Skip to main content
Erschienen in: International Urology and Nephrology 7/2016

05.04.2016 | Urology - Original Paper

Electrospun PLLA nanofiber scaffolds for bladder smooth muscle reconstruction

verfasst von: Mohammad Ali Derakhshan, Gholamreza Pourmand, Jafar Ai, Hossein Ghanbari, Rassoul Dinarvand, Mohammad Naji, Reza Faridi-Majidi

Erschienen in: International Urology and Nephrology | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Urinary bladder may encounter several pathologic conditions that could lead to loss of its function. Tissue engineering using electrospun PLLA scaffolds is a promising approach to reconstructing or replacing the problematic bladder.

Methods

PLLA nanofibrous scaffolds were prepared utilizing single-nozzle electrospinning. The morphology and distribution of fiber diameters were investigated by scanning electron microscopy (SEM). Human bladder smooth muscle cells (hBSMCs) were isolated from biopsies and characterized by immunocytochemistry (ICC). Then, the cells were seeded on the PLLA nanofibers and Alamar Blue assay proved the biocompatibility of prepared scaffolds. Cell attachment on the nanofibers and also cell morphology over fibrous scaffolds were observed by SEM.

Results

The results indicated that electrospun PLLA scaffold provides proper conditions for hBSMCs to interact and attach efficiently to the fibers. Alamar Blue assay showed the compatibility of the obtained electrospun scaffolds with hBSMCs. Also, it was observed that the cells could achieve highly elongated morphology and their native aligned direction besides each other on the random electrospun scaffolds and in the absence of supporting aligned nanofibers.

