Skip to main content
Erschienen in: Neurological Sciences 12/2022

Open Access 25.08.2022 | Review Article

Efficacy of desferrioxamine mesylate in intracerebral hematoma: a systemic review and meta-analysis

verfasst von: Kai Zhao, Jing Li, Qiang Zhang, Mingfei Yang

Erschienen in: Neurological Sciences | Ausgabe 12/2022

Abstract

Background

Previous meta-analysis had concluded that desferrioxamine mesylate (DFO) could effectively treat intracerebral hematoma (ICH) in animal models. We hope to confirm that DFO could treat ICH patients effectively through the systemic review and meta-analysis of clinical researches.

Method

Data extraction included hematoma volume (HV), reduction of National Institute of Health Stroke Scale (NIHSS) scores, and relative perihematomal edema (RPHE). The standard mean difference (SMD) and 95% confidence interval (95%CI) were calculated by fixed effects model. I-square (I2) statistic was used to test the heterogeneity. All p values were two-side with a significant level at 0.05.

Results

Five randomized controlled trials were included in the meta-analysis, which included 239 patients. At 7 days after onset, there was significant difference of RPHE development (− 1.87 (− 2.22, − 1.51) (I2 = 0, p = 0.639)) and significant difference of HV absorption (− 0.71 (− 1.06, 0.36) (I2 = 17.5%, p = 0.271)) between DFO and control groups. There was significant difference of reduction of NHISS scores (0.25 (0.05, 0.46) (I2 = 0, p = 0.992)) between DFO and control groups at 30 days after onset.

Conclusion

DFO reduced HV and perihematomal edema in ICH patients at 7 days after onset and improve neurological function at 30 days after onset efficiently and safely. DFO might be a new route of improving treatment of ICH.
Hinweise
Kai Zhao and Jing Li are co-first authors.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Intracerebral hematoma (ICH) resulted from craniocerebral injury or hemorrhagic stroke is a common disease in nervous system. Patients have poor prognosis due to the compression of the brain lobe by hematoma lesion and toxic effects of hematoma [1]. Besides, perihematomal edema (PHE), the edema around hematoma, can aggravate condition of ICH patients at early stage [2]. Besides, along with the hematoma absorption, ferric ion can result in cortical iron deposition, which can lead to permanent nerve damage [3]. In-time reduction of PHE and hematoma volume (HV, unit: ml) could effectively reduce the mortality and disability rate of patients.
Desferrioxamine mesylate (DFO) is a kind of chelator that is clinically used to treat iron poisoning and iron overload [4]. Chelates consist of DFO and ferric ion, which could be excreted completely through urine and feces [5]. Therefore, iron deposited in organs could be reduced. Iron in plasma or cell, such as ferric ion in ferritin and hemosiderin, can be chelated, except iron in transferrin and hemoglobin.
Thus, DFO might be useful in treatment of ICH because it could accelerate hematoma absorption. The meta-analysis of animal experiments has concluded that DFO could effectively treat ICH in animal models [6]. However, the efficacy of DFO in ICH patients has not been assessed systemically. In this study, we conducted a meta-analysis of recent randomized controlled trials to confirm our hypothesis that DFO could effectively promote reduction of HV and PHE and improve neurological function in ICH patients.

Methods

Three open electronic databases of PubMed, EMBASE, and Cochrane were searched. The strategy of literature search was: ((“Deferoxamine” [Mesh])OR ((((((((((((((((Desferal [Title/Abstract])OR(“Methanesulfonate, Deferoxamine” [Title/Abstract]))OR(“Deferoxamine Methanesulfonate” [Title/Abstract]))OR(“Mesylate, Deferoxamine” [Title/Abstract])) OR(“Deferoxamine Mesylate” [Title/Abstract]))OR(“Mesilate, Deferoxamine” [Title/Abstract]))OR(“Deferoxamine Mesilate” [Title/Abstract]))OR (“Mesylate, Desferrioxamine B” [Title/Abstract]))OR(“Desferrioxamine B Mesylate” [Title/Abstract]))OR(“Desferroxamine” [Title/Abstract]))OR(“Deferrioxamine B” [Title/Abstract]))OR(Deferoximine [Title/Abstract]))OR(“Desferrioxamine B” [Title/Abstract]))OR(“Deferoxamine B” [Title/Abstract]))OR (Desferioximine [Title/Abstract]))OR(Desferrioxamine [Title/Abstract])))AND((“Cerebral Hemorrhage” [Mesh])OR(((((((((((((((“Hemorrhage*, Cerebral Brain” [Title/Abstract])OR(“Cerebral Brain Hemorrhage*” [Title/Abstract]))OR(“Brain Hemorrhage*, Cerebral” [Title/Abstract]))OR(“Hemorrhage*, Cerebral” [Title/Abstract]))OR(“Cerebral Hemorrhages” [Title/Abstract]))OR(“ICHs” [Title/Abstract]))OR(“Hemorrhage*, Intracerebral” [Title/Abstract])) OR(“Hemorrhage, Intracerebral” [Title/Abstract]))OR(“ICH” [Title/Abstract]))OR(“Parenchymal Hemorrhages, Cerebral” [Title/Abstract]))OR(“Parenchymal Hemorrhage, Cerebral” [Title/Abstract])) OR(“Hemorrhage*, Cerebral Parenchymal” [Title/Abstract]))OR(“Cerebral Parenchymal Hemorrhage*” [Title/Abstract]))OR(“Hemorrhage*, Cerebrum” [Title/Abstract]))OR(“Cerebrum Hemorrhage*” [Title/Abstract]))).

