Skip to main content
Erschienen in: NeuroMolecular Medicine 3/2018

30.05.2018 | Original Paper

Effects of Low Phytanic Acid-Concentrated DHA on Activated Microglial Cells: Comparison with a Standard Phytanic Acid-Concentrated DHA

verfasst von: María Belén Ruiz-Roso, Elena Olivares-Álvaro, José Carlos Quintela, Sandra Ballesteros, Juan F. Espinosa-Parrilla, Baltasar Ruiz-Roso, Vicente Lahera, Natalia de las Heras, Beatriz Martín-Fernández

Erschienen in: NeuroMolecular Medicine | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Docosahexaenoic acid (DHA, 22:6 n-3) is an essential omega-3 (ω-3) long chain polyunsaturated fatty acid of neuronal membranes involved in normal growth, development, and function. DHA has been proposed to reduce deleterious effects in neurodegenerative processes. Even though, some inconsistencies in findings from clinical and pre-clinical studies with DHA could be attributed to the presence of phytanic acid (PhA) in standard DHA treatments. Thus, the aim of our study was to analyze and compare the effects of a low PhA-concentrated DHA with a standard PhA-concentrated DHA under different neurotoxic conditions in BV-2 activated microglial cells. To this end, mouse microglial BV-2 cells were stimulated with either lipopolysaccharide (LPS) or hydrogen peroxide (H2O2) and co-incubated with DHA 50 ppm of PhA (DHA (PhA:50)) or DHA 500 ppm of PhA (DHA (PhA:500)). Cell viability, superoxide anion (O2) production, Interleukin 6 (L-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glutathione peroxidase (GtPx), glutathione reductase (GtRd), Caspase-3, and the brain-derived neurotrophic factor (BDNF) protein expression were explored. Low PhA-concentrated DHA protected against LPS or H2O2-induced cell viability reduction in BV-2 activated cells and O2 production reduction compared to DHA (PhA:500). Low PhA-concentrated DHA also decreased COX-2, IL-6, iNOS, GtPx, GtRd, and SOD-1 protein expression when compared to DHA (PhA:500). Furthermore, low PhA-concentrated DHA increased BDNF protein expression in comparison to DHA (PhA:500). The study provides data supporting the beneficial effect of low PhA-concentrated DHA in neurotoxic injury when compared to a standard PhA-concentrated DHA in activated microglia.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Batchelor, P. E., Liberatore, G. T., Wong, J. Y., Porritt, M. J., Frerichs, F., Donnan, G. A., et al. (1999). Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Journal of Neuroscience, 19(5), 1708–1716.PubMedCrossRef Batchelor, P. E., Liberatore, G. T., Wong, J. Y., Porritt, M. J., Frerichs, F., Donnan, G. A., et al. (1999). Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Journal of Neuroscience, 19(5), 1708–1716.PubMedCrossRef
Zurück zum Zitat Budd, S. L., Castilho, R. F., & Nicholls, D. G. (1997). Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells. FEBS Letters, 415(1), 21–24.PubMedCrossRef Budd, S. L., Castilho, R. F., & Nicholls, D. G. (1997). Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells. FEBS Letters, 415(1), 21–24.PubMedCrossRef
Zurück zum Zitat Butovsky, O., Koronyo-Hamaoui, M., Kunis, G., Ophir, E., Landa, G., Cohen, H., et al. (2006). Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proceedings of the National Academy of Sciences, 103(31), 11784–11789. https://doi.org/10.1073/pnas.0604681103.CrossRef Butovsky, O., Koronyo-Hamaoui, M., Kunis, G., Ophir, E., Landa, G., Cohen, H., et al. (2006). Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proceedings of the National Academy of Sciences, 103(31), 11784–11789. https://​doi.​org/​10.​1073/​pnas.​0604681103.CrossRef
