations of mechanical ventilation and ICU stay. No significant side effects or increase in postoperative mortality or morbidities were observed with iNO treatment. These findings warrant a randomized multicenter controlled trial to assess the exact efficiency of iNO for hypoxemia after AADA.
Hinweise
Hang Zhang, Yaoyang Liu and Xiangdong Meng contributed equally to this work.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13019-020-1069-6.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AADA
Acute type A aortic dissection
ABG
Arterial blood gases
ACC
Aortic cross-clamp
AKI
Acute kidney injury
ALT
Alanine transaminase
ARDS
Acute respiratory distress syndrome
BMI
Body mass index
CABG
Coronary artery bypass graft
COPD
Chronic obstructive pulmonary disease
CPB
Cardiopulmonary bypass
CRP
C-reactive protein
CRRT
Continuous renal replacement therapy
DHCA
Deep hypothermic circulatory arrest
eGFR
Estimated glomerular filtration rate
FiO2
Fraction of inspired oxygen
ICU
Intensive care unit
iNO
Inhaled nitric oxide
PaO2
Partial pressure of oxygen
PEEP
Positive end-expiratory pressure
PSM
Propensity score-matching
SIMV
Synchronized intermittent mandatory ventilation

Introduction

Acute type A aortic dissection (AADA) is a fatal condition. The mortality rate is 1–2% per hour on the first day, with nearly 50% of deaths occurring within the first week [1, 2]. Surgery is life-saving for most patients but may result in high postoperative morbidity [1, 2].
Postoperative hypoxemia is a serious complication with an incidence of 30–50% [3, 4]. Hypoxemia occurs secondary to systemic and local inflammatory reactions after aortic vascular tissue destruction, ischemic/reperfusion injury, intraoperative cardiopulmonary bypass (CPB), deep hypothermia, and massive blood transfusion [47]. Hypoxic pulmonary vasoconstriction is inhibited, resulting in ventilation/perfusion mismatching and shunting [7]. Hypoxemia prolongs postoperative mechanical ventilation and intensive care unit (ICU) stay and increases postoperative mortality. However, effective medical interventions are limited and controversial [68].
Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator that has long been used in the management of acute respiratory distress syndrome (ARDS), pulmonary hypertension, neonatal hypoxemic respiratory failure, and lung transplantations. To date, several randomized controlled trials and meta-analyses have concluded that iNO therapy wasn’t beneficial to mortality or mechanical ventilation duration of patients with ARDS [9, 10]. However, postoperative hypoxemia in AADA was different with ARDS in etiology and pathophysiology. To the best our knowledge, no randomized controlled or case-control study has evaluated iNO treatment efficacy to this group of patients.
We previously found that iNO improved oxygenation after AADA and tended to decrease the time to extubation [11]. Herein, we retrospectively analyzed the effects of low-dose iNO therapy in patients with postoperative hypoxemia after AADA and evaluated its efficacy and safety.

Patients and methods

Patients

We retrospectively reviewed consecutive patients with AADA who underwent surgical repair from January 2015 to January 2018 at Shanghai General Hospital and Changhai Hospital.
The enrollment criteria were as follows: (I) patients who received repairment surgery for AADA; (II) patients with a persistent postoperative hypoxemia, which was defined as the blood gas exam showed that ratio of arterial partial pressure of oxygen (PaO2) to fraction of inspired oxygen (FiO2) was equal to or less than 200 mmHg (PaO2/FiO2 ≤ 200) occurring within 24 h after ICU admission, lasting more than 2 h, and in the absence of other causes of pulmonary insufficiency such as cardiogenic pulmonary edema, pneumonia, pleural effusion, segmental atelectasis, pneumothorax, and pulmonary artery embolism [12]. The exclusion criteria were as follows: (I) patients who died within 24 h after surgery; (II) patients who developed severe postoperative complications such as: coma, cardiogenic shock, and gastrointestinal ischemia. Eligible patients were divided into two groups: patients who received iNO (iNO group) and patients who were managed routinely (control group) (Fig. 1).
This study was approved by the Ethics Committee of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, (No. 2018KY241) and the Committee on Ethics of Biomedicine Research, Second Military Medical University, Shanghai (No. SMMUEC2018–044), with the need for individual patient consent waived.