Inclusion and exclusion criteria

The inclusion criteria consisted of the following: (1) Language and regions of articles were not restricted; (2) date of publication was up to December 31, 2021; (3) randomized controlled trials; (4) patients suffered from ICH, which was brain space occupying lesion caused by hematoma including craniocerebral injury or hemorrhagic stroke; (5) DFO was used as the clinical intervention; and (6) outcomes involved changes of neurological function, HV, and PHE. The exclusion criteria consisted of the following: (1) duplication; (2) reviews, comments, letters, case reports, protocols of clinic trials, and conference papers; (3) animal experiments; and (4) articles with none-related topics.

Quality assessment and data extraction

The quality assessment of included articles was performed via the Cochrane Collaboration’s Tool of Assessing Risk of Bias by the Review Manager version 5.3 software. When 2 articles were assessed to the same scores, we considered the one with the more number of participants had the higher quality.
The outcome measurement of this meta-analysis was the effect of DFO on ICH patients. Changes of HV and absolute volume of PHE (PHEV) at 7 days after onset were extracted, which could show the effect of DFO in ICH patients directly. But PHEV could not reflect the relationship that PHE was resulted from hematoma. Relative PHE (RPHE) could remedy the deficiencies, which was calculated by the formula of (PHE volume)/(the total volume of hematoma and PHE) [7]. We preliminarily chose the National Institute of Health Stroke Scale (NIHSS) scores at 30 days after onset to measure recovery of nerve function. In addition to the three continuous variables above (HV and RPHE at 7 days after onset, and NIHSS scores at 30 days after onset), some confounders, which might result in errors, were also extracted, including causes of ICH, characteristics of subjects, period of treatment, and conclusions of studies.

Statistical analysis

Mean and standard deviation (SD) were used to perform statistical description of continuous variables of normal distribution. Statistical difference of data before meta-analysis was tested by One Way Analysis of Variance (ANOVA) using SigmaStat version 4.0 software. If there was no statistical difference, data was directly used for meta-analysis. The differences of data at baseline and other time points were manually calculated. Meta-analysis was performed using Statistics and Data Science version 15.1 software. The overall standard mean difference (SMD) with its 95% confidence interval (95%CI) was calculated by fixed effects model. I-square (I2) was used to test the heterogeneity. Sensitivity analysis, which was the way to checkout the stability of overall results, consisted of two methods that overall SMD of rest studies were performed after the study with the highest quality omitted or the fixed effects model was switched to random effects model. Funnel plot and Egger’s regression were used to analyze publication bias. The method to attenuate heterogeneity and enhance sensitivity was the deletion of studies with publication bias or the lowest quality and subgroup analysis. All p values were two-side with a significant level at 0.05.