Conclusion

Electrospun PLLA scaffold efficiently supports the hBSMCs growth and alignment and also has proper cell compatibility. This scaffold would be promising in urinary bladder tissue engineering.
Literatur
2.
Zurück zum Zitat Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011. CA Cancer J Clin 61(4):212–236CrossRefPubMed Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011. CA Cancer J Clin 61(4):212–236CrossRefPubMed
3.
Zurück zum Zitat Petrovic V, Stankovic J, Stefanovic V (2011) Tissue engineering of the urinary bladder: current concepts and future perspectives. Sci World J 11:1479–1488CrossRef Petrovic V, Stankovic J, Stefanovic V (2011) Tissue engineering of the urinary bladder: current concepts and future perspectives. Sci World J 11:1479–1488CrossRef
4.
Zurück zum Zitat McDougal WS (1992) Metabolic complications of urinary intestinal diversion. J Urol 147:1199–1208PubMed McDougal WS (1992) Metabolic complications of urinary intestinal diversion. J Urol 147:1199–1208PubMed
5.
Zurück zum Zitat Kaefer M, Hendren WH, Bauer SB, Goldenblatt P, Peters CA, Atala A, Retik AB (1998) Reservoir calculi: a comparison of reservoirs constructed from stomach and other enteric segments. J Urol 160(6):2187–2190CrossRefPubMed Kaefer M, Hendren WH, Bauer SB, Goldenblatt P, Peters CA, Atala A, Retik AB (1998) Reservoir calculi: a comparison of reservoirs constructed from stomach and other enteric segments. J Urol 160(6):2187–2190CrossRefPubMed
6.
Zurück zum Zitat Kaefer M, Tobin MS, Hendren WH, Bauer SB, Peters CA, Atala A, Colodny AH, Mandell J, Retik AB (1997) Continent urinary diversion: the Children’s Hospital experience. J Urol 157(4):1394–1399CrossRefPubMed Kaefer M, Tobin MS, Hendren WH, Bauer SB, Peters CA, Atala A, Colodny AH, Mandell J, Retik AB (1997) Continent urinary diversion: the Children’s Hospital experience. J Urol 157(4):1394–1399CrossRefPubMed
7.
Zurück zum Zitat Filmer RB, Spencer JR (1990) Malignancies in bladder augmentations and intestinal conduits. J Urol 143(4):671–678PubMed Filmer RB, Spencer JR (1990) Malignancies in bladder augmentations and intestinal conduits. J Urol 143(4):671–678PubMed
8.
Zurück zum Zitat Zhang Y, Kropp BP, Moore P, Cowan R, Furness PD, Kolligian ME, Frey P, Cheng EY (2000) Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J Urol 164(3):928–935CrossRefPubMed Zhang Y, Kropp BP, Moore P, Cowan R, Furness PD, Kolligian ME, Frey P, Cheng EY (2000) Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J Urol 164(3):928–935CrossRefPubMed
9.
Zurück zum Zitat Zhang Y, Frimberger D, Cheng EY, Hk Lin, Kropp BP (2006) Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int 98(5):1100–1105CrossRefPubMed Zhang Y, Frimberger D, Cheng EY, Hk Lin, Kropp BP (2006) Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int 98(5):1100–1105CrossRefPubMed
10.
Zurück zum Zitat Kajbafzadeh A-M, Payabvash S, Salmasi AH, Sadeghi Z, Elmi A, Vejdani K, Tavangar SM, Tajik P, Mahjoub F (2007) Time-dependent neovasculogenesis and regeneration of different bladder wall components in the bladder acellular matrix graft in rats. J Surg Res 139(2):189–202CrossRefPubMed Kajbafzadeh A-M, Payabvash S, Salmasi AH, Sadeghi Z, Elmi A, Vejdani K, Tavangar SM, Tajik P, Mahjoub F (2007) Time-dependent neovasculogenesis and regeneration of different bladder wall components in the bladder acellular matrix graft in rats. J Surg Res 139(2):189–202CrossRefPubMed
11.
Zurück zum Zitat Atala A, Vacanti J, Peters C, Mandell J, Retik A, Freeman M (1992) Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol 148:658–662PubMed Atala A, Vacanti J, Peters C, Mandell J, Retik A, Freeman M (1992) Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol 148:658–662PubMed
12.
Zurück zum Zitat Hoque ME, San WY, Wei F, Li S, Huang M-H, Vert M, Hutmacher DW (2009) Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Tissue Eng Part A 15(10):3013–3024CrossRefPubMed Hoque ME, San WY, Wei F, Li S, Huang M-H, Vert M, Hutmacher DW (2009) Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Tissue Eng Part A 15(10):3013–3024CrossRefPubMed
13.
Zurück zum Zitat Xu F, Wang Y, Jiang X, Tan H, Li H, Wang K-J (2012) Effects of different biomaterials: comparing the bladder smooth muscle cells on waterborne polyurethane or poly-lactic-co-glycolic acid membranes. Kaohsiung J Med Sci 28(1):10–15CrossRefPubMed Xu F, Wang Y, Jiang X, Tan H, Li H, Wang K-J (2012) Effects of different biomaterials: comparing the bladder smooth muscle cells on waterborne polyurethane or poly-lactic-co-glycolic acid membranes. Kaohsiung J Med Sci 28(1):10–15CrossRefPubMed
14.
Zurück zum Zitat Beachley V, Wen X (2010) Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci 35(7):868–892CrossRefPubMedPubMedCentral Beachley V, Wen X (2010) Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci 35(7):868–892CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39(5):862–890CrossRef Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39(5):862–890CrossRef
