Skip to main content
Erschienen in: Cardiovascular Diabetology 1/2018

Open Access 01.12.2018 | Original investigation

Effects of oral antidiabetic drugs on left ventricular mass in patients with type 2 diabetes mellitus: a network meta-analysis

verfasst von: Satoshi Ida, Ryutaro Kaneko, Kazuya Murata

Erschienen in: Cardiovascular Diabetology | Ausgabe 1/2018

Abstract

Background

We used a network meta-analysis of randomized controlled trials (RCTs) to comparatively examine the effects of oral antidiabetic drugs (OADs) on left ventricular mass (LVM) in patients with type 2 diabetes.

Methods

Document searches were implemented using Medline, Cochrane Controlled Trials Registry, and ClinicalTrials.gov. We decided to include RCTs that evaluated the impact of LVM using the administration of OADs to patients with type 2 diabetes. The outcome evaluations used standardized mean difference (SMD) and 95% confidence intervals (CIs). We then performed a comparative examination of LVM related to the administration of OADs using random effects network meta-analysis.

Results

The document search found 11 RCTs (1410 people) that satisfied the eligibility criteria for this study, and these RCTs were incorporated into the network meta-analysis. The only medication that significantly reduced LVM compared to a placebo was gliclazide (SMD, −1.09; 95% CI, −1.62 to  − 0.57). Further, when comparing the impact on LVM between OADs, only gliclazide significantly reduced LVM compared to other OADs (glyburide, voglibose, metformin, pioglitazone, rosiglitazone, and sitagliptin).

Conclusions

In the present study, gliclazide was the only medication that significantly reduced LVM in patients with type 2 diabetes. When considered from the perspective of causing heart failure and preventing recurrence, it is possible that the use of gliclazide in patients with type 2 diabetes will provide multiple benefits.
Abkürzungen
CI
confidence intervals
RCT
randomized controlled trials
SMD
standardized mean difference
SUR
sulfonylurea receptors
OAD
oral antidiabetic drugs
LVM
left ventricular mass
DPP4
dipeptidyl peptidase 4
SUCRA
Surface Under the Cumulative RAnking curve
ER-1
endothelin-1
ADVANCE
Action in Diabetes and Vascular Disease
SGLT2
sodium glucose cotransporter 2

Background

Cardiovascular disease in patients with type 2 diabetes is linked to increased risk of death, which is an extremely important clinical outcome [1]. In recent years, an increase in heart failure among patients with type 2 diabetes has become a grave issue, and the prevention and management of heart disease has become an important focus [2]. Further, type 2 diabetes is clearly an independent risk factor in the occurrence and progress of heart failure [3]. According to previous research, there are several individuals with type 2 diabetes with increased left ventricular mass (LVM) [46]. It is believed that increased LVM is linked to microvascular disease, inflammation, and increased oxidative stress. In addition, it is associated with increased insulin resistance, myocardial fibrosis, and left ventricular remodeling because of chronic high blood sugar [79]. Increased LVM is a strong predictive factor in the occurrence of cardiovascular diseases such as heart failure, sudden death, and death [10, 11]. It has also been identified as a possible early marker for left ventricular diastolic dysfunction [12]. Consequently, it is believed that in type 2 diabetes, an increased LVM is a problem in clinical practice that needs to be addressed.
Oral antidiabetic drugs (OADs) for patients with type 2 diabetes decrease blood glucose level through increased insulin sensitivity or accelerated insulin secretions. Consequently, several OADs also have the following effects: anti-inflammatory, anti-oxidation, vascular protection, and suppression of myocardial fibrosis. They are also thought to possibly reduce LVM [2, 13]. Previous research has shown LVM reduction though the administration of sulfonylureas [14], thiazolidines [15], or dipeptidyl peptidase 4(DPP4) blockers [16]. Nevertheless, some reports have also shown no significant LVM reduction upon the administration of OADs [1719] and inconsistent effects.
Previous research includes reports of randomized controlled trials (RCTs) concerning the effect of OADs on LVM when administered to patients with type 2 diabetes. However, reported RCTs of drug effects are limited, and at several instances, comparative results regarding the effects of target drugs cannot be evaluated. Therefore, based on existing RCTs, we believe that a network meta-analysis that is capable of indirectly comparing effects between drugs would be useful. The purpose of this research is to use RCT network meta-analysis to examine the impact of the administration of OADs on LVM in patients with type 2 diabetes.

Methods

Study selection

A document search was performed using Medline, Cochrane Controlled Trials Registry, and ClinicalTrials.gov (January 1, 2018). The search strategy was implemented by multiplying the search formulas for type 2 diabetes, OADs, and RCTs (Appendix 1). RCTs that evaluated the impact on LVM of OADs administered to patients with type 2 diabetes were included in this study. Regardless of whether medical diets or exercise therapy were used, tests that comparatively examined the impact on LVM between OADs and a placebo, or between OADs were implemented. Exclusion criteria included the following: animal experimentation, research that was not an RCT, research targeting gestational diabetes, research with insufficient data despite analysis being performed, and duplicate documents. Two authors (SI and RK) independently evaluated whether each document satisfied the eligibility requirements for this research. If they disagreed in their interpretation, they consulted a third reviewer (KM).

Data extraction and quality assessment

A data extraction form, describing research characteristics, was included in this study (key author’s name, publication year, study location, sample size, patient’s baseline information, basic treatment, and treatment duration). We included the mean, standard deviation, and standard error or 95% confidence intervals (CIs) for LVM, which was the outcome. If trials compared multiple intervention groups with the same control group within one comparison, the shared control group was considered as two or more groups. Two authors (SI and RK) independently evaluated the quality of research that was included in the present study using Cochran’s risk of bias tool [20]. Evaluation used low risk of bias, moderate risk of bias, or high risk of bias in six domains (random sequence generation, allocation concealment, blinding of personnel and participants, blinding of outcome assessors, incomplete data, and selective reporting).