Results

Study selection and characteristics

Totally, 301 articles were retrieved from three databases according to the search strategy. After screening articles according to the inclusion and exclusion criteria, five articles of randomized controlled trials were included ultimately (Fig. 1). Some clinical trials have not been completed [8 9]. Figure 2 showed the assessment of quality of articles. In random sequence generation, one study [10] was of high-risk bias and two studies [11], (Selim M et al. 2009) were of unclear risk. Three studies [10, 11, 12] were evaluated to have unclear risk bias in allocation concealment. There was no bias in performance, detection, attrition, and reporting. All of studies had unclear risk bias in other biases.
Articles included were published between 2009 and 2019 (Table 1). Subjects of the experiment group (n = 239) were aged 39 to 81 years, including 47 cases of craniocerebral injury and 192 cases of hemorrhagic stroke. Time of treatment was 3 consecutive days after hospitalization except for one study of 5 days [10]. The dose of DFO was 20 mg/kg/d in one study [10], 32 mg/kg/d in two studies [13, 14] and 6–72 mg/kg/d in one study [11]. Maximum daily dose was 6000 mg in three studies [11, 13, 14] and 2000 mg in one study [10]. Especially, one study had the dose of 500 mg/d without the reference of patients’ weights [12]. Regarding to routes of administration, one study selected intramuscular injection [12]; one study selected intravenous injection [13]; and other studies selected intravenous infusion. According to conclusions of articles, two studies suggested that DFO might not improve the prognosis or hematoma absorption [13, 14]; however, three studies indicated that DFO might have potential neuroprotective effects via acceleration of hematoma absorption and inhibition of PHE [10, 11, 12].
Table 1
Characteristics of included studies
The first author and publication year
Participants
Causes of hemorrhage
Age (mean ± SD)
Sex (male%)
Drug dose
Route of administration
Time of treatment
Conclusions
Selim M 2010 [12
7
Hemorrhagic stroke
75.14 ± 6.36
75.0%
500 mg/d
Intramuscular injection
3 consecutive days after hospitalization
DFO could exert potential neuroprotective effects in stroke patients
Selim M et al., 2011 [11]
20
Hemorrhagic stroke
69.00 ± 10.00
60.0%
7–62 mg/kg/d, maximum daily dose: 6000 mg/d
Intravenous infusion
3 consecutive days after hospitalization
Consecutive daily infusions of DFO after ICH were feasible, safe, and well-tolerated
Yu Y et al., 2015 [13]
21
Hemorrhagic stroke
64.2 ± 9.50
N/A
32 mg/kg/d, maximum daily dose: 6000 mg/d
Intravenous injection
3 consecutive days after hospitalization
Deferoxamine mesylate might slow hematoma absorption and inhibit edema after ICH
Yu J et al., 2017 [10]
47
Craniocerebral injury
53.36 ± 14.07
80.9%
20 mg/kg/d, maximum daily dose: 2000 mg/d
Intravenous infusion
5 consecutive days after hospitalization
Deferoxamine mesylate might accelerate hematoma absorption and inhibit edema
Selim M et al., 2019 [14]
144
Hemorrhagic stroke
59.00 ± 3.33
61.1%
32 mg/kg/d, maximum daily dose: 6000 mg/d
Intravenous infusion
3 consecutive days after hospitalization
DFO would be futile to significantly improve the chance of good outcome at day 90

Meta-analysis

To obtain a more accurate outcome of meta-analysis, we tested the statistical difference of three continuous variables before administration of DFO by ANOVA respectively (Table 2). There was statistical difference in NIHSS scores before administration of DFO (F = 4.112, p < 0.001). Thus, we calculated the reduction of NIHSS scores before administration of DFO and at 30 days after onset (Table 3). However, HV before administration of DFO (F = 1.964, p = 0.086) and RPHE before administration of DFO (F = 2.134, p = 0.064) had no statistical difference. Their data at 7 days after onset were directly used in meta-analysis.
Table 2
NHISS scores at 30 days after onset, HV at 7 days after onset, and RPHE at 7 days after onset between DFO and control groups
Studies
Size
DFO group
Control group
F
P
Before
After
Before
After
NIHSS scores (mean ± SD)
  Selim M 2010 [12]
7
14.4 ± 3.72
8.83 ± 4.96
13.00 ± 2.82
9.25 ± 8.48
4.112
0.001
  Selim M et al., 2011 [11]
20
13.25 ± 8.75
3.75 ± 2.75
11.75 ± 5.25
4.25 ± 2.75
  Yu Y et al., 2015 [13]
21
9.10 ± 4.60
3.80 ± 3.90
8.70 ± 5.40
4.20 ± 4.10
 Selim M et al., 2019 [14]
144
13.00 ± 4.50
3.00 ± 2.83
13.00 ± 4.30
4.00 ± 3.81
HV (mean ± SD, ml)
  Selim M et al., 2011 [11]
20
17.415 ± 11.250
9.155 ± 4.245
17.275 ± 7.790
11.650 ± 7.245
1.964
0.086
  Yu Y et al., 2015 [13]
21
15.200 ± 8.800
8.220 ± 6.850
12.600 ± 10.300
7.780 ± 7.750
  Yu J et al., 2017 [10]
47
12.770 ± 6.360
5.220 ± 3.330
12.570 ± 7.790
8.380 ± 4.110
RPHE (mean ± SD)
  Selim M et al., 2011 [11]
20
0.27 ± 0.21
0.66 ± 0.45
0.35 ± 0.21
1.98 ± 0.68
2.134
0.064
  Yu Y et al., 2015 [13]
21
0.31 ± 0.23
0.68 ± 0.50
0.28 ± 0.29
1.96 ± 1.03
  Yu J et al., 2017 [10]
47
0.19 ± 0.15
0.42 ± 0.42
0.27 ± 0.20
1.88 ± 0.95
NIHSS, National Institute of Health Stroke Scale. HV, hematoma volume. RPHE, relative perihematomal edema. DFO, desferrioxamine mesylate. SD, standard deviation. Before, before administration of DFO. After, HV and RPHE at 7 days after onset of ICH, NIHSS scores at 30 days after onset of ICH. F, detection of data before administration of DFO via analysis of variance. p, p-value
Table 3
Reduction of NIHSS scores (mean ± SD)
Studies
Size
DFO group
Control group
Selim M 2010 [12]
7
5.31 ± 4.47
3.75 ± 7.48
Selim M et al., 2011 [11]
20
9.50 ± 7.75
7.50 ± 4.55
Yu Y et al., 2015 [13]
21
5.30 ± 4.29
4.50 ± 4.88
Selim M et al., 2019 [14]
144
10.00 ± 3.94
9.00 ± 4.08
NIHSS, National Institute of Health Stroke Scale. SD, standard deviation. DFO, desferrioxamine mesylate
There was no heterogeneity (I2 = 0) in meta-analysis of NIHSS scores and RPHE (Fig. 3). There was significant difference of RPHE (SMD =  − 1.87, 95%CI =  − 2.22 ~  − 1.51, p = 0.992) and reduction of NIHSS scores (SMD = 0.25, 95%CI = 0.05 ~ 0.45, p = 0.639) between DFO and control groups. Obvious heterogeneity (I2 = 66.2%) was found in meta-analysis of HV. There was no significant difference of HV (SMD =  − 0.44, 95%CI =  − 0.98 ~ 0.11, p = 0.052) between DFO and control groups.