Surgical procedures and standard postoperative ICU protocols

All enrolled patients underwent aortic repair under extracorporeal circulation, deep hypothermic circulatory arrest, and selective cerebral perfusion. Repairment surgery for AADA was performed with the same standard surgical procedure. The surgical approaches are shown in Table 1. The standard ICU protocols were approximately similar in both hospitals and included ventilator support, sedation, and pain management. Briefly, patients were placed on ventilators in synchronized intermittent mandatory ventilation (SIMV) or assist/control (A/C) modes set at 8–10 mL/kg tidal volume and 5 cmH2O positive end-expiratory pressure (PEEP). Arterial blood gases (ABG) were check every 30 min to 6 h, depending on the patient’s condition. Propofol at 20–50 μg/kg/min was administered until the patient was awake. A continuous infusion of a small dose of fentanyl was administered until ventilator weaning. Routine management for postoperative hypoxemia included: (1) recruitment maneuvers with PEEP of 10–15 cm H2O; (2) negative fluid balance maintenance if hemodynamic stability could be achieved; (3) administration of methylprednisolone 40 mg and ulinastatin 300,000 units intravenously twice daily for 3 days; (4) bilevel positive airway pressure (BiPAP) noninvasive ventilation support after extubation, when necessary.
Table 1
Baseline characteristics of patients with AADA and hypoxemia within 24 h after surgery: pre-PSM
Variable
Control (N = 136)
iNO treatment (N = 40)
p-value
Age, y
50.4 ± 11.0
49.9 ± 11.2
0.789
Men
110 (80.9)
31 (77.5)
0.638
BMI
26.5 ± 2.7
26.3 ± 2.9
0.707
Comorbidity
 Hypertension
96 (70.6)
32 (80.0)
0.240
 Diabetes
2 (1.5)
2 (5.0)
0.476
 COPD
3 (2.2)
1 (2.5)
1.000
 Hepatic insufficiency
4 (2.9)
1 (2.5)
1.000
 Renal insufficiency
27 (19.9)
12 (30.0)
0.174
 Cerebrovascular event
3 (2.2)
2 (5.0)
0.694
 Myocardial infarction
9 (6.6)
2 (5.0)
1.000
 tamponade
21 (15.4)
9 (22.5)
0.297
 Marfan Syndrome
6 (4.4)
3 (7.5)
0.711
 Smoking
32 (23.5)
8 (20.0)
0.640
Laboratory test
 Leucocyte (109/L)
12.0 ± 4.0
13.0 ± 3.4
0.147
 Hemoglobin (g/L)
132.0 (123.0, 143.0)
137.5 (124.8, 150.3)
0.112
 Platelet (109/L)
147.0 (121.3, 201.8)
161.5 (140.5, 200.0)
0.317
 ALT (U/L)
26.5 (19.3, 38.0)
30.5 (19.0, 41.4)
0.930
 Creatinine (μmol/L)
85.0 (68.0, 107.8)
89.5 (70.3, 132.0)
0.437
 Troponin I (ng/ml)
0.02 (0.01, 0.05)
0.02 (0.01, 0.09)
0.782
 PaO2 (mmHg)
85.5(71.2, 101.7)
80.0(67.7, 109.2)
0.897
Surgical procedure
 Total arch replacement
129 (94.9)
38 (95.0)
1.000
 Hemi arch replacement
7 (5.1)
2 (5.0)
1.000
 Concomitant CABG
10 (7.4)
2 (5.0)
1.000
CPB
 CPB time (min)
167.5 (143.5, 186.8)
162.5 (147.0, 191.5)
0.806
 ACC time (min)
97.5 (84.0, 109.8)
96.0 (87.3, 117.3)
0.604
 DHCA time (min)
28.0 (22.0, 31.8)
24.0 (19.0, 28.0)
0.041*
 Minimum temperature in CPB (°C)
22.3 (22.1, 24.4)
22.1 (21.5, 23.5)
0.040*
 PaO2/FiO2 ratio meet hypoxemia criteria
112.9 (94.3, 155.0)
95.0 (82.9, 127.1)
0.076
AADA Acute type A aortic dissection, PSM Propensity score-matching, iNO Inhaled nitric oxide, BMI Body mass index, COPD Chronic obstructive pulmonary disease, ALT Alanine transaminase, CABG Coronary artery bypass graft, CPB Cardiopulmonary bypass, ACC Aortic cross-clamp, DHCA Deep hypothermic circulatory arrest, PaO2 Partial pressure of oxygen, FiO2 Fraction of inspired oxygen
*p < 0.05
Patients were extubated after meeting the following criteria: (1) alert and cooperative with adequate muscle strength; (2) hemodynamically stable with no signs of low cardiac output syndrome or myocardial ischemia, and minimal need for inotropic support (noradrenaline or adrenaline ≤0.05 μg/kg/min; (3) chest tube drainage < 50 mL/h with no active bleeding; (4) acceptable ABG at FiO2 ≤ 0.5 and PEEP ≤5 cmH2O of PaO2 ≥ 80 mmHg, and PaCO2 < 45 mmHg, in the absence of respiratory distress. Patients were transferred out of the ICU when hemodynamically stable, without serious complications, and with PaO2 ≥ 80 mmHg during O2 administration via Venturi mask or nasal cannula.