Zurück zum Zitat Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., & Peterson, P. K. (1992). Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. The Journal of Immunology, 149, 2736–2741.PubMed Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., & Peterson, P. K. (1992). Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. The Journal of Immunology, 149, 2736–2741.PubMed
Zurück zum Zitat Coombes, E., Jiang, J., Xiang-Ping, C., Inoue, K., Seeds, J., Branigan, D., et al. (2011). Pathophysiologically relevant levels of hydrogen peroxide induce glutamate-independent neurodegeneration that involves activation of transient receptor potential melastatin 7 channels. Antioxidants & Redox Signaling, 14(10), 1815–1827. https://doi.org/10.1089/ars.2010.349.CrossRef Coombes, E., Jiang, J., Xiang-Ping, C., Inoue, K., Seeds, J., Branigan, D., et al. (2011). Pathophysiologically relevant levels of hydrogen peroxide induce glutamate-independent neurodegeneration that involves activation of transient receptor potential melastatin 7 channels. Antioxidants & Redox Signaling, 14(10), 1815–1827. https://​doi.​org/​10.​1089/​ars.​2010.​349.CrossRef
Zurück zum Zitat Desagher, S., & Martinou, J. C. (2000). Mitochondria as the central control point of apoptosis. Trends in Cell Biology, 10(9), 369–377.PubMedCrossRef Desagher, S., & Martinou, J. C. (2000). Mitochondria as the central control point of apoptosis. Trends in Cell Biology, 10(9), 369–377.PubMedCrossRef
Zurück zum Zitat Ghazale, H., Ramadan, N., Mantash, S., Zibara, K., El-Sitt, S., Darwish, H., Chamaa, F., Boustany, R. M., Mondello, S., Abou-Kheir, W., Soueid, J., & Kobeissy, F. (2018). Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury. Behavioural Brain Research. https://doi.org/10.1016/j.bbr.2017.11.007.CrossRefPubMed Ghazale, H., Ramadan, N., Mantash, S., Zibara, K., El-Sitt, S., Darwish, H., Chamaa, F., Boustany, R. M., Mondello, S., Abou-Kheir, W., Soueid, J., & Kobeissy, F. (2018). Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury. Behavioural Brain Research. https://​doi.​org/​10.​1016/​j.​bbr.​2017.​11.​007.CrossRefPubMed
Zurück zum Zitat Hashimoto, M., Hossain, S., Al Mamun, A., Matsuzaki, K., & Arai, H. (2016). Docosahexaenoic acid: One molecule diverse functions. Critical Reviews in Biotechnology, 37(5), 1–19. Hashimoto, M., Hossain, S., Al Mamun, A., Matsuzaki, K., & Arai, H. (2016). Docosahexaenoic acid: One molecule diverse functions. Critical Reviews in Biotechnology, 37(5), 1–19.
Zurück zum Zitat Hashimoto, M., Katakura, M., Tanabe, Y., Al Mamun, A., Inoue, T., Hossain, S., et al. (2015). n-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats. Biochimica et Biophysica Acta (BBA): Molecular and Cell Biology of Lipids, 1851(2), 203–209. https://doi.org/10.1016/j.bbalip.2014.10.009.CrossRef Hashimoto, M., Katakura, M., Tanabe, Y., Al Mamun, A., Inoue, T., Hossain, S., et al. (2015). n-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats. Biochimica et Biophysica Acta (BBA): Molecular and Cell Biology of Lipids, 1851(2), 203–209. https://​doi.​org/​10.​1016/​j.​bbalip.​2014.​10.​009.CrossRef
Zurück zum Zitat Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurology, 14(4), 388–405.PubMedCrossRef Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurology, 14(4), 388–405.PubMedCrossRef
Zurück zum Zitat Hong, S., Lu, Y., Yang, R., Gotlinger, K. H., Petasis, N. A., & Serhan, C. N. (2007). Resolvin D1, protectin D1, and related docosahexaenoic acid-derived products: Analysis via electrospray/low energy tandem mass spectrometry based on spectra and fragmentation mechanisms. Journal of the American Society for Mass Spectrometry, 18(1), 128–144. https://doi.org/10.1016/j.jasms.2006.09.002.PubMedCrossRef Hong, S., Lu, Y., Yang, R., Gotlinger, K. H., Petasis, N. A., & Serhan, C. N. (2007). Resolvin D1, protectin D1, and related docosahexaenoic acid-derived products: Analysis via electrospray/low energy tandem mass spectrometry based on spectra and fragmentation mechanisms. Journal of the American Society for Mass Spectrometry, 18(1), 128–144. https://​doi.​org/​10.​1016/​j.​jasms.​2006.​09.​002.PubMedCrossRef