Publication bias and sensitivity analysis

There was no publication bias according to symmetrical distribution in funnel plots of HV at 7 days after onset, RPHE at 7 days after onset, and reduction of NIHSS scores at baseline and 30 days after onset (Fig. 4). There was no significant difference of reduction of NIHSS (I2 = 0, SMD = 0.24, 95%CI =  − 0.16 ~ 0.65, p = 0.951) between DFO and control groups after deleting the study with the highest quality [14]. There was significant difference of HV (I2 = 17.5%, SMD =  − 0.70, 95%CI =  − 1.09 ~  − 0.30, p = 0.271) between DFO and control groups after the study with the highest quality was omitted [13]. There was significant difference of RPHE (I2 = 0, SMD =  − 1.97, 95%CI =  − 2.38 ~  − 1.55, p = 0.885) between DFO and control groups after the study with the highest quality was omitted [13].

Influence analysis and subgroup analysis

After sensitivity analysis, solely referring to studies’ quality, we found that reduction of NIHSS scores had a difference outcome without heterogeneity; HV had the same outcome and its heterogeneity was also lower than before; RPHE had the same outcome without heterogeneity. To detect the nature of this phenomenon, in addition to one study [11] in all the 5 articles reported that dose of DFO was correlated to HV, RPHE, and NHISS scores, we performed subgroup analysis according to critical factors in using DFO: dose (including maximum daily dose), route of administration, and time of treatment. Referring to characters of studies (Table 1) and extraction of data (Tables 2 and 3), we performed subgroup analysis of HV, RPHE, and reduction of NIHSS scores, respectively. If dose was 32 mg/kg/d (maximum daily dose: 6000 mg) and time of treatment was 3 consecutive days after hospitalization, there was significant difference of reduction of NIHSS scores (I2 = 0, SMD = 0.24, 95%CI = 0.03 ~ 0.45, p = 0.820) between DFO and control groups (Fig. 5). If route of administration was intravenous infusion and time of treatment was 3 consecutive days after hospitalization, there was significant difference of reduction of NIHSS scores (I2 = 0, SMD = 0.26, 95%CI = 0.04 ~ 0.47, p = 0.846) between DFO and control groups (Fig. 6). If time of treatment was 3 consecutive days after hospitalization, there was no significant difference of HV (I2 = 14.7%, SMD =  − 0.17, 95%CI =  − 0.61 ~ 0.26, p = 0.279) between DFO and control groups (Fig. 7). If route of administration was intravenous infusion, there was significant difference of HV (I2 = 17.5%, SMD =  − 0.70, 95%CI =  − 1.09 ~  − 0.30, p = 0.271) between DFO and control groups (Fig. 8). If time of treatment was 3 consecutive days after hospitalization, there was no significant difference of RPHE (I2 = 0, SMD =  − 1.74, 95%CI =  − 2.25 ~  − 1.23, p = 0.514) between DFO and control groups (Fig. 9). If route of administration was intravenous infusion, there was significant difference of RPHE (I2 = 0, SMD =  − 1.97, 95%CI =  − 2.38 ~  − 1.55, p = 0.885) between DFO and control groups (Fig. 10).