Statistical analysis

LVM was a continuous variable, and it was predicted that each research study would be described using different units, so our analysis used standardized mean difference (SMD) and 95% CIs. The effectiveness of treatment was the difference between the groups in the amount of LVM change before and after treatment. If only the standard error or P-values were described, standard deviation was calculated as described by Altman and Bland [21]. If no standard deviation was described, standard deviation was calculated from 95% Cis, t-values, or P-values [22].
First, we performed a standard pairwise meta-analysis using a random effects model as a direct comparison. Next, we performed a network meta-analysis as an indirect comparison. The random effects network meta-analysis was performed using mvmeta routine in STATA 13 statistical software (StataCorp. College Station, Texas, USA) [23, 24], and the evidence from direct and indirect comparisons was merged. In addition, we also examined the treatment hierarchy using a Surface Under the Cumulative RAnking curve (SUCRA). SUCRA is an index that estimates in percentage order which treatments are most useful for outcomes [25]. The closer SUCRA was to 100, the more useful the treatment, and results tending toward 0 indicated poor.
We used the following methods to assess any inconsistencies between direct and indirect comparisons. First, we evaluated whether there were any local inconsistencies by comparing treatment effects in the direct and indirect comparisons using all closed loops on the network (loop-specific test) [25]. Next, we looked for any global inconsistencies by evaluating the agreements of evidence obtained from different treatment designs to see if there were any inconsistencies in the overall network (A design-by-treatment interaction model) [26]. If the P value of the test results for local and global inconsistencies was 0.05 or greater, it was judged that there were no inconsistencies in the results of the direct and indirect comparisons.

Results

Description of included studies

Document search retrieved 17,348 papers and 11 RCTs (1410 individuals) that matched the eligibility criteria for this study. These findings were included in the meta-analysis (Fig. 1) [14, 1719, 2733]. Features of the 11 RCTs are shown in Table 1, and the network map is shown in Fig. 2. Age of the target patients was 60.3 years, and 44.6% of the patients were women. The average time since diagnosis of diabetes was 8.4 years, and average trial period was 32.3 weeks. Seven types of oral diabetes medication (glyburide, gliclazide, voglibose, metformin, pioglitazone, rosiglitazone, and sitagliptin) and a placebo were included in the analysis.
Table 1
Characteristics of the studies included in the network meta-analysis
No.
References
Year
Region
No. of patients
Age (years)
% Women
BMI (kg/m2)
Body weight (kg)
Duration of DM (years)
HbA1c (%)
Hypertension (%)
Dyslipidemia (%)
Prior CVD (%)
Comparison
OADs dose (mg/day)
Basic treatment
Study duration (weeks)
LVM (g) or LVMI (g/m2)
1
Yamada et al. [17]
2017
Japan
115
69
35
24.8
NR
NR
6.9
76
70
0
Sitagliptin vs. conventional
Sitagliptin, 25 or 50; conventional, α-glucosidase inhibitor/glinide/metformin/sulfonylurea/pioglitazone
Diet + exercise
96
96.2 (g/m2)
2
Oe et al. [18]
2015
Japan
77
66
35
25.7
NR
3
NR
80
10
5
Sitagliptin vs. voglibose
Sitagliptin,50; voglibose, 0.6
Diet + exercise
24
85 (g/m2)
3
McGavock et al. [27]
2012
US
49
55
52
34
92
10.7
7.7
78
65
8
Rosiglitazone vs. placebo
Rosiglitazone, 8
Diet + exercise
24
153 (g)
4
Naka et al. [28]
2010
Greece
81
64
72
NR
74.2
9
7.9
NR
NR
0
Pioglitazone vs. conventional
Pioglitazone, 30; conventional, metformin/sulfonylurea
Metformin and/or sulfonylurea
24
118.1 (g/m2)
5
McGuire et al. [29]
2010
US
108
55
38
34
97
8.7
7.2
74
75
37
Rosiglitazone vs. placebo
Rosiglitazone, 8
Diet + exercise
24
76 (g/m2)
6
Pala et al. [30]
2010
Turkey
40
55
60
33
NR
4.4
8.4
65
60
0
Rosiglitazone vs. pioglitazone
Rosiglitazone, 8; pioglitazone, 30
Metformin and/or sulfonylurea
16
136 (g/m2)
7
van der Meer et al. [19]
2009
Netherlands
71
56
NR
29.3
NR
NR
7
NR
NR
0
Pioglitazone vs. metformin
Pioglitazone, 30; metformin, 2000
Diet + exercise
24
107 (g)
8
Giles et al. [31]
2008
US
518
63
33
29.7
NR
11.6
8.9
NR
NR
100
Pioglitazone vs. glyburide
Pioglitazone, 30; glyburide, 10
Metformin and/or sulfonylurea
24
NR
9
Lee et al. [14].
2007
Taiwan
108
63
44
26.6
NR
11
8.3
74
NR
0
Glyburide vs. gliclazide
Glyburide, 5; gliclazide, 80
Diet + exercise
24
219 (g)
10
Pan et al. [32]
2006
Taiwan
40
63
52
27
NR
12
8.1
76
NR
0
Glibenclamide vs. gliclazide
Glibenclamide, 5; gliclazide, 80
Glibenclamide
24
120 (g/m2)
11
Sutton et al. [33]
2002
US
203
55
25
NR
86.2
5.3
9.1
NR
NR
0
Glyburide vs. rosiglitazone
Glyburide, 10; rosiglitazone, 8
Diet + exercise
52
75.5 (g/m2)
Unless indicated otherwise, data are shown as mean values
DM diabetes mellitus, BMI body mass index, OADs oral antidiabetic drugs, LVM left ventricular mass, NR not reported