iNO management

At our institutes, iNO treatment is optional for symptomatic treatment of hypoxemia. Thus, iNO is administered at the discretion of the intensivist. A number of patients who met the criteria for hypoxemia received low dose iNO (5–10 ppm [ppm]) in addition to routine management. NO gases and equipment were supplied by the Children’s Hospital of Fudan University, as previously described [13]. Briefly, the NO inhalation device was managed by a flow controller (MFC) (Shanghai Noventek, Shanghai, China). The N2-based gas mixture flowed into the breathing circuit. The NO/NO2 electrochemical sensor (NOxBOX Plus®; Bedfont Scientific, Rochester, England) was placed in the breathing circuit near the intubation cannula. Continuous monitoring was instituted to maintain the iNO concentration at 5–10 ppm and NO2 at less than 3 ppm. Methemoglobin (MetHb) levels were measured once daily using the Radical-7 pulse oximeter (Radical-7® Pulse CO-Oximeter®, Masimo, USA). Side effects included increasing pleural drainage, new-onset bleeding, and thrombocytopenia (platelet count < 500,000/ul). If oxygenation did not improve within 24 h, if any side effects were noted, or if abnormal methemoglobin and NO2 were observed, iNO therapy was discontinued. When the patient was extubated, iNO was administered via nasal cannula and weaned by decreasing the flow gradually within 24 h.

Outcomes

The primary outcomes were: (1) PaO2/FiO2 collected at 7 time points: preoperative; postoperative ICU admission; first episode of hypoxemia; 4–6 h after iNO initiation (iNO group) or 4–6 h after hypoxemia onset (control group); 24, 48, and 72 h postoperatively; and (2) duration of mechanical ventilation and length of ICU stay. Secondary outcomes included mortality, complications, and in-hospital stay. Possible iNO related side-effects such as pleural drainage and thrombocytopenia were also observed. Coma was defined by a complete absence of consciousness with computed tomography (CT)-proven cerebrovascular occlusion. Cardiogenic shock was diagnosed in the presence of sustained hypotension (systolic blood pressure < 90 mmHg) and low cardiac output, with a poor response to high-dose inotropes and vasopressors. Gastrointestinal ischemia was defined by clinical symptoms and CT angiography evidence of deficient gastrointestinal blood supply with mesenteric artery involvement. Renal insufficiency was defined by an estimated glomerular filtration rate (eGFR) < 60 ml/min/1.73 m2; acute kidney injury (AKI) was defined by either a 50% increase from baseline in serum creatinine within 7 days after surgery, or a 0.3 mg/dl increase in serum creatinine from baseline within 2 days after surgery. Hepatic insufficiency was defined by a serum transaminase concentration > 120 U/L (3 times the upper limit of normal), bilirubin concentration > 3 mg/dL, or a diagnosis of cirrhosis.

Statistical methods

The data analysis was performed using SPSS 24.0 statistical software (IBM Corp., Armonk, NY, USA). Continuous variables with normal distribution were presented as means ± standard deviations. Variables with skewed distribution data were presented as medians and interquartile ranges. Categorical variables were expressed as numbers and percentages. Continuous variables were compared using the t-test or Mann-Whitney U-test and categorical variables were compared using the chi-square test or Fisher’s exact probability method. The PaO2/FiO2 ratio at different time points was compared using the variance of repeated measurement data and the least significant difference (LSD) method was used for pairwise comparisons. p < 0.05 was considered statistically significant.
The propensity score matching (PSM) analysis was conducted using the R plug-in (PSM extension) in SPSS 24.0 (IBM Corp.), with a nearest-neighbor matching algorithm (1:3) and a caliper of 0.2. Propensity scores were generated using a multivariable logistic regression analysis model based on the following covariates: age, deep hypothermic circulatory arrest time, minimum temperature in CPB, and a PaO2/FiO2 ratio that met hypoxemia criteria.