Zurück zum Zitat Jain, S., Banerjee, B. D., Ahmed, R. S., Arora, V. K., & Mediratta, P. K. (2013). Possible role of oxidative stress and brain derived neurotrophic factor in triazophos induced cognitive impairment in rats. Neurochemical Research, 38, 2136–2147.PubMedCrossRef Jain, S., Banerjee, B. D., Ahmed, R. S., Arora, V. K., & Mediratta, P. K. (2013). Possible role of oxidative stress and brain derived neurotrophic factor in triazophos induced cognitive impairment in rats. Neurochemical Research, 38, 2136–2147.PubMedCrossRef
Zurück zum Zitat Marcheselli, V. L., Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., et al. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. Journal of Biological Chemistry, 278(44), 43807–43817. https://doi.org/10.1074/jbc.M305841200.CrossRef Marcheselli, V. L., Hong, S., Lukiw, W. J., Tian, X. H., Gronert, K., Musto, A., et al. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. Journal of Biological Chemistry, 278(44), 43807–43817. https://​doi.​org/​10.​1074/​jbc.​M305841200.CrossRef
Zurück zum Zitat McColl, A. J., & Converse, C. A. (1995). Lipid studies in retinitis pigmentosa. Progress in Lipid Research, 34(1), 1–16.PubMedCrossRef McColl, A. J., & Converse, C. A. (1995). Lipid studies in retinitis pigmentosa. Progress in Lipid Research, 34(1), 1–16.PubMedCrossRef
Zurück zum Zitat McGahon, B. M., Martin, D. S., Horrobin, D. F., & Lynch, M. A. (1999). Age-related changes in synaptic function: Analysis of the effect of dietary supplementation with omega-3 fatty acids. Neuroscience, 94(1), 305–314.PubMedCrossRef McGahon, B. M., Martin, D. S., Horrobin, D. F., & Lynch, M. A. (1999). Age-related changes in synaptic function: Analysis of the effect of dietary supplementation with omega-3 fatty acids. Neuroscience, 94(1), 305–314.PubMedCrossRef
Zurück zum Zitat Minghetti, L. (2004). Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. Journal of Neuropathology & Experimental Neurology, 63(9), 901–910.CrossRef Minghetti, L. (2004). Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. Journal of Neuropathology & Experimental Neurology, 63(9), 901–910.CrossRef
Zurück zum Zitat Ronicke, S., Kruska, N., Kahlert, S., & Reiser, G. (2009). The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiology of Disease, 36(2), 401–410. https://doi.org/10.1016/j.nbd.2009.08.005.PubMedCrossRef Ronicke, S., Kruska, N., Kahlert, S., & Reiser, G. (2009). The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiology of Disease, 36(2), 401–410. https://​doi.​org/​10.​1016/​j.​nbd.​2009.​08.​005.PubMedCrossRef
Zurück zum Zitat Schonfeld, P., & Struy, H. (1999). Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria. FEBS Letter, 457(2), 179–183.CrossRef Schonfeld, P., & Struy, H. (1999). Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria. FEBS Letter, 457(2), 179–183.CrossRef
Zurück zum Zitat Stewart, V. C., & Heales, S. J. (2003). Nitric oxide-induced mitochondrial dysfunction: Implications for neurodegeneration. Free Radical Biology and Medicine, 34(3), 287–303.PubMedCrossRef Stewart, V. C., & Heales, S. J. (2003). Nitric oxide-induced mitochondrial dysfunction: Implications for neurodegeneration. Free Radical Biology and Medicine, 34(3), 287–303.PubMedCrossRef
Zurück zum Zitat Tuller, E. R., Beavers, C. T., Lou, J. R., Ihnat, M. A., Benbrook, D. M., & Ding, W. Q. (2009). Docosahexaenoic acid inhibits superoxide dismutase 1 gene transcription in human cancer cells: The involvement of peroxisome proliferator-activated receptor alpha and hypoxia-inducible factor-2 alpha signalling. Molecular Pharmacology, 76(3), 588–595. https://doi.org/10.1124/mol.109.057430.PubMedCrossRef Tuller, E. R., Beavers, C. T., Lou, J. R., Ihnat, M. A., Benbrook, D. M., & Ding, W. Q. (2009). Docosahexaenoic acid inhibits superoxide dismutase 1 gene transcription in human cancer cells: The involvement of peroxisome proliferator-activated receptor alpha and hypoxia-inducible factor-2 alpha signalling. Molecular Pharmacology, 76(3), 588–595. https://​doi.​org/​10.​1124/​mol.​109.​057430.PubMedCrossRef