Discussion

Numerous animal studies have confirmed that DFO could be used to treat ICH [1518]. Formation of PHE is mainly due to inflammation and broken blood–brain barrier around hematoma lesion [19]. Hematoma absorption in a short period of time might be the key to improve the prognosis of ICH patients. Iron is a critical component of hematoma tissue. DFO might promote hematoma absorption and reduction of PHE via accelerating iron metabolism. Some randomized controlled trials have concluded that infusions of DFO after ICH were feasible, safe, and well-tolerated (Table 1). In other words, DFO might reduce edema and improve neurological function by controlling hematoma. Only the study [11] in all the 5 articles reported that patients whose dose was 32 mg/kg had the lowest NHISS scores at 30 days after onset of ICH and the most obvious decrease of HV at 7 days after onset of ICH; patients whose dose was 57 mg/kg had the slowest development of RPHE at 7 days after onset of ICH. In addition, time of treatment and routes of administration could influence the real-time change of blood concentration of DFO, which might influence the efficacy of treatment. Therefore, we not only performed sensibility analysis referring to studies’ quality but also performed the influence analysis and subgroup analysis referring to critical factors in using DFO.
We found that DFO could improve hematoma absorption in ICH patients affirmatively with an unstable outcome of sensibility analysis. It interested us that after the study with the highest quality was omitted, meta-analysis of HV had the lower heterogeneity. In one influence analysis of HV, we found that DFO did not effectively decrease HV in ICH patients whose time of treatment was 3 consecutive days after hospitalization. Interestingly, this result was acquired under the premise that the study [10] with the lowest quality had been omitted. Moreover, we considered that the nature of selection bias of the study [10] was not only patients were mostly male, but also patients’ causes of ICH included craniocerebral injury, which meant these ICH patients also had focal cerebral contusion. Although focal cerebral contusion was also brain space–occupying lesion caused by hematoma, it damaged brain tissue directly, which might promote DFO to be diffused in lesion. The data extracted from this article showed that decrease of HV and RPHE was the most obvious in all the 5 articles included, while the dose of DFO was lower, which might prove that diffusion of DFO is hundred-percent to benefit the efficacy of treatment. Therefore, with regard to decrease HV, time of treatment of 3 consecutive days might be not enough in ICH patients who suffered hemorrhagic stroke. Time of treatment might be an influence factor of HV decreased by DFO. In another influence analysis of HV, we found that DFO effectively decreased HV in ICH patients whose routes of administration were intravenous infusion. Amazingly, this result was acquired under the premise that the study [13] with the highest quality had been omitted. Apart to study’s quality, comparing to intravenous injection, we considered that intravenous infusion could make blood concentration of DFO stable, which benefited chelating iron via DFO completely. Therefore, intravenous infusion might be the better route of administration of DFO in ICH patients. In sum, DFO might decrease HV at 7 days after onset of ICH effectively; in addition, appropriate longer time of treatment and intravenous infusion might both benefit this effect.
In meta-analysis of NIHSS scores, we found that DFO could improve neurological foundation of ICH patients at 30 days after onset. Although heterogeneity was still zero, the result of sensibility analysis was disparate to it. To detect the nature of contradiction, we performed influence analysis. We found that under the premise of time of treatment of 3 consecutive days after hospitalization, DFO effectively decreased NIHSS scores in ICH patients whose dose was 32 g/kg/d (maximum daily dose: 6000 mg); DFO effectively decreased NIHSS scores in ICH patients whose routes of administration were intravenous infusion. Moreover, both of this two subgroup analysis excluded the article with the lowest quality [12]. Therefore, we considered that DFO administrated via intravenous infusion with the dose of 32 mg/kg/d (maximum daily dose: 6000 mg; time of treatment: 3 consecutive days after hospitalization) might effectively decrease NIHSS scores at 30 days after onset of ICH. Dose and route of administration were influence factors of efficacy of DFO. Although RPHE was not an absolute variable, it could reflect the development of PHE depending on the changes of hematoma lesion. According to the meta-analysis of RPHE, we concluded that development of PHE in DFO group was slower than that in control group at 7 days after onset definitely. Only results of RPHE had a stable outcome of sensibility analysis. In addition, causes of ICH, dose, time of treatment, and routes of administration did not influence the efficacy of DFO in treatment of ICH patients. Moreover, there might be other pathways to achieve its treatment effect. Recent preclinical studies have reported that DFO could improve brain dysfunction, rescue dendritic axon damage, and inhibit microglia activation and attenuation of blood–brain barrier [2022]. Theoretically speaking, DFO’s molecular weight was lower than the maximum of molecular weight which could go through blood–brain barrier. Iron from hematoma could promote the development of PHE via another route: cortical superficial siderosis, which meant the iron deposited in brain tissue [23]. Due to peroxidation of iron in brain tissue, PHE could influence patients’ long-term prognosis including neurological foundation. According to our study, DFO decreased PHE and NIHSS scores, which might indirectly show that DFO enter brain tissue via blood–brain barrier and perform its therapeutic effect and both of dose and route of administration were influence factors of efficacy of DFO. Only one study [11] reported the correlation of adverse reaction or severe adverse events and dose of DFO; other 4 articles directly showed no any adverse reaction happened on patients or did not mentioned this. The study [11] showed that only patients whose dose was 32 mg/kg had no any adverse reaction of DFO. Therefore, we did not perform the meta-analysis about safety of using DFO. In sum, referring to characters of studies included, 20–32 mg/kg/d dose of DFO (maximum daily dose ≤ 6000 mg, time of treatment ≤ 5 consecutive days after hospitalization) might be safe.
Only five randomized controlled trials were included in the meta-analysis finally. Furthermore, three of them had the same first author. One study [10] was assessed to have high risk in item of selection bias, which might affect the results of the analysis when the number of articles was small. In addition, data of NIHSS scores used in this meta-analysis were processed via mathematical transformation and the quantization of PHE was defined to a relative number. The outcome might be affected due to non-original or non-absolute data. In addition, time points of data in the original articles were in the early period of treatment in ICH patients, such as HV measured at 7 days after onset and NIHSS scores assessed at 30 days after onset, which would affect the conclusion of our meta-analysis. The article [6] only included animal models of ICH to perform the systematic review and meta-analysis [6]. They found that DFO reduced the brain water content in animal models of ICH and improved the neurobehavioral score; DFO was most efficacious when administered 2–4 h after ICH at a dose of 10–50 mg/kg depending on species, and this beneficial effect remained for up to 24 h postinjury. Though total conclusion was the same as our study, there was difference between preclinical research and clinical research. We found that the method with the best efficacy and safety of DFO in treatment of ICH might be dose: 32 mg/kg/d, maximum daily dose: 6000 mg/d, period of treatment: 3 consecutive days after hospitalization, and route of administration: intravenous infusion; under this solution, HV and PHE at 7 days after onset of ICH and NIHSS scores at 30 days after onset of ICH were decreased. Only two studies were included in the article (Zeng L et al. 2018) [24]. It only included hemorrhagic stroke patients as ICH patients and reported that DFO was an effective treatment for edema in patients with ICH, which was in accordance of our conclusion. But the article did not perform meta-analysis as the data evidence to support systemic review. Because focal cerebral contusion was also brain space–occupying lesion caused by hematoma, in addition to that, our study included craniocerebral injury patients. The article concluded that elevated ferritin levels were associated with higher mortality of hemorrhagic stroke, especially in Corona Virus Disease 2019 patients as a complication [25]. Mostly, DFO decreased ferritin via chelating its iron, which indirectly confirmed the conclusion from our study that DFO might be used in the treatment of ICH. In future, we hoped that levels of iron in urine or feces and ferritin should be detected as the indicators of metabolic used in clinical research about DFO treating ICH.
After duplication was excluded, 23 conference abstracts had been excluded. The exclusion of conference abstracts, where small trials can be reported without a formal publication, might also cause bias. All the 23 conference abstracts were reviews, comments, protocols, or abstracts which did not conform to our theme, which is shown on Fig. 1. We hope that more small trials of DFO treating ICH might be encouraged in academic conferences. Among all the articles included finally, 4 articles reported outcomes of modified Rankin Scale (mRS), 2 articles reported outcomes of modified Barthel Index (mBI), and only 1 article reported the outcome of Glasgow Outcome Scale (GOS). Except to GOS, we should calculate overall standard mean difference with its 95% confidence interval to perform meta-analysis of mRS or mBI. But no article reported the mBI at baseline. Only 1 article reported the mRS at baseline. Finally, we could not perform the meta-analysis of clinical outcome. Fortunately, 4 articles reported outcomes of NIHSS including them at baseline. And we considered that change of neurological function could indirectly reflect clinical outcome. The lack of clinical outcome might be the fact as a limitation of our systematic review value. We advocated that outcomes of clinical researches should be reported completely, especially in randomized controlled trials.