Results

Among 436 patients who underwent AADA surgery, 187 (42.9%) had hypoxemia and 43 were treated with low-dose iNO. After excluding coma (n = 5), cardiogenic shock (n = 5), and gastrointestinal ischemia (n = 1), 176 patients were included 40 and 136 in the iNO and control groups, respectively. Profound hypothermic circulatory arrest time and minimum CPB temperature were significantly different between the groups (Table 1). PSM was used to balance the baseline covariates. After PSM, patients were included in the iNO and control groups in a 1:3 ratio (Fig. 1). All reported parameters were balanced in both groups and no significant differences were detected (Table 2).
Table 2
Baseline characteristics of patients with AADA and hypoxemia at 24 h after surgery: post-PSM
Patients’ Characteristics
Control (N = 94)
iNO treatment (N = 40)
p-value
Age, y
50.5 ± 11.2
49.9 ± 11.2
0.763
Men
75 (79.8)
31 (77.5)
0.766
BMI
26.1(24.9, 28.6)
26.5(24.5, 27.7)
0.719
Comorbidity
 Hypertension
65 (69.1)
32 (80.0)
0.199
 Diabetes
1 (1.1)
2 (5.0)
0.159
 COPD
2 (2.1)
1 (2.5)
0.894
 Hepatic insufficiency
1 (1.1)
1 (2.5)
0.530
 Renal insufficiency
20 (21.3)
12 (30.0)
0.163
 Cerebrovascular event
2 (2.1)
2 (5.0)
0.734
 Tamponade
17 (18.1)
9 (22.5)
0.554
 Myocardial infarction
8 (8.5)
2 (5.0)
0.479
 Marfan Syndrome
3 (3.2)
3 (7.5)
0.270
 Smoking
23 (24.5)
8 (20)
0.575
Laboratory test
 Leucocyte (109/L)
11.8 ± 3.8
13.0 ± 3.3
0.086
 Hemoglobin (g/L)
134.0(124.0, 143.0)
137.5(124.8, 150.3)
0.652
 Platelet (109/L)
162.0 (127.0, 212.0)
161.5(140.5, 200.0)
0.726
 ALT (U/L)
27.0(20.0, 39.5)
30.5(19.0, 41.4)
0.934
 Creatinine (μmol/L)
82.0(66.5, 108.2)
89.5(70.2, 132.0)
0.256
 Troponin I (ng/ml)
0.02(0.01, 0.07)
0.02(0.01, 0.08)
0.489
 PaO2 (mmHg)
83.5(70, 99)
80(67.7, 109.2)
0.132
 Surgical procedure
 Total arch replacement
89 (94.7)
38 (95.0)
1.000
 Hemi arch replacement
5 (5.3)
2 (5.0)
1.000
 Concomitant CABG
9 (9.6)
2 (5.0)
0.377
CPB
 CPB time (min)
167.5(149.0, 183.0)
162.5(147.0, 191.5)
0.808
 ACC time (min)
97.5(84.0, 109.3)
96.0(87.3, 117.3)
0.569
 DHCA time (min)
26.0(20.8, 30.0)
24.0 (19.0, 28.0)
0.143
 Minimum temperature in CPB (°C)
22.1(22.1, 24.3)
22.1(21.5, 23.5)
0.129
 PaO2/FiO2 ratio meet hypoxemia criteria
109.0(85.2, 130.1)
95.0(82.9, 127.1)
0.524
AADA Acute type A aortic dissection, PSM Propensity score-matching, iNO Inhaled nitric oxide, BMI Body mass index, COPD Chronic obstructive pulmonary disease, ALT Alanine transaminase, CPB Cardiopulmonary bypass, ACC Aortic cross-clamp, DHCA Deep hypothermic circulatory arrest, PaO2 Partial pressure of oxygen, FiO2 Fraction of inspired oxygen
After PSM, the durations of mechanical ventilation and ICU stay were significantly shorter in the iNO group than in the control group (both p < 0.001). There were no significant differences in mortality, complications, or lengths of hospital stay. Eight patients (6.0%) died during the perioperative period, one in the iNO group due to sepsis, and 7 in the control group (2 from cardiac arrest and 5 from sepsis) (Table 3).
Table 3
Primary and secondary outcomes after PSM
Outcome
Control (N = 94)
iNO treatment (N = 40)
p-value
Primary outcome
 Mechanical ventilation time (hours)
69.0(47.8, 110.3)
39.0(31.2, 47.8)
< 0.001
 ICU stay (hours)
179.5(114.0, 258.0)
122.0(80.8, 155.0)
< 0.001
Secondary outcome
 Inpatient deaths N (%)
7 (7.4)
1 (2.5)
0.479
 In-hospital stay (days)
20.5(15.8, 28.5)
22.8(19.1, 27.5)
0.131
 Postoperative drainage (24 h)
470(325, 750)
495(260, 667)
0.216
 Peak CRP (mg/L)
7.1(2.4, 85.7)
8.0(2.6, 37.9)
0.676
Complication.
 Cardiac arrest
2 (2.1)
0 (0.0)
0.880
 Re-intubation
7 (7.4)
2 (5.0)
0.888
 Pneumonia
23 (24.5)
5 (12.5)
0.110
 Hepatic insufficiency
20 (21.3)
4 (10.0)
0.119
 AKI
55 (58.5)
19 (47.5)
0.241
 CRRT
7 (7.4)
2 (5.0)
0.605
 Paraplegia
1 (1.1)
0 (0.0)
0.513
 Sepsis
6 (6.4)
4 (10.0)
0.466
 Re-exploration for bleeding
2 (2.1)
2(5.0)
0.734
 thrombocytopenia
28 (29.8)
13 (32.5)
0.755
PSM Propensity score-matching, iNO Inhaled nitric oxide, ICU Intensive care unit, CRP C-reactive protein, AKI Acute kidney injury, CRRT Continuous renal replacement therapy
There were no significant differences in the PaO2/FiO2 ratios between the groups preoperatively, upon postoperative ICU admission and at the first time hypoxemia criteria were met (p > 0.05). After administration of iNO for 6 h, the PaO2/FiO2 ratios in the iNO group were significantly higher than those in the control group (153.5 (125.8–186.2) vs. 123.1 (104.1–144.0); p < 0.001). The PaO2/FiO2 ratios in two groups improved with time, but the differences remained significant at 24 h (161.7 (125.4–197.3) vs. 125.3 (100.3–148.8); p < 0.001), 48 h (195.4 (147.3–253.1) vs. 156.8 (128.3–202.7); p = 0.004), and 72 h (258.8 (188.1–325.0) vs. 173.3 (134.4–220.2), p < 0.001) (Fig. 2).
We also compared all outcomes between the two groups without PSM as a sensitivity analysis and found shorter durations of mechanical ventilation and ICU stay and better PaO2/FiO2 ratios, which corresponded with the results after PSM (see Additional file 1).
The NO2 concentration was continuously monitored during iNO administration and was maintained at < 0.6 ppm. The MetHb levels in the iNO group were less than 1.5%. Platelet counts and drainage were comparable between the groups (p > 0.05) (Tables 3).