Assessment of potential bias

The percentage of suitable descriptions by domain were as follows: random sequence generation was 45.4% (5/11), allocation concealment was 45.4% (5/11), blinding of participants and personnel was 36.3% (4/11), blinding of outcome assessors was 45.4% (5/11), incomplete data was 36.3% (4/11), and selective reporting was 90.9% (10/11) (Table 2). Variation in the quality of the included RCTs was high. Altogether, the overall risk of bias was high.
Table 2
Risk of bias assessment included in the network meta-analysis
No.
Reference
Randomization procedure
Allocation concealment
Blinding of personnel and participants
Blinding of outcome assessment
Incomplete outcome assessment
Selective reporting
1
Yamada et al. [17]
L
L
H
L
L
L
2
Oe et al. [18]
L
L
H
U
U
L
3
McGavock et al. [27]
L
L
L
L
U
L
4
Naka et al. [28]
L
L
H
L
U
L
5
McGuireet al. [29]
U
U
L
U
H
L
6
Pala et al. [30]
U
U
U
U
L
L
7
van der Meer et al. [19]
L
L
L
U
L
L
8
Giles et al. [31]
U
U
L
U
U
L
9
Pan et al. [32]
U
U
U
L
L
L
10
Sutton et al. [33]
U
U
H
L
U
L
11
Lee et al. [14]
U
U
H
L
H
L
L low risk of bias, U unclear risk of bias, H high risk of bias

Direct pairwise meta-analysis

Table 3 shows the results of the direct pairwise meta-analysis. One RCT compared OADs and a placebo in terms of the effect on LVM (rosiglitazone vs. placebo), finding no statistically significant difference. Alternatively, among the studies that compared the effects on LVM between OADs, the only significant difference that was identified was in the comparative trials between glyburide and gliclazide (SMD, −0.95; 95% CI, −1.29 to  − 0.61), where the gliclazide cohort showed a significant decrease in LVM compared to the glyburide cohort.
Table 3
Results of network meta-analysis (data under the cells marked with italic drugs) and direct comparison (data above the cells marked with italic drugs) of all treatments
Placebo
     
− 0.05 (− 0.36, 0.27) [27, 29]
  
0.14 (− 0.26, 0.54)
Glyburide
− 0.95 (− 1.29, − 0.61) [14, 32]
  
0.07 (− 0.11, 0.24) [31]
0.09 (− 0.19, 0.36) [33]
  
1.09 (0.57, 1.62)
0.95 (0.61, 1.29)
Gliclazide
      
0.12 (− 0.72, 0.96)
− 0.02 (− 0.76, 0.73)
− 0.97 (− 1.79, − 0.15)
Voglibose
   
− 0.20 (− 0.65, 0.25) [18]
 
0.13 (− 0.50, 0.76)
− 0.01 (− 0.50, 0.49)
− 0.96 (− 1.56, − 0.36)
0.01 (− 0.85, 0.87)
Metformin
0.05 (− 0.41, 0.52) [19]
   
0.08 (− 0.35, 0.50)
− 0.06 (− 0.23, 0.10)
− 1.02 (− 1.40, − 0.64)
− 0.05 (− 0.77, 0.68)
− 0.05 (− 0.52, 0.41)
Pioglitazone
0.06 (− 0.56, 0.68) [30]
 
− 0.06 (− 0.49, 0.38) [28]
0.05 (− 0.27, 0.36)
− 0.10 (− 0.35, 0.16)
− 1.05 (− 1.47, − 0.62)
− 0.08 (− 0.86, 0.70)
− − 0.09 (− 0.63, 0.46)
− 0.03 (− 0.32, 0.26)
Rosiglitazone
  
0.32 (− 0.39, 1.03)
0.18 (− 0.41, 0.77)
− 0.77 (− 1.46, − 0.09)
0.20 (− 0.25, 0.65)
0.19 (− 0.55, 0.92)
0.24 (− 0.33, 0.81)
0.27 (− 0.36, 0.91)
Sitagliptin
0.18 (− 0.18, 0.55) [17]
0.14 (− 0.47, 0.74)
− 0.01 (− 0.47, 0.46)
− 0.96 (− 1.54, − 0.38)
0.01 (− 0.57, 0.59)
0.00 (− 0.63, 0.64)
0.06 (− 0.38, 0.49)
0.09 (− 0.43, 0.61)
− 0.18 (− 0.55, 0.18)
Conventional

Network meta-analysis

Table 3 shows the results of the network meta-analysis. The only medication that showed a significant difference in reducing LVM compared to the placebo was gliclazide (SMD, −1.09; 95% CI, −1.62 to  − 0.57). Further, when we examined the impact on LVM between OADs, only gliclazide significantly reduced LVM compared to other OADs. Table 4 shows the results of the SUCRA analysis. The drug with the highest SUCRA values was gliclazide (99.6%), followed by sitagliptin (68.8%). The placebo has the lowest SUCRA values (28.1%).
Table 4
The rank of oral antidiabetic drugs on left ventricular mass
Treatment
SUCRA
Rank
Placebo
28.1
9
Glyburide
51.3
3
Gliclazide
99.6
1
Voglibose
43.3
6
Metformin
45.2
4
Pioglitazone
36.4
7
Rosiglitazone
32.8
8
Sitagliptin
68.8
2
Conventional
44.4
5
SUCRA Surface Under the Cumulative RAnking curve

Inconsistency between direct and indirect evidence

Only one closed loop (triangular loop: glyburide–pioglitazone–rosiglitazone) was found regarding local inconsistencies. There was no significant difference in the loop-specific test, which was consistent (P = 0.913). No significant inconsistencies were identified between the direct and indirect comparisons using the design-by-treatment interaction model for global inconsistencies (P = 0.913).