Conclusion

Apart of the main limit that few of studies were included in our study, DFO (32 mg/kg/d, maximum daily dose: 6000 mg, time of treatment: 3 days after hospitalization) reduced HV and PHE in ICH patients at 7 days after onset and improve neurological function at 30 days after onset efficiently and safely. DFO might be a new route of improving treatment of ICH.

Acknowledgements

The protocol of this work had previously been presented at the International Platform of Registered Systematic Review and Meta-analysis Protocols(Registration Number: INPLASY2020100001, https://​doi.​org/​10.​37766/​inplasy2020.​10.​0001) [26]. There was nobody else involved with this work who warrants acknowledging.

Declarations

Ethics approval

This study was actually a review of current articles about clinical trials which have been published on line. Ethical approval was not needed.
This study was actually a review of current articles about clinical researches which have been published on line. Participatory consents from patients were not required.

Conflict of interest

The authors had no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This included employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.
All the data were open accessed from articles published online. Informed consent statement was not applied.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Ziai WC, Carhuapoma JR (2018) Intracerebral hemorrhage. Continuum (Minneap Minn) 24(6):1603–1622 Ziai WC, Carhuapoma JR (2018) Intracerebral hemorrhage. Continuum (Minneap Minn) 24(6):1603–1622
2.
Zurück zum Zitat Xia X, Ren Q, Cui J et al (2022) Radiomics for predicting revised hematoma expansion with the inclusion of intraventricular hemorrhage growth in patients with supratentorial spontaneous intraparenchymal hematomas. Ann Transl Med 10(1):8CrossRefPubMedPubMedCentral Xia X, Ren Q, Cui J et al (2022) Radiomics for predicting revised hematoma expansion with the inclusion of intraventricular hemorrhage growth in patients with supratentorial spontaneous intraparenchymal hematomas. Ann Transl Med 10(1):8CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Codd R, Richardson-Sanchez T, Telfer TJ et al (2018) Advances in the chemical biology of desferrioxamine B. ACS Chem Biol 13(1):11–25CrossRefPubMed Codd R, Richardson-Sanchez T, Telfer TJ et al (2018) Advances in the chemical biology of desferrioxamine B. ACS Chem Biol 13(1):11–25CrossRefPubMed
5.
Zurück zum Zitat Armstrong A, Mandala A, Malhotra M et al (2022) Canonical Wnt signaling in the pathology of iron overload-induced oxidative stress and age-related diseases. Oxid Med Cell Longev 2022:7163326CrossRefPubMedPubMedCentral Armstrong A, Mandala A, Malhotra M et al (2022) Canonical Wnt signaling in the pathology of iron overload-induced oxidative stress and age-related diseases. Oxid Med Cell Longev 2022:7163326CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Cui HJ, He HY, Yang AL et al (2015) Efficacy of deferoxamine in animal models of intracerebral hemorrhage: a systematic review and stratified meta-analysis. PLoS ONE 10(5):e0127256CrossRefPubMedPubMedCentral Cui HJ, He HY, Yang AL et al (2015) Efficacy of deferoxamine in animal models of intracerebral hemorrhage: a systematic review and stratified meta-analysis. PLoS ONE 10(5):e0127256CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Selim M, Norton C (2020) Perihematomal edema: implications for intracerebral hemorrhage research and therapeutic advances. J Neurosci Res 98(1):212–218CrossRefPubMed Selim M, Norton C (2020) Perihematomal edema: implications for intracerebral hemorrhage research and therapeutic advances. J Neurosci Res 98(1):212–218CrossRefPubMed
8.
Zurück zum Zitat Yeatts SD, Palesch YY, Moy CS et al (2013) High dose deferoxamine in intracerebral hemorrhage (HI-DEF) trial: rationale, design, and methods. Neurocrit Care 19(2):257–266CrossRefPubMedPubMedCentral Yeatts SD, Palesch YY, Moy CS et al (2013) High dose deferoxamine in intracerebral hemorrhage (HI-DEF) trial: rationale, design, and methods. Neurocrit Care 19(2):257–266CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Pandey AS, Daou BJ, Chaudhary N et al (2020) A combination of deferoxamine mesylate and minimally invasive surgery with hematoma lysis for evacuation of intracerebral hemorrhage. J Cereb Blood Flow Metab 40(2):456–458CrossRefPubMed Pandey AS, Daou BJ, Chaudhary N et al (2020) A combination of deferoxamine mesylate and minimally invasive surgery with hematoma lysis for evacuation of intracerebral hemorrhage. J Cereb Blood Flow Metab 40(2):456–458CrossRefPubMed
10.
Zurück zum Zitat Yu J, Yuan Q, Sun YR et al (2017) Effects of deferoxamine mesylate on hematoma and perihematoma edema after traumatic intracerebral hemorrhage. J Neurotrauma 34(19):2753–2759CrossRefPubMed Yu J, Yuan Q, Sun YR et al (2017) Effects of deferoxamine mesylate on hematoma and perihematoma edema after traumatic intracerebral hemorrhage. J Neurotrauma 34(19):2753–2759CrossRefPubMed
11.