16.
Zurück zum Zitat Najafi-Taher R, Derakhshan MA, Faridi-Majidi R, Amani A (2015) Preparation of ascorbic acid/PVA-chitosan electrospun mat: a core/shell transdermal delivery system. RSC Adv 5:50462–50469CrossRef Najafi-Taher R, Derakhshan MA, Faridi-Majidi R, Amani A (2015) Preparation of ascorbic acid/PVA-chitosan electrospun mat: a core/shell transdermal delivery system. RSC Adv 5:50462–50469CrossRef
17.
Zurück zum Zitat Arvand M, Mirzaei E, Derakhshan MA, Kharrazi S, Sadroddiny E, Babapour M, Faridi-Majidi R (2015) Fabrication of antibacterial silver nanoparticle-modified chitosan fibers using Eucalyptus extract as a reducing agent. J Appl Polym Sci. doi:10.1002/app.42133 Arvand M, Mirzaei E, Derakhshan MA, Kharrazi S, Sadroddiny E, Babapour M, Faridi-Majidi R (2015) Fabrication of antibacterial silver nanoparticle-modified chitosan fibers using Eucalyptus extract as a reducing agent. J Appl Polym Sci. doi:10.​1002/​app.​42133
18.
Zurück zum Zitat Wei G, Li C, Fu Q, Xu Y, Li H (2015) Preparation of PCL/silk fibroin/collagen electrospun fiber for urethral reconstruction. Int Urol Nephrol 47(1):95–99CrossRefPubMed Wei G, Li C, Fu Q, Xu Y, Li H (2015) Preparation of PCL/silk fibroin/collagen electrospun fiber for urethral reconstruction. Int Urol Nephrol 47(1):95–99CrossRefPubMed
19.
Zurück zum Zitat Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, Southgate J (2006) Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials 27(16):3136–3146CrossRefPubMed Baker SC, Atkin N, Gunning PA, Granville N, Wilson K, Wilson D, Southgate J (2006) Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials 27(16):3136–3146CrossRefPubMed
20.
Zurück zum Zitat McManus M, Boland E, Sell S, Bowen W, Koo H, Simpson D, Bowlin G (2007) Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. Biomed Mater 2(4):257CrossRefPubMed McManus M, Boland E, Sell S, Bowen W, Koo H, Simpson D, Bowlin G (2007) Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. Biomed Mater 2(4):257CrossRefPubMed
21.
Zurück zum Zitat Horst M, Madduri S, Milleret V, Sulser T, Gobet R, Eberli D (2013) A bilayered hybrid microfibrous PLGA—acellular matrix scaffold for hollow organ tissue engineering. Biomaterials 34(5):1537–1545CrossRefPubMed Horst M, Madduri S, Milleret V, Sulser T, Gobet R, Eberli D (2013) A bilayered hybrid microfibrous PLGA—acellular matrix scaffold for hollow organ tissue engineering. Biomaterials 34(5):1537–1545CrossRefPubMed
22.
Zurück zum Zitat Del Costantino G, Alberto V, Guido B, Vincenza M, Angelo S, Alessandro Z, Alessandra B, Massimo P (2013) Evaluation of electrospun bioresorbable scaffolds for tissue-engineered urinary bladder augmentation. Biomed Mater 8(4):045013CrossRef Del Costantino G, Alberto V, Guido B, Vincenza M, Angelo S, Alessandro Z, Alessandra B, Massimo P (2013) Evaluation of electrospun bioresorbable scaffolds for tissue-engineered urinary bladder augmentation. Biomed Mater 8(4):045013CrossRef
23.
Zurück zum Zitat Sharifiaghdas F, Naji M, Sarhangnejad R, Rajabi-Zeleti S, Mirzadeh H, Zandi M, Saeed M (2014) Comparing supportive properties of poly lactic-co-glycolic acid (PLGA), PLGA/collagen and human amniotic membrane for human urothelial and smooth muscle cells engineering. Urol J 11(3):1620–1628PubMed Sharifiaghdas F, Naji M, Sarhangnejad R, Rajabi-Zeleti S, Mirzadeh H, Zandi M, Saeed M (2014) Comparing supportive properties of poly lactic-co-glycolic acid (PLGA), PLGA/collagen and human amniotic membrane for human urothelial and smooth muscle cells engineering. Urol J 11(3):1620–1628PubMed
24.
Zurück zum Zitat Huang JW, Xu YM, Li ZB, Murphy SV, Zhao W, Liu QQ, Zhu WD, Fu Q, Zhang YP, Song LJ (2015) Tissue performance of bladder following stretched electrospun silk fibroin matrix and bladder acellular matrix implantation in a rabbit model. J Biomed Mater Res A 104(1):9–16CrossRefPubMed Huang JW, Xu YM, Li ZB, Murphy SV, Zhao W, Liu QQ, Zhu WD, Fu Q, Zhang YP, Song LJ (2015) Tissue performance of bladder following stretched electrospun silk fibroin matrix and bladder acellular matrix implantation in a rabbit model. J Biomed Mater Res A 104(1):9–16CrossRefPubMed
25.
Zurück zum Zitat Shakhssalim N, Rasouli J, Moghadasali R, Aghdas FS, Naji M, Soleimani M (2013) Bladder smooth muscle cells interaction and proliferation on PCL/PLLA electrospun nanofibrous scaffold. Int J Artif Organs 36(2):113–120CrossRefPubMed Shakhssalim N, Rasouli J, Moghadasali R, Aghdas FS, Naji M, Soleimani M (2013) Bladder smooth muscle cells interaction and proliferation on PCL/PLLA electrospun nanofibrous scaffold. Int J Artif Organs 36(2):113–120CrossRefPubMed
26.