Discussion

A significant number of patients have increased LVM among those with type 2 diabetes [4, 34, 35]. It is believed that the mechanism of increased LVM is related to microvascular disease, inflammation, obesity, elevated oxidative stress, increased insulin resistance, myocardial fibrosis, left ventricular remodeling, and other conditions [79]. Meanwhile, as increased LVM and impaired diastolic dysfunction are believed to impair glucose tolerance, poor blood glucose management and increased LVM seem to closely correlate with each other [36]. High LVM is a strong predictive factor in the occurrence of cardiovascular disease beginning with heart failure and progressing to death [10, 37]. Consequently, it is believed that increased LVM is a clinical problem in type 2 diabetes. In this study, we indirectly compare type 2 diabetes through network meta-analysis. As a result, only gliclazide significantly reduces LVM compared to the placebo and other OADs. It has been found in a previous study that sulfonylureas bond to sulfonylurea receptors (SUR) in the pancreatic β cell membrane; thereby, causing insulin secretion [38]. Furthermore, it has also been reported that sulfonylureas act outside the pancreas in addition to the action of lowering blood sugar due to the stimulus of insulin secretion. Among the drugs being studied, gliclazide is thought to have strong anti-oxidation and anti-inflammatory effects derived from the azabicyclo-octyl ring in its structure [39]. As aforementioned, inflammation and elevated oxidative stress levels are closely associated with left ventricular remodeling and increased LVM [79, 40, 41]. It appears that the inhibitory action of gliclazide on oxidative stress and inflammation is the mechanism by which LVM is reduced. Moreover, in addition to being expressed from pancreatic beta cells, it has been found that SUR are expressed on the surface of myocardial cells [42]. It is thought that closing the ATP receptor K+ channel by bonding to SUR in the myocardial cells and increasing endothelin-1 (ET-1) are possibly involved with elevated LVM [15]. Gliclazide has high SUR selectivity in pancreatic β cells; thus, its action on SUR in myocardial cells is thought to be minimal [42]. This is believed to be the reason why gliclazide significantly lowers LVM compared to glyburide, despite both being sulfonylureas.
However, except gliclazide, no OADs exhibited significant LVM-lowering effects. In a previous study on patients with type 2 diabetes, it was reported that thiazolidine derivatives reduced LVM more than other administered drugs [15]. However, it has also been reported that thiazolidine derivatives do not have LVM-lowering or cardioprotective effect [28, 43]. In an animal experiment, DPP4 inhibitors reduced LVM more than vildagliptin [16], and it has been indicated that the administration of incretin preparations has anti-inflammatory and LVM-lowering actions [44, 45]. While metformin is believed to exhibit anti-inflammatory and anti-oxidative actions, it has been reported that no LVM-lowering effect was observed [19, 46]. In the present study, while the administration of these drugs did not lower LVM significantly compared with the placebo, the results lack consistency with those of previous studies, and we believe that further examination is warranted.
Our research is the first report to examine how administering OADs to patients with type 2 diabetes impacts LVM using the network meta-analysis method. By indirect comparisons using a network meta-analysis, we can verify the effects on LVM by seven different OADs and a placebo. Interestingly, gliclazide was administered to all the participants in the therapeutic intensification cohort in Action in Diabetes and Vascular Disease (ADVANCE) research, and among this cohort, there was little occurrence of cardiovascular disease [47]. Moreover, there are also reports that administering gliclazide to patients with type 2 diabetes decreases the number of cardiovascular deaths [48]. Conversely, in the Action to Control Cardiovascular Risk in Diabetes research, the therapeutic intensification cohort was administered drugs other than gliclazide, and no suppression of cardiovascular disease occurrence was observed in this group [49]. It is possible that gliclazide is beneficial to patients with type 2 diabetes. However, further examination is required for determining whether or not gliclazide therapy reduced mortality by reducing LVM. Furthermore, when using antidiabetic drugs, both the risks and benefits need to be taken into consideration. While gliclazide is believed to have a relatively low risk of hypoglycemia among sulfonylureas, attention should be paid to the risk of hypoglycemia.

Limitations

Our study has several limitations. First, comparatively, few RCTs are included in this study, and it is possible that due to a lack of manpower, our detection abilities were hampered. Second, it is possible that there are relevant documents in databases that have not been searched that could affect the results. Third, among the RCTs included in the present study, a great discrepancy was noted between each study in terms of the observation period, LVM evaluation method (echocardiography and magnetic resonance imaging), the prevalence of cardiovascular disease, and the drug dosage used. Consequently, caution is required when interpreting the results and generalizing our findings. Fourth, the quality of the RCTs included in this study is generally low; consequently, we have some hesitation about the validity of the research results. Finally, the RCTs included in this study do not include sodium glucose cotransporter 2 (SGLT2) blockers and glinides, so their impact on LVM remains unclear. In particular, with regards to SGLT2 inhibitors, it has been reported that the administration of these drugs might inhibit myocardial fibrosis and reduce cardiac size [50]. In patients with type 2 diabetes, we believe that it is important to conduct further studies with regards to the effect of OADs, including SGLT2 inhibitors, on LVM.

Conclusion

This research evaluates the impact of OADs on LVM among patients with type 2 diabetes using a network meta-analysis. Only gliclazide significantly reduces LVM compared to a placebo and other OADs. As stated above, however, there is little incorporated research, and the overall quality of the research is poor, so caution is required when analyzing these research results. In the future, re-examination is needed with more RCTs included in the meta-analysis, and further research should be conducted to investigate whether lowering LVM will inhibit the onset of heart failure.

Authors’ contributions

SI designed the study and drafted the manuscript; KM interpreted the result data and reviewed from a medical point of view; RK helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank the staff members of the Department of Metabolic Diseases at the Ise Red Cross Hospital for their cooperation in this study.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.
Not applicable.
Not applicable.