Discussion

To the best of our knowledge, this is the first retrospective case-control study to explore the efficacy and safety of iNO for the treatment of postoperative hypoxemia among patients with AADA. In the present study, low-dose iNO improved patient oxygenation gradually over a 3-day period, decreased the duration of mechanical ventilation, and reduced the ICU length of stay. There were trends toward less postoperative mortality and pneumonia, but no significant differences were observed.
iNO rapidly led to ventilation/perfusion matching, then ameliorated oxygenation in the injured lungs. Rossaint et al. [14] first reported that iNO improved oxygenation in patients with ARDS in 1993. Subsequent studies showed similar improvements in oxygenation in a dose-dependent manner without better outcomes [10]. Multiple systematic reviews have shown that iNO does not reduce the mortality among patients with ARDS, nor does it shorten the duration of mechanical ventilation and it may even increase the incidence of renal impairment [9]. Nevertheless, one study showed that low iNO doses (< 5 ppm) improved lung function in ARDS survivors at 6 months [15]. Generally, iNO dilates blood vessels of ventilated alveoli and increases their blood flow, thereby counteracting the ventilation/perfusion mismatch [16]. Improvements in oxygenation occur rapidly, but the treatment does not practically resolve the disease. If the disease progresses, the alveoli will continue to collapse and the effects of iNO will disappear over several days. In our study, causes of lung injury, such as vessel rupture and CPB, were eliminated by the time the surgery was completed. This may be why the effects of iNO on oxygenation were obvious and sustained. Our results are similar to those of Prendergast et al. in their treatment of hypoxemia with iNO after coronary artery bypass grafting [17].
Another possible mechanism behind the beneficial outcomes after iNO is related to its anti-inflammatory effects. NO is involved in various physiological and pathological processes. It can be either protective or destructive in different conditions and according to the dose and time course [16, 18]. Studies in different animal models have demonstrated that iNO ameliorates lung injury by inhibiting inflammatory cytokines and oxidative damage [1921]. A recent study on iNO-mediated prevention of bronchopulmonary dysplasia in Europe showed that iNO treatment may decrease several inflammatory and fibrotic factors in the lungs [22]. Preemptive iNO in human liver transplantation surgery led to clear anti-inflammatory effects in liver grafts which protected graft function, ameliorated pathological changes, and reduced postoperative morbidity [23]. In our study, we found no evidence of inflammation modulation since postoperative C-reactive protein levels were similar in the two groups. However, we speculate that the effects of iNO were associated with regulation of inflammation for several reasons: (1) systemic inflammation causes perioperative hypoxemia in AADA [24]; (2) treatments using systemic anti-inflammatory medicines such as glucocorticoid, sivelestat, and ulinastatin could play a role in attenuating hypoxemia [25, 26]. In our study, there was a trend toward lower inpatient mortality in the iNO treatment group, but this was not significant. Patients with AADA often were in critical condition and could have had complications other than lung injury.
Some ARDS studies indicated that iNO can adversely affect renal function [9]; however, the mechanism is unclear. A recent study showed that the administration of 80 ppm NO gas into the extracorporeal circulation in conjunction with postoperative iNO treatment significantly reduced the occurrence of renal dysfunction after valve replacement surgery [27]. Recently, Hyun-Su et al. reported that iNO did not worsen renal function after lung transplantation; nearly half of the patients in that study were administered extracorporeal membrane oxygenation [28]. In this study, the incidence of AKI and use of continuous renal replacement therapy (CRRT) were similar between the two groups.
During iNO treatment, routine MetHb and exhaled NO2 monitoring are required. With low-dose iNO, the concentrations of those two substances are small and stable; their safety has been confirmed in other studies of iNO in infants [22]. Another possible side-effect of iNO is that it can inhibit platelet aggregation and adhesion to the vascular endothelium, thereby prolonging bleeding time. We compared the number of patients with thrombocytopenia, daily pleural effusions, and those who underwent reoperations and found no significant between-group differences. However, active bleeding remained a contraindication to iNO. The price of iNO is about 1200 RMB per day (Chinese currency), which is equivalent to almost 174 USD per day and the average duration of iNO therapy was 3 days. The total in-hospital expenses of the two groups were similar (data not shown).