Zurück zum Zitat Selim M, Yeatts S, Goldstein JN et al (2011) Deferoxamine mesylate in intracerebral hemorrhage investigators. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke 42(11):3067–3074CrossRefPubMedPubMedCentral Selim M, Yeatts S, Goldstein JN et al (2011) Deferoxamine mesylate in intracerebral hemorrhage investigators. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke 42(11):3067–3074CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Selim M (2010) Treatment with the iron chelator, deferoxamine mesylate, alters serum markers of oxidative stress in stroke patients. Transl Stroke Res 1(1):35–39CrossRefPubMed Selim M (2010) Treatment with the iron chelator, deferoxamine mesylate, alters serum markers of oxidative stress in stroke patients. Transl Stroke Res 1(1):35–39CrossRefPubMed
13.
14.
Zurück zum Zitat Selim M, Foster LD, Moy CS et al (2019) Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol 18(5):428–438CrossRefPubMedPubMedCentral Selim M, Foster LD, Moy CS et al (2019) Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol 18(5):428–438CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Qin Y, Li G, Sun Z et al (2019) Comparison of the effects of nimodipine and deferoxamine on brain injury in rat with subarachnoid hemorrhage. Behav Brain Res 367:194–200CrossRefPubMed Qin Y, Li G, Sun Z et al (2019) Comparison of the effects of nimodipine and deferoxamine on brain injury in rat with subarachnoid hemorrhage. Behav Brain Res 367:194–200CrossRefPubMed
16.
Zurück zum Zitat Hu S, Hua Y, Keep RF et al (2019) Deferoxamine therapy reduces brain hemin accumulation after intracerebral hemorrhage in piglets. Exp Neurol 318:244–250CrossRefPubMedPubMedCentral Hu S, Hua Y, Keep RF et al (2019) Deferoxamine therapy reduces brain hemin accumulation after intracerebral hemorrhage in piglets. Exp Neurol 318:244–250CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Guo X, Qi X, Li H et al (2019) Deferoxamine alleviates iron overload and brain injury in a rat model of brainstem hemorrhage. World Neurosurg 128:e895–e904CrossRefPubMed Guo X, Qi X, Li H et al (2019) Deferoxamine alleviates iron overload and brain injury in a rat model of brainstem hemorrhage. World Neurosurg 128:e895–e904CrossRefPubMed
18.
Zurück zum Zitat Li Q, Wan J, Lan X et al (2017) Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 37(9):3110–3123CrossRefPubMedPubMedCentral Li Q, Wan J, Lan X et al (2017) Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 37(9):3110–3123CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Lim-Hing K, Rincon F (2017) Secondary hematoma expansion and perihemorrhagic edema after intracerebral hemorrhage: from bench work to practical aspects. Front Neurol 8:74CrossRefPubMedPubMedCentral Lim-Hing K, Rincon F (2017) Secondary hematoma expansion and perihemorrhagic edema after intracerebral hemorrhage: from bench work to practical aspects. Front Neurol 8:74CrossRefPubMedPubMedCentral
20.
21.
Zurück zum Zitat Imai T, Tsuji S, Matsubara H et al (2021) Deferasirox, a trivalent iron chelator, ameliorates neuronal damage in hemorrhagic stroke models. Naunyn Schmiedebergs Arch Pharmacol 394(1):73–84CrossRefPubMed Imai T, Tsuji S, Matsubara H et al (2021) Deferasirox, a trivalent iron chelator, ameliorates neuronal damage in hemorrhagic stroke models. Naunyn Schmiedebergs Arch Pharmacol 394(1):73–84CrossRefPubMed
22.
Zurück zum Zitat Farr AC, Xiong MP (2021) Challenges and opportunities of deferoxamine delivery for treatment of Alzheimer’s disease, Parkinson’s disease, and intracerebral hemorrhage. Mol Pharm 18(2):593–609CrossRefPubMed Farr AC, Xiong MP (2021) Challenges and opportunities of deferoxamine delivery for treatment of Alzheimer’s disease, Parkinson’s disease, and intracerebral hemorrhage. Mol Pharm 18(2):593–609CrossRefPubMed
23.
Zurück zum Zitat Revel-Mouroz P, Viguier A, Cazzola V et al (2019) Acute ischaemic lesions are associated with cortical superficial siderosis in spontaneous intracerebral hemorrhage. Eur J Neurol 26(4):660–666CrossRefPubMed Revel-Mouroz P, Viguier A, Cazzola V et al (2019) Acute ischaemic lesions are associated with cortical superficial siderosis in spontaneous intracerebral hemorrhage. Eur J Neurol 26(4):660–666CrossRefPubMed
25.
Zurück zum Zitat Khattar NK, Sharma M, McCallum AP et al (2021) Intracranial hemorrhage in a young COVID-19 patient. Interdiscip Neurosurg 24:101078 Khattar NK, Sharma M, McCallum AP et al (2021) Intracranial hemorrhage in a young COVID-19 patient. Interdiscip Neurosurg 24:101078
Metadaten
Titel
Efficacy of desferrioxamine mesylate in intracerebral hematoma: a systemic review and meta-analysis
verfasst von
Kai Zhao
Jing Li
Qiang Zhang
Mingfei Yang
Publikationsdatum
25.08.2022
Verlag
Springer International Publishing
Erschienen in
Neurological Sciences / Ausgabe 12/2022
Print ISSN: 1590-1874
Elektronische ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-022-06324-0

Weitere Artikel der Ausgabe 12/2022

Neurological Sciences 12/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.