Funding

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Anhänge

Appendix 1

PubMed
#1
Diabetes mellitus or diabetes or NIDDM or non-insulin dependent or type 2 diabetes mellitus
#2
Gliclazide or glibenclamide or glimepiride or sulfonylurea or pioglitazone or thiazolidine or thiazolidinediones or sodium glucose co-transporter 2 inhibitor or sodium glucose co-transporter 2 or sodium glucose co-transporter 2 or ipragliflozin or dapagliflozin or luseogliflozin or tofogliflozin or canagliflozin or empagliflozin or biguanides or metformin or acarbose or voglibose or miglitol or α-glucosidase inhibitor or α glucosidase inhibitor or mitiglinide or repaglinide or nateglinide or glinide or incretin or incretins dipeptidyl peptidase 4 Inhibitors or dipeptidyl peptidase 4 inhibitors or saxagliptin or alogliptin or linagliptin or vildagliptin or sitagliptin or teneligliptin or anagliptin or trelagliptin or omarigliptin or antidiabetic drugs or hypoglycemic medications or hypoglycemic agents
#3
“Randomized Controlled Trial” [Publication Type] or “Controlled Clinical Trial” [Publication Type] or Randomized [tiab] or Randomised [tiab] or placebo [tiab] or randomly [tiab]
#4
#1 and #2 and #3
The Cochrane Controlled Trials Registry
#1
Diabetes mellitus or diabetes or NIDDM or non-insulin dependent or type 2 diabetes mellitus
#2
Gliclazide or glibenclamide or glimepiride or sulfonylurea or pioglitazone or thiazolidine or thiazolidinediones or sodium glucose co-transporter 2 inhibitor or sodium glucose co-transporter 2 or sodium glucose co-transporter 2 or ipragliflozin or dapagliflozin or luseogliflozin or tofogliflozin or canagliflozin or empagliflozin or biguanides or metformin or acarbose or voglibose or miglitol or α-glucosidase inhibitor or α glucosidase inhibitor or mitiglinide or repaglinide or nateglinide or glinide or incretin or incretins dipeptidyl peptidase 4 Inhibitors or dipeptidyl peptidase 4 inhibitors or saxagliptin or alogliptin or linagliptin or vildagliptin or sitagliptin or teneligliptin or anagliptin or trelagliptin or omarigliptin or antidiabetic drugs or hypoglycemic medications or hypoglycemic agents
#3
#1 and #2
Literatur
1.
Zurück zum Zitat Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332:73–8.CrossRef Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332:73–8.CrossRef
2.
Zurück zum Zitat Lehrke M, Marx N. Diabetes mellitus and heart failure. Am J Cardiol. 2017;120:S37–47.CrossRef Lehrke M, Marx N. Diabetes mellitus and heart failure. Am J Cardiol. 2017;120:S37–47.CrossRef
3.
Zurück zum Zitat Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJ, Swedberg KB, et al. Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J. 2006;27:65–75.CrossRef Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJ, Swedberg KB, et al. Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J. 2006;27:65–75.CrossRef
4.
Zurück zum Zitat Eguchi K, Boden-Albala B, Jin Z, Rundek T, Sacco RL, Homma S, et al. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am J Cardiol. 2008;101:1787–91.CrossRef Eguchi K, Boden-Albala B, Jin Z, Rundek T, Sacco RL, Homma S, et al. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am J Cardiol. 2008;101:1787–91.CrossRef
5.
Zurück zum Zitat Kozakova M, Morizzo C, Fraser AG, Palombo C. Impact of glycemic control on aortic stiffness, left ventricular mass and diastolic longitudinal function in type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16:78.CrossRef Kozakova M, Morizzo C, Fraser AG, Palombo C. Impact of glycemic control on aortic stiffness, left ventricular mass and diastolic longitudinal function in type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16:78.CrossRef
6.
Zurück zum Zitat Dawson A, Morris AD, Struthers AD. The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus. Diabetologia. 2005;48:1971–9.CrossRef Dawson A, Morris AD, Struthers AD. The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus. Diabetologia. 2005;48:1971–9.CrossRef
7.
Zurück zum Zitat Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation. 2003;107:3040–6.CrossRef Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation. 2003;107:3040–6.CrossRef
8.
Zurück zum Zitat Larghat AM, Swoboda PP, Biglands JD, Kearney MT, Greenwood JP, Plein S. The microvascular effects of insulin resistance and diabetes on cardiac structure, function, and perfusion: a cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2014;15:1368–76.CrossRef Larghat AM, Swoboda PP, Biglands JD, Kearney MT, Greenwood JP, Plein S. The microvascular effects of insulin resistance and diabetes on cardiac structure, function, and perfusion: a cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2014;15:1368–76.CrossRef
9.
Zurück zum Zitat Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18:655–73.CrossRef Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18:655–73.CrossRef
10.
Zurück zum Zitat Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering TG, et al. Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med. 1986;105:173–8.CrossRef Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering TG, et al. Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med. 1986;105:173–8.CrossRef
11.