Study limitations

Our study had several limitations. First, this was a retrospective study with a small sample size; therefore, potential biases could not be fully avoided. Because we did not calculate the required sample size before the study, the potential difference of outcomes may not be showed due to the underpower. A multicenter RCT with larger sample size would add more weight to these results. Second, we lacked long-term follow-up data on our patients. Thus, it is not clear how iNO affected the patients after discharge. Third, Selection of patients who had iNO remains elusive despite PSM and further prospective RCT is needed to identify patients who will benefit from iNO.

Conclusion

This study showed that low-dose iNO treatment possibly improved pulmonary oxygenation and shortened the durations of mechanical ventilation and ICU stays among patients with hypoxemia after AADA. There were no clinical side-effects and no effects on postoperative morbidity and mortality. Therefore, further perspective multicenter trials to clarify the effect and mechanisms of iNO are necessary.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13019-020-1069-6.

Acknowledgements

We want to thank the statistician of statistical guidance of this work: Weituo Zhang. PhD, Tienan Feng. PhD, worked in clinical research center of Shanghai Jiao Tong University School of Medicine.
The Institutional Review Board reviewed and approved the study. Consent to participate for this study was waived because no individual patients were identified.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Pape LA, Awais M, Woznicki EM, et al. Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the international registry of acute aortic dissection. J Am Coll Cardiol. 2015;66:350–8.CrossRef Pape LA, Awais M, Woznicki EM, et al. Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the international registry of acute aortic dissection. J Am Coll Cardiol. 2015;66:350–8.CrossRef
2.
Zurück zum Zitat Nienaber CA, Clough RE. Management of acute aortic dissection. Lancet. 2015;385:800–11.CrossRef Nienaber CA, Clough RE. Management of acute aortic dissection. Lancet. 2015;385:800–11.CrossRef
3.
Zurück zum Zitat Liu N, Zhang W, Ma W, et al. Risk factors for hypoxemia following surgical repair of acute type a aortic dissection. Interact Cardiovasc Thorac Surg. 2017;24:251–6.PubMed Liu N, Zhang W, Ma W, et al. Risk factors for hypoxemia following surgical repair of acute type a aortic dissection. Interact Cardiovasc Thorac Surg. 2017;24:251–6.PubMed
4.
Zurück zum Zitat Kurabayashi M, Okishige K, Azegami K, et al. Reduction of the PaO2/FiO2 ratio in acute aortic dissection - relationship between the extent of dissection and inflammation. Circ J. 2010;74:2066–73.CrossRef Kurabayashi M, Okishige K, Azegami K, et al. Reduction of the PaO2/FiO2 ratio in acute aortic dissection - relationship between the extent of dissection and inflammation. Circ J. 2010;74:2066–73.CrossRef
5.
Zurück zum Zitat Luo F, Zhou XL, Li JJ, et al. Inflammatory response is associated with aortic dissection. Ageing Res Rev. 2009;8:31–5.CrossRef Luo F, Zhou XL, Li JJ, et al. Inflammatory response is associated with aortic dissection. Ageing Res Rev. 2009;8:31–5.CrossRef
6.
Zurück zum Zitat Apostolakis E, Filos KS, Koletsis E, et al. Lung dysfunction following cardiopulmonary bypass. J Card Surg. 2010;25:47–55.CrossRef Apostolakis E, Filos KS, Koletsis E, et al. Lung dysfunction following cardiopulmonary bypass. J Card Surg. 2010;25:47–55.CrossRef
7.
Zurück zum Zitat Stephens RS, Shah AS, Whitman GJ. Lung injury and acute respiratory distress syndrome after cardiac surgery. Ann Thorac Surg. 2013;95:1122–9.CrossRef Stephens RS, Shah AS, Whitman GJ. Lung injury and acute respiratory distress syndrome after cardiac surgery. Ann Thorac Surg. 2013;95:1122–9.CrossRef
8.
Zurück zum Zitat Kimura N, Tanaka M, Kawahito K, et al. Risk factors for prolonged mechanical ventilation following surgery for acute type a aortic dissection. Circ J. 2008;72:1751–7.CrossRef Kimura N, Tanaka M, Kawahito K, et al. Risk factors for prolonged mechanical ventilation following surgery for acute type a aortic dissection. Circ J. 2008;72:1751–7.CrossRef
9.