Zurück zum Zitat Ahvaz HH, Soleimani M, Mobasheri H, Bakhshandeh B, Shakhssalim N, Soudi S, Hafizi M, Vasei M, Dodel M (2012) Effective combination of hydrostatic pressure and aligned nanofibrous scaffolds on human bladder smooth muscle cells: implication for bladder tissue engineering. J Mater Sci Mater Med 23(9):2281–2290CrossRefPubMed Ahvaz HH, Soleimani M, Mobasheri H, Bakhshandeh B, Shakhssalim N, Soudi S, Hafizi M, Vasei M, Dodel M (2012) Effective combination of hydrostatic pressure and aligned nanofibrous scaffolds on human bladder smooth muscle cells: implication for bladder tissue engineering. J Mater Sci Mater Med 23(9):2281–2290CrossRefPubMed
27.
Zurück zum Zitat Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482CrossRef Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482CrossRef
28.
Zurück zum Zitat Shabani I, Haddadi-Asl V, Seyedjafari E, Soleimani M (2012) Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique. Biochem Biophys Res Commun 423(1):50–54CrossRefPubMed Shabani I, Haddadi-Asl V, Seyedjafari E, Soleimani M (2012) Cellular infiltration on nanofibrous scaffolds using a modified electrospinning technique. Biochem Biophys Res Commun 423(1):50–54CrossRefPubMed
29.
Zurück zum Zitat Lin C-C, Fu S-J, Lin Y-C, Yang I-K, Gu Y (2014) Chitosan-coated electrospun PLA fibers for rapid mineralization of calcium phosphate. Int J Biol Macromol 68:39–47CrossRefPubMed Lin C-C, Fu S-J, Lin Y-C, Yang I-K, Gu Y (2014) Chitosan-coated electrospun PLA fibers for rapid mineralization of calcium phosphate. Int J Biol Macromol 68:39–47CrossRefPubMed
30.
Zurück zum Zitat Haroosh H, Chaudhary D, Dong Y, Hawkins B (2011) Electrospun PLA: PCL/halloysite nanotube nanocomposites fibers for drug delivery. In: 19th international conference on processing and fabrication of advanced materials (PFAM XIX). The University of Auckland, Auckland, pp 847–858 Haroosh H, Chaudhary D, Dong Y, Hawkins B (2011) Electrospun PLA: PCL/halloysite nanotube nanocomposites fibers for drug delivery. In: 19th international conference on processing and fabrication of advanced materials (PFAM XIX). The University of Auckland, Auckland, pp 847–858
31.
Zurück zum Zitat McCullen SD, Stano KL, Stevens DR, Roberts WA, Monteiro-Riviere NA, Clarke LI, Gorga RE (2007) Development, optimization, and characterization of electrospun poly (lactic acid) nanofibers containing multi-walled carbon nanotubes. J Appl Polym Sci 105(3):1668–1678CrossRef McCullen SD, Stano KL, Stevens DR, Roberts WA, Monteiro-Riviere NA, Clarke LI, Gorga RE (2007) Development, optimization, and characterization of electrospun poly (lactic acid) nanofibers containing multi-walled carbon nanotubes. J Appl Polym Sci 105(3):1668–1678CrossRef
32.
Zurück zum Zitat Casasola R, Thomas NL, Trybala A, Georgiadou S (2014) Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer 55(18):4728–4737CrossRef Casasola R, Thomas NL, Trybala A, Georgiadou S (2014) Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer 55(18):4728–4737CrossRef
33.
Zurück zum Zitat Brown AL, Brook-Allred TT, Waddell JE, White J, Werkmeister JA, Ramshaw JA, Bagli DJ, Woodhouse KA (2005) Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle–urothelial cell interactions. Biomaterials 26(5):529–543CrossRefPubMed Brown AL, Brook-Allred TT, Waddell JE, White J, Werkmeister JA, Ramshaw JA, Bagli DJ, Woodhouse KA (2005) Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle–urothelial cell interactions. Biomaterials 26(5):529–543CrossRefPubMed
34.
Zurück zum Zitat Nivison-Smith L, Weiss AS (2012) Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers. J Biomed Mater Res A 100(1):155–161CrossRefPubMed Nivison-Smith L, Weiss AS (2012) Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers. J Biomed Mater Res A 100(1):155–161CrossRefPubMed
35.
Zurück zum Zitat Wang Y, Shi H, Qiao J, Tian Y, Wu M, Zhang W, Lin Y, Niu Z, Huang Y (2014) Electrospun tubular scaffold with circumferentially aligned nanofibers for regulating smooth muscle cell growth. ACS Appl Mater Interfaces 6(4):2958–2962CrossRefPubMed Wang Y, Shi H, Qiao J, Tian Y, Wu M, Zhang W, Lin Y, Niu Z, Huang Y (2014) Electrospun tubular scaffold with circumferentially aligned nanofibers for regulating smooth muscle cell growth. ACS Appl Mater Interfaces 6(4):2958–2962CrossRefPubMed
36.
37.
Zurück zum Zitat Jia L, Prabhakaran MP, Qin X, Ramakrishna S (2014) Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers. J Biomater Appl 29:364–377CrossRefPubMed Jia L, Prabhakaran MP, Qin X, Ramakrishna S (2014) Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers. J Biomater Appl 29:364–377CrossRefPubMed
Metadaten
Titel
Electrospun PLLA nanofiber scaffolds for bladder smooth muscle reconstruction
verfasst von
Mohammad Ali Derakhshan
Gholamreza Pourmand
Jafar Ai
Hossein Ghanbari
Rassoul Dinarvand
Mohammad Naji
Reza Faridi-Majidi
Publikationsdatum
05.04.2016
Verlag
Springer Netherlands
Erschienen in
International Urology and Nephrology / Ausgabe 7/2016
Print ISSN: 0301-1623
Elektronische ISSN: 1573-2584
DOI
https://doi.org/10.1007/s11255-016-1259-2

Weitere Artikel der Ausgabe 7/2016

International Urology and Nephrology 7/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.