Zurück zum Zitat Gardin JM, McClelland R, Kitzman D, Lima JA, Bommer W, Klopfenstein HS, et al. M-mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the Cardiovascular Health Study). Am J Cardiol. 2001;87:1051–7.CrossRef Gardin JM, McClelland R, Kitzman D, Lima JA, Bommer W, Klopfenstein HS, et al. M-mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the Cardiovascular Health Study). Am J Cardiol. 2001;87:1051–7.CrossRef
12.
Zurück zum Zitat Seferovic JP, Tesic M, Seferovic PM, Lalic K, Jotic A, Biering-Sorensen T, et al. Increased left ventricular mass index is present in patients with type 2 diabetes without ischemic heart disease. Sci Rep. 2018;8:926.CrossRef Seferovic JP, Tesic M, Seferovic PM, Lalic K, Jotic A, Biering-Sorensen T, et al. Increased left ventricular mass index is present in patients with type 2 diabetes without ischemic heart disease. Sci Rep. 2018;8:926.CrossRef
13.
Zurück zum Zitat Levelt E, Gulsin G, Neubauer S, McCann GP. Mechanisms in endocrinology: diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review. Eur J Endocrinol. 2018;178:R127–39.CrossRef Levelt E, Gulsin G, Neubauer S, McCann GP. Mechanisms in endocrinology: diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review. Eur J Endocrinol. 2018;178:R127–39.CrossRef
14.
Zurück zum Zitat Lee TM, Lin MS, Tsai CH, Huang CL, Chang NC. Effects of sulfonylureas on left ventricular mass in type 2 diabetic patients. Am J Physiol Heart Circ Physiol. 2007;292:H608–13.CrossRef Lee TM, Lin MS, Tsai CH, Huang CL, Chang NC. Effects of sulfonylureas on left ventricular mass in type 2 diabetic patients. Am J Physiol Heart Circ Physiol. 2007;292:H608–13.CrossRef
15.
Zurück zum Zitat Dorkhan M, Dencker M, Stagmo M, Groop L. Effect of pioglitazone versus insulin glargine on cardiac size, function, and measures of fluid retention in patients with type 2 diabetes. Cardiovasc Diabetol. 2009;8:15.CrossRef Dorkhan M, Dencker M, Stagmo M, Groop L. Effect of pioglitazone versus insulin glargine on cardiac size, function, and measures of fluid retention in patients with type 2 diabetes. Cardiovasc Diabetol. 2009;8:15.CrossRef
16.
Zurück zum Zitat Miyoshi T, Nakamura K, Yoshida M, Miura D, Oe H, Akagi S, et al. Effect of vildagliptin, a dipeptidyl peptidase 4 inhibitor, on cardiac hypertrophy induced by chronic beta-adrenergic stimulation in rats. Cardiovasc Diabetol. 2014;13:43.CrossRef Miyoshi T, Nakamura K, Yoshida M, Miura D, Oe H, Akagi S, et al. Effect of vildagliptin, a dipeptidyl peptidase 4 inhibitor, on cardiac hypertrophy induced by chronic beta-adrenergic stimulation in rats. Cardiovasc Diabetol. 2014;13:43.CrossRef
17.
Zurück zum Zitat Yamada H, Tanaka A, Kusunose K, Amano R, Matsuhisa M, Daida H, et al. Effect of sitagliptin on the echocardiographic parameters of left ventricular diastolic function in patients with type 2 diabetes: a subgroup analysis of the PROLOGUE study. Cardiovasc Diabetol. 2017;16:63.CrossRef Yamada H, Tanaka A, Kusunose K, Amano R, Matsuhisa M, Daida H, et al. Effect of sitagliptin on the echocardiographic parameters of left ventricular diastolic function in patients with type 2 diabetes: a subgroup analysis of the PROLOGUE study. Cardiovasc Diabetol. 2017;16:63.CrossRef
18.
Zurück zum Zitat Oe H, Nakamura K, Kihara H, Shimada K, Fukuda S, Takagi T, et al. Comparison of effects of sitagliptin and voglibose on left ventricular diastolic dysfunction in patients with type 2 diabetes: results of the 3D trial. Cardiovasc Diabetol. 2015;14:83.CrossRef Oe H, Nakamura K, Kihara H, Shimada K, Fukuda S, Takagi T, et al. Comparison of effects of sitagliptin and voglibose on left ventricular diastolic dysfunction in patients with type 2 diabetes: results of the 3D trial. Cardiovasc Diabetol. 2015;14:83.CrossRef
19.
Zurück zum Zitat van der Meer RW, Rijzewijk LJ, de Jong HW, Lamb HJ, Lubberink M, Romijn JA, et al. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation. 2009;119:2069–77.CrossRef van der Meer RW, Rijzewijk LJ, de Jong HW, Lamb HJ, Lubberink M, Romijn JA, et al. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation. 2009;119:2069–77.CrossRef
20.
Zurück zum Zitat Simmonds MC, Higgins JP, Stewart LA, Tierney JF, Clarke MJ, Thompson SG. Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials. 2005;2:209–17.CrossRef Simmonds MC, Higgins JP, Stewart LA, Tierney JF, Clarke MJ, Thompson SG. Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials. 2005;2:209–17.CrossRef
21.
Zurück zum Zitat Altman DG, Bland JM. Detecting skewness from summary information. BMJ. 1996;313:1200.CrossRef Altman DG, Bland JM. Detecting skewness from summary information. BMJ. 1996;313:1200.CrossRef
22.
23.
Zurück zum Zitat Mavridis D, Salanti G. A practical introduction to multivariate meta-analysis. Stat Methods Med Res. 2013;22:133–58.CrossRef Mavridis D, Salanti G. A practical introduction to multivariate meta-analysis. Stat Methods Med Res. 2013;22:133–58.CrossRef
24.
Zurück zum Zitat Jackson D, White IR, Riley RD. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression. Biom J. 2013;55:231–45.CrossRef Jackson D, White IR, Riley RD. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression. Biom J. 2013;55:231–45.CrossRef
25.
Zurück zum Zitat Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS ONE. 2013;8:e76654.CrossRef Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS ONE. 2013;8:e76654.CrossRef
26.