Zurück zum Zitat Gebistorf F, Karam O, Wetterslev J, et al. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev. 2016;27:CD002787. Gebistorf F, Karam O, Wetterslev J, et al. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev. 2016;27:CD002787.
10.
Zurück zum Zitat Gerlach H, Keh D, Semmerow A, et al. Dose-response characteristics during long-term inhalation of nitric oxide in patients with severe acute respiratory distress syndrome: a prospective, randomized, controlled study. Am J Respir Crit Care Med. 2003;167:1008–15.CrossRef Gerlach H, Keh D, Semmerow A, et al. Dose-response characteristics during long-term inhalation of nitric oxide in patients with severe acute respiratory distress syndrome: a prospective, randomized, controlled study. Am J Respir Crit Care Med. 2003;167:1008–15.CrossRef
11.
Zurück zum Zitat Min YU, Mao JQ, Fan YL, et al. Effects of inhaled nitric oxide in refractory hypoxemic patients after open heart surgery. J Shanghai Jiaotong Univ. 2014;34:343–51. Min YU, Mao JQ, Fan YL, et al. Effects of inhaled nitric oxide in refractory hypoxemic patients after open heart surgery. J Shanghai Jiaotong Univ. 2014;34:343–51.
12.
Zurück zum Zitat Girdauskas E, Kuntze T, Borger MA, et al. Acute respiratory dysfunction after surgery for acute type a aortic dissection. Eur J Cardiothorac Surg. 2010;37:691–6.CrossRef Girdauskas E, Kuntze T, Borger MA, et al. Acute respiratory dysfunction after surgery for acute type a aortic dissection. Eur J Cardiothorac Surg. 2010;37:691–6.CrossRef
13.
Zurück zum Zitat Wang YF, Liu CQ, Gao XR, et al. Effects of inhaled nitric oxide in neonatal hypoxemic respiratory failure from a multicenter controlled trial. Chin Med J (Engl). 2011;124:1156–63. Wang YF, Liu CQ, Gao XR, et al. Effects of inhaled nitric oxide in neonatal hypoxemic respiratory failure from a multicenter controlled trial. Chin Med J (Engl). 2011;124:1156–63.
14.
Zurück zum Zitat Rossaint R, Falke KJ, Lopez F, et al. Inhaled nitric oxide for the adult respiratory distress syndrome. New Engl J Med. 1993;328:399–405.CrossRef Rossaint R, Falke KJ, Lopez F, et al. Inhaled nitric oxide for the adult respiratory distress syndrome. New Engl J Med. 1993;328:399–405.CrossRef
15.
Zurück zum Zitat Dellinger RP, Trzeciak SW, Criner GJ, et al. Association between inhaled nitric oxide treatment and long-term pulmonary function in survivors of acute respiratory distress syndrome. Crit Care. 2012;16:R36.CrossRef Dellinger RP, Trzeciak SW, Criner GJ, et al. Association between inhaled nitric oxide treatment and long-term pulmonary function in survivors of acute respiratory distress syndrome. Crit Care. 2012;16:R36.CrossRef
16.
Zurück zum Zitat Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults. New Engl J Med. 2005;353:2683–95.CrossRef Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults. New Engl J Med. 2005;353:2683–95.CrossRef
17.
Zurück zum Zitat Prendergast B, Scott DH, Mankad PS. Beneficial effects of inhaled nitric oxide in hypoxaemic patients after coronary artery bypass surgery. Eur J Cardiothorac Surg. 1998;14:488–93.CrossRef Prendergast B, Scott DH, Mankad PS. Beneficial effects of inhaled nitric oxide in hypoxaemic patients after coronary artery bypass surgery. Eur J Cardiothorac Surg. 1998;14:488–93.CrossRef
18.
Zurück zum Zitat Bhatraju P, Crawford J, Hall M, et al. Inhaled nitric oxide: current clinical concepts. Nitric Oxide. 2015;50:114–28.CrossRef Bhatraju P, Crawford J, Hall M, et al. Inhaled nitric oxide: current clinical concepts. Nitric Oxide. 2015;50:114–28.CrossRef
19.
Zurück zum Zitat Qian L, Liu H, Yu W, et al. Effects of positive end-expiratory pressure, inhaled nitric oxide and surfactant on expression of proinflammatory cytokines and growth factors in preterm piglet lungs. Pediatr Res. 2008;64:17–23.CrossRef Qian L, Liu H, Yu W, et al. Effects of positive end-expiratory pressure, inhaled nitric oxide and surfactant on expression of proinflammatory cytokines and growth factors in preterm piglet lungs. Pediatr Res. 2008;64:17–23.CrossRef
20.
Zurück zum Zitat El Kebir D, Hubert B, Taha R, et al. Effects of inhaled nitric oxide on inflammation and apoptosis after cardiopulmonary bypass. Chest. 2005;128:2910–7.CrossRef El Kebir D, Hubert B, Taha R, et al. Effects of inhaled nitric oxide on inflammation and apoptosis after cardiopulmonary bypass. Chest. 2005;128:2910–7.CrossRef