Zurück zum Zitat Tyagi, E., Zhuang, Y., Agrawal, R., Ying, Z., & Gomez-Pinilla, F. (2015). Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiology of Disease, 73, 307–318.PubMedCrossRef Tyagi, E., Zhuang, Y., Agrawal, R., Ying, Z., & Gomez-Pinilla, F. (2015). Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiology of Disease, 73, 307–318.PubMedCrossRef
Zurück zum Zitat Virgili, N., Espinosa-Parrilla, J. F., Mancera, P., Pastén-Zamorano, A., Gimeno-Bayon, J., Rodríguez, M. J., et al. (2011). Oral administration of the kATP channel opener diazoxide ameliorates disease progression in a murine model of multiple sclerosis. Journal of Neuroscience, 8, 149. https://doi.org/10.1186/1742-2094-8-149.CrossRef Virgili, N., Espinosa-Parrilla, J. F., Mancera, P., Pastén-Zamorano, A., Gimeno-Bayon, J., Rodríguez, M. J., et al. (2011). Oral administration of the kATP channel opener diazoxide ameliorates disease progression in a murine model of multiple sclerosis. Journal of Neuroscience, 8, 149. https://​doi.​org/​10.​1186/​1742-2094-8-149.CrossRef
Zurück zum Zitat Williams, C. M., & Burdge, G. (2006). Long-chain n-3 PUFA: Plant v. marine sources. Proceedings of the Nutrition Society, 65(1), 42–50.CrossRef Williams, C. M., & Burdge, G. (2006). Long-chain n-3 PUFA: Plant v. marine sources. Proceedings of the Nutrition Society, 65(1), 42–50.CrossRef
Zurück zum Zitat Yan, S. D., Stern, D., Kane, M. D., Kuo, Y. M., Lampert, H. C., & Roher, A. E. (1998). RAGE-abeta interactions in the pathophysiology of Alzheimer’s disease. Restorative Neurology and Neuroscience, 12(2–3), 167–173.PubMed Yan, S. D., Stern, D., Kane, M. D., Kuo, Y. M., Lampert, H. C., & Roher, A. E. (1998). RAGE-abeta interactions in the pathophysiology of Alzheimer’s disease. Restorative Neurology and Neuroscience, 12(2–3), 167–173.PubMed
Metadaten
Titel
Effects of Low Phytanic Acid-Concentrated DHA on Activated Microglial Cells: Comparison with a Standard Phytanic Acid-Concentrated DHA
verfasst von
María Belén Ruiz-Roso
Elena Olivares-Álvaro
José Carlos Quintela
Sandra Ballesteros
Juan F. Espinosa-Parrilla
Baltasar Ruiz-Roso
Vicente Lahera
Natalia de las Heras
Beatriz Martín-Fernández
Publikationsdatum
30.05.2018
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 3/2018
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-018-8496-8

Weitere Artikel der Ausgabe 3/2018

NeuroMolecular Medicine 3/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

„Restriktion auf vier Wochen Therapie bei Schlaflosigkeit ist absurd!“

06.05.2024 Insomnie Nachrichten

Chronische Insomnie als eigenständiges Krankheitsbild ernst nehmen und adäquat nach dem aktuellen Forschungsstand behandeln: Das forderte der Schlafmediziner Dr. Dieter Kunz von der Berliner Charité beim Praxis Update.

Stuhltransfusion könnte Fortschreiten von Parkinson-Symptomen bremsen

03.05.2024 Parkinson-Krankheit Nachrichten

Kann eine frühzeitige Stuhltransplantation das Fortschreiten von Parkinson-Symptomen verlangsamen? Die Ergebnisse einer randomisierten Phase-2-Studie scheinen dafür zu sprechen.

Frühe Tranexamsäure-Therapie nützt wenig bei Hirnblutungen

02.05.2024 Hirnblutung Nachrichten

Erhalten Personen mit einer spontanen Hirnblutung innerhalb von zwei Stunden nach Symptombeginn eine Tranexamsäure-Therapie, kann dies weder die Hämatomexpansion eindämmen noch die Mortalität senken.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.