Zurück zum Zitat Jackson D, Boddington P, White IR. The design-by-treatment interaction model: a unifying framework for modelling loop inconsistency in network meta-analysis. Res Synth Methods. 2016;7:329–32.CrossRef Jackson D, Boddington P, White IR. The design-by-treatment interaction model: a unifying framework for modelling loop inconsistency in network meta-analysis. Res Synth Methods. 2016;7:329–32.CrossRef
27.
Zurück zum Zitat McGavock J, Szczepaniak LS, Ayers CR, Abdullah SM, See R, Gore MO, et al. The effects of rosiglitazone on myocardial triglyceride content in patients with type 2 diabetes: a randomised, placebo-controlled trial. Diab Vasc Dis Res. 2012;9:131–7.CrossRef McGavock J, Szczepaniak LS, Ayers CR, Abdullah SM, See R, Gore MO, et al. The effects of rosiglitazone on myocardial triglyceride content in patients with type 2 diabetes: a randomised, placebo-controlled trial. Diab Vasc Dis Res. 2012;9:131–7.CrossRef
28.
Zurück zum Zitat Naka KK, Pappas K, Papathanassiou K, Papamichael ND, Kazakos N, Kanioglou C, et al. Lack of effects of pioglitazone on cardiac function in patients with type 2 diabetes and evidence of left ventricular diastolic dysfunction: a tissue doppler imaging study. Cardiovasc Diabetol. 2010;9:57.CrossRef Naka KK, Pappas K, Papathanassiou K, Papamichael ND, Kazakos N, Kanioglou C, et al. Lack of effects of pioglitazone on cardiac function in patients with type 2 diabetes and evidence of left ventricular diastolic dysfunction: a tissue doppler imaging study. Cardiovasc Diabetol. 2010;9:57.CrossRef
29.
Zurück zum Zitat McGuire DK, Abdullah SM, See R, Snell PG, McGavock J, Szczepaniak LS, et al. Randomized comparison of the effects of rosiglitazone vs. placebo on peak integrated cardiovascular performance, cardiac structure, and function. Eur Heart J. 2010;31:2262–70.CrossRef McGuire DK, Abdullah SM, See R, Snell PG, McGavock J, Szczepaniak LS, et al. Randomized comparison of the effects of rosiglitazone vs. placebo on peak integrated cardiovascular performance, cardiac structure, and function. Eur Heart J. 2010;31:2262–70.CrossRef
30.
Zurück zum Zitat Pala S, Esen O, Akcakoyun M, Kahveci G, Kargin R, Tigen K, et al. Rosiglitazone, but not pioglitazone, improves myocardial systolic function in type 2 diabetic patients: a tissue Doppler study. Echocardiography. 2010;27:512–8.CrossRef Pala S, Esen O, Akcakoyun M, Kahveci G, Kargin R, Tigen K, et al. Rosiglitazone, but not pioglitazone, improves myocardial systolic function in type 2 diabetic patients: a tissue Doppler study. Echocardiography. 2010;27:512–8.CrossRef
31.
Zurück zum Zitat Giles TD, Miller AB, Elkayam U, Bhattacharya M, Perez A. Pioglitazone and heart failure: results from a controlled study in patients with type 2 diabetes mellitus and systolic dysfunction. J Card Fail. 2008;14:445–52.CrossRef Giles TD, Miller AB, Elkayam U, Bhattacharya M, Perez A. Pioglitazone and heart failure: results from a controlled study in patients with type 2 diabetes mellitus and systolic dysfunction. J Card Fail. 2008;14:445–52.CrossRef
32.
Zurück zum Zitat Pan NH, Lee TM, Lin MS, Huang CL, Chang NC. Association of gliclazide and left ventricular mass in type 2 diabetic patients. Diabetes Res Clin Pract. 2006;74:121–8.CrossRef Pan NH, Lee TM, Lin MS, Huang CL, Chang NC. Association of gliclazide and left ventricular mass in type 2 diabetic patients. Diabetes Res Clin Pract. 2006;74:121–8.CrossRef
33.
Zurück zum Zitat St John Sutton M, Rendell M, Dandona P, Dole JF, Murphy K, Patwardhan R, et al. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes. Diabetes Care. 2002;25:2058–64.CrossRef St John Sutton M, Rendell M, Dandona P, Dole JF, Murphy K, Patwardhan R, et al. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes. Diabetes Care. 2002;25:2058–64.CrossRef
34.
Zurück zum Zitat Levitt Katz L, Gidding SS, Bacha F, Hirst K, McKay S, Pyle L, et al. Alterations in left ventricular, left atrial, and right ventricular structure and function to cardiovascular risk factors in adolescents with type 2 diabetes participating in the TODAY clinical trial. Pediatric Diabetes. 2015;16:39–47.CrossRef Levitt Katz L, Gidding SS, Bacha F, Hirst K, McKay S, Pyle L, et al. Alterations in left ventricular, left atrial, and right ventricular structure and function to cardiovascular risk factors in adolescents with type 2 diabetes participating in the TODAY clinical trial. Pediatric Diabetes. 2015;16:39–47.CrossRef
35.
Zurück zum Zitat Suto M, Tanaka H, Mochizuki Y, Mukai J, Takada H, Soga F, et al. Impact of overweight on left ventricular function in type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16:145.CrossRef Suto M, Tanaka H, Mochizuki Y, Mukai J, Takada H, Soga F, et al. Impact of overweight on left ventricular function in type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16:145.CrossRef
36.
Zurück zum Zitat Park J, Kim J, Kim SH, Kim S, Lim SY, Lim H, et al. Subclinical left ventricular diastolic dysfunction and incident type 2 diabetes risk: the Korean Genome and Epidemiology Study. Cardiovasc Diabetol. 2017;16:36.CrossRef Park J, Kim J, Kim SH, Kim S, Lim SY, Lim H, et al. Subclinical left ventricular diastolic dysfunction and incident type 2 diabetes risk: the Korean Genome and Epidemiology Study. Cardiovasc Diabetol. 2017;16:36.CrossRef
37.
Zurück zum Zitat Levy D. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.CrossRef Levy D. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.CrossRef
38.