21.
Zurück zum Zitat Waldow T, Alexiou K, Witt W, et al. Attenuation of reperfusion-induced systemic inflammation by preconditioning with nitric oxide in an in situ porcine model of normothermic lung ischemia. Chest. 2004;125:2253–9.CrossRef Waldow T, Alexiou K, Witt W, et al. Attenuation of reperfusion-induced systemic inflammation by preconditioning with nitric oxide in an in situ porcine model of normothermic lung ischemia. Chest. 2004;125:2253–9.CrossRef
22.
Zurück zum Zitat Laube M, Amann E, Uhlig U, et al. Inflammatory mediators in tracheal aspirates of preterm infants participating in a randomized trial of inhaled nitric oxide. PLoS One. 2017;12:e0169352.CrossRef Laube M, Amann E, Uhlig U, et al. Inflammatory mediators in tracheal aspirates of preterm infants participating in a randomized trial of inhaled nitric oxide. PLoS One. 2017;12:e0169352.CrossRef
23.
Zurück zum Zitat Lang JD Jr, Smith AB, Brandon A, et al. A randomized clinical trial testing the anti-inflammatory effects of preemptive inhaled nitric oxide in human liver transplantation. PLoS One. 2014;9:e86053.CrossRef Lang JD Jr, Smith AB, Brandon A, et al. A randomized clinical trial testing the anti-inflammatory effects of preemptive inhaled nitric oxide in human liver transplantation. PLoS One. 2014;9:e86053.CrossRef
24.
Zurück zum Zitat Wen D, Zhou XL, Li JJ, et al. Plasma concentrations of interleukin-6, C-reactive protein, tumor necrosis factor-alpha and matrix metalloproteinase-9 in aortic dissection. Clin Chim Acta. 2012;413:198–202.CrossRef Wen D, Zhou XL, Li JJ, et al. Plasma concentrations of interleukin-6, C-reactive protein, tumor necrosis factor-alpha and matrix metalloproteinase-9 in aortic dissection. Clin Chim Acta. 2012;413:198–202.CrossRef
25.
Zurück zum Zitat Morimoto N, Morimoto K, Morimoto Y, et al. Sivelestat attenuates postoperative pulmonary dysfunction after total arch replacement under deep hypothermia. Eur J Cardiothorac Surg. 2008;34:798–804.CrossRef Morimoto N, Morimoto K, Morimoto Y, et al. Sivelestat attenuates postoperative pulmonary dysfunction after total arch replacement under deep hypothermia. Eur J Cardiothorac Surg. 2008;34:798–804.CrossRef
26.
Zurück zum Zitat Xu CE, Zou CW, Zhang MY, et al. Effects of high-dose ulinastatin on inflammatory response and pulmonary function in patients with type-a aortic dissection after cardiopulmonary bypass under deep hypothermic circulatory arrest. J Cardiothorac Vasc Anesth. 2013;27:479–84.CrossRef Xu CE, Zou CW, Zhang MY, et al. Effects of high-dose ulinastatin on inflammatory response and pulmonary function in patients with type-a aortic dissection after cardiopulmonary bypass under deep hypothermic circulatory arrest. J Cardiothorac Vasc Anesth. 2013;27:479–84.CrossRef
27.
Zurück zum Zitat Lei C, Berra L, Rezoagli E, et al. Nitric oxide decreases acute kidney injury and stage 3 chronic kidney disease after cardiac surgery. Am J Respir Crit Care Med. 2018;198:1279–87.CrossRef Lei C, Berra L, Rezoagli E, et al. Nitric oxide decreases acute kidney injury and stage 3 chronic kidney disease after cardiac surgery. Am J Respir Crit Care Med. 2018;198:1279–87.CrossRef
28.
Zurück zum Zitat Ri HS, Son HJ, Oh HB, et al. Inhaled nitric oxide therapy was not associated with postoperative acute kidney injury in patients undergoing lung transplantation: A retrospective pilot study. Medicine (Baltimore). 2018;97:e10915.CrossRef Ri HS, Son HJ, Oh HB, et al. Inhaled nitric oxide therapy was not associated with postoperative acute kidney injury in patients undergoing lung transplantation: A retrospective pilot study. Medicine (Baltimore). 2018;97:e10915.CrossRef
Metadaten
Titel
Effects of inhaled nitric oxide for postoperative hypoxemia in acute type A aortic dissection: a retrospective observational study
verfasst von
Hang Zhang
Yaoyang Liu
Xiangdong Meng
Dicheng Yang
Sheng Shi
Jian Liu
Zhongxiang Yuan
Tongtong Gu
Lin Han
Fanglin Lu
Zhiyun Xu
Yang Liu
Min Yu
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Cardiothoracic Surgery / Ausgabe 1/2020
Elektronische ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-020-1069-6

Weitere Artikel der Ausgabe 1/2020

Journal of Cardiothoracic Surgery 1/2020 Zur Ausgabe

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.