Zurück zum Zitat Sturgess NC, Ashford ML, Cook DL, Hales CN. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet. 1985;2:474–5.CrossRef Sturgess NC, Ashford ML, Cook DL, Hales CN. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet. 1985;2:474–5.CrossRef
39.
Zurück zum Zitat Jennings PE. Vascular benefits of gliclazide beyond glycemic control. Metabolism. 2000;49:17–20.CrossRef Jennings PE. Vascular benefits of gliclazide beyond glycemic control. Metabolism. 2000;49:17–20.CrossRef
40.
Zurück zum Zitat Gerdts E, Okin PM, Omvik P, Wachtell K, Dahlof B, Hildebrandt P, et al. Impact of diabetes on treatment-induced changes in left ventricular structure and function in hypertensive patients with left ventricular hypertrophy. The LIFE study. Nutr Metab Cardiovasc Dis. 2009;19:306–12.CrossRef Gerdts E, Okin PM, Omvik P, Wachtell K, Dahlof B, Hildebrandt P, et al. Impact of diabetes on treatment-induced changes in left ventricular structure and function in hypertensive patients with left ventricular hypertrophy. The LIFE study. Nutr Metab Cardiovasc Dis. 2009;19:306–12.CrossRef
41.
Zurück zum Zitat De Jong KA, Czeczor JK, Sithara S, McEwen K, Lopaschuk GD, Appelbe A, et al. Obesity and type 2 diabetes have additive effects on left ventricular remodeling in normotensive patients-a cross sectional study. Cardiovasc Diabetol. 2017;16:21.CrossRef De Jong KA, Czeczor JK, Sithara S, McEwen K, Lopaschuk GD, Appelbe A, et al. Obesity and type 2 diabetes have additive effects on left ventricular remodeling in normotensive patients-a cross sectional study. Cardiovasc Diabetol. 2017;16:21.CrossRef
42.
Zurück zum Zitat Lawrence CL, Proks P, Rodrigo GC, Jones P, Hayabuchi Y, Standen NB, et al. Gliclazide produces high-affinity block of KATP channels in mouse isolated pancreatic beta cells but not rat heart or arterial smooth muscle cells. Diabetologia. 2001;44:1019–25.CrossRef Lawrence CL, Proks P, Rodrigo GC, Jones P, Hayabuchi Y, Standen NB, et al. Gliclazide produces high-affinity block of KATP channels in mouse isolated pancreatic beta cells but not rat heart or arterial smooth muscle cells. Diabetologia. 2001;44:1019–25.CrossRef
43.
Zurück zum Zitat Sambanis C, Tziomalos K, Kountana E, Kakavas N, Zografou I, Balaska A, et al. Effect of pioglitazone on heart function and N-terminal pro-brain natriuretic peptide levels of patients with type 2 diabetes. Acta Diabetol. 2008;45:23–30.CrossRef Sambanis C, Tziomalos K, Kountana E, Kakavas N, Zografou I, Balaska A, et al. Effect of pioglitazone on heart function and N-terminal pro-brain natriuretic peptide levels of patients with type 2 diabetes. Acta Diabetol. 2008;45:23–30.CrossRef
44.
Zurück zum Zitat Aroor AR, Habibi J, Kandikattu HK, Garro-Kacher M, Barron B, Chen D, et al. Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovasc Diabetol. 2017;16:1–15.CrossRef Aroor AR, Habibi J, Kandikattu HK, Garro-Kacher M, Barron B, Chen D, et al. Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovasc Diabetol. 2017;16:1–15.CrossRef
45.
Zurück zum Zitat Hiramatsu T, Ozeki A, Asai K, Saka M, Hobo A, Furuta S. Liraglutide improves glycemic and blood pressure control and ameliorates progression of left ventricular hypertrophy in patients with type 2 diabetes mellitus on peritoneal dialysis. Ther Apher Dial. 2015;19:598–605.CrossRef Hiramatsu T, Ozeki A, Asai K, Saka M, Hobo A, Furuta S. Liraglutide improves glycemic and blood pressure control and ameliorates progression of left ventricular hypertrophy in patients with type 2 diabetes mellitus on peritoneal dialysis. Ther Apher Dial. 2015;19:598–605.CrossRef
46.
Zurück zum Zitat Hesen NA, Riksen NP, Aalders B, Ritskes-Hoitinga M, El Messaoudi S, Wever KE. A systematic review and meta-analysis of the protective effects of metformin in experimental myocardial infarction. PLoS ONE. 2017;12:e0183664.CrossRef Hesen NA, Riksen NP, Aalders B, Ritskes-Hoitinga M, El Messaoudi S, Wever KE. A systematic review and meta-analysis of the protective effects of metformin in experimental myocardial infarction. PLoS ONE. 2017;12:e0183664.CrossRef
47.
Zurück zum Zitat Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.CrossRef Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.CrossRef
48.
Zurück zum Zitat Schramm TK, Gislason GH, Vaag A, Rasmussen JN, Folke F, Hansen ML, et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011;32:1900–8.CrossRef Schramm TK, Gislason GH, Vaag A, Rasmussen JN, Folke F, Hansen ML, et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011;32:1900–8.CrossRef
49.
Zurück zum Zitat ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.CrossRef ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.CrossRef
50.
Zurück zum Zitat Habibi J, Aroor AR, Sowers JR, Jia G, Hayden MR, Garro M, et al. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc Diabetol. 2017;16:9.CrossRef Habibi J, Aroor AR, Sowers JR, Jia G, Hayden MR, Garro M, et al. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc Diabetol. 2017;16:9.CrossRef
Metadaten
Titel
Effects of oral antidiabetic drugs on left ventricular mass in patients with type 2 diabetes mellitus: a network meta-analysis
verfasst von
Satoshi Ida
Ryutaro Kaneko
Kazuya Murata
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Cardiovascular Diabetology / Ausgabe 1/2018
Elektronische ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-018-0773-1

Weitere Artikel der Ausgabe 1/2018

Cardiovascular Diabetology 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.