Skip to main content
Erschienen in: Brain Structure and Function 1/2017

10.05.2016 | Original Article

Embryonic interneurons from the medial, but not the caudal ganglionic eminence trigger ocular dominance plasticity in adult mice

verfasst von: Marcel Isstas, Manuel Teichert, Jürgen Bolz, Konrad Lehmann

Erschienen in: Brain Structure and Function | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

The maturation of cortical inhibition provided by parvalbumin-containing basket cells derived from the medial ganglionic eminence (MGE) is a key event in starting the enhanced visual cortical plasticity during the critical period. Although it is generally assumed that a further increase in inhibition closes the critical period again, it was recently shown that embryonic interneurons derived from the MGE can induce an additional, artificial critical period when injected into the visual cortex of young mice. It has, however, remained open whether this effect was indeed specific for MGE-derived cells, and whether critical period-like plasticity could also be induced in fully adult animals. To clarify these issues, we injected explants from either the MGE or the caudal ganglionic eminence (CGE) into the visual cortices of fully adult mice, and performed monocular deprivation 33 days later for 4 days. Animals implanted with MGE cells, but not with CGE cells, showed marked ocular dominance plasticity. Immunohistochemistry confirmed that the injected cells from both sources migrated far in the host cortex, that most developed into neurons producing GABA, and that only cells from the MGE expressed parvalbumin. Thus, our results confirm that the plasticity-inducing effect of embryonic interneurons is specific for cells from the MGE, and is independent of the host animal’s age.
Literatur
Zurück zum Zitat Atallah BV, Bruns W, Carandini M, Scanziani M (2012) Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73:159–170CrossRefPubMedPubMedCentral Atallah BV, Bruns W, Carandini M, Scanziani M (2012) Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73:159–170CrossRefPubMedPubMedCentral
Zurück zum Zitat Blakemore C, Garey LJ, Vital-Durand F (1978) The physiological effects of monocular deprivation and their reversal in the monkey’s visual cortex. J Physiol 283:223–262CrossRefPubMedPubMedCentral Blakemore C, Garey LJ, Vital-Durand F (1978) The physiological effects of monocular deprivation and their reversal in the monkey’s visual cortex. J Physiol 283:223–262CrossRefPubMedPubMedCentral
Zurück zum Zitat Cellerino A, Siciliano R, Domenici L, Maffei L (1992) Parvalbumin immunoreactivity: a reliable marker for the effects of monocular deprivation in the rat visual cortex. Neuroscience 51:749–753CrossRefPubMed Cellerino A, Siciliano R, Domenici L, Maffei L (1992) Parvalbumin immunoreactivity: a reliable marker for the effects of monocular deprivation in the rat visual cortex. Neuroscience 51:749–753CrossRefPubMed
Zurück zum Zitat Daw NW, Fox K, Sato H, Czepita D (1992) Critical period for monocular deprivation in the cat visual cortex. J Neurophysiol 67:197–202PubMed Daw NW, Fox K, Sato H, Czepita D (1992) Critical period for monocular deprivation in the cat visual cortex. J Neurophysiol 67:197–202PubMed
Zurück zum Zitat Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vis Res 34:709–720CrossRefPubMed Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vis Res 34:709–720CrossRefPubMed
Zurück zum Zitat Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 16:3274–3286PubMed Gordon JA, Stryker MP (1996) Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 16:3274–3286PubMed
Zurück zum Zitat Hanover JL, Huang ZJ, Tonegawa S, Stryker MP (1999) Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J Neurosci 19:RC40PubMedPubMedCentral Hanover JL, Huang ZJ, Tonegawa S, Stryker MP (1999) Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J Neurosci 19:RC40PubMedPubMedCentral
Zurück zum Zitat Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, Kash SF (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282:1504–1508CrossRefPubMedPubMedCentral Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, Kash SF (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282:1504–1508CrossRefPubMedPubMedCentral
Zurück zum Zitat Huang ZJ et al (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755 (pii:S0092-8674(00)81509-3) CrossRefPubMed Huang ZJ et al (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755 (pii:S0092-8674(00)81509-3) CrossRefPubMed
Zurück zum Zitat Inan M, Welagen J, Anderson SA (2012) Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Cereb Cortex 22:820–827. doi:10.1093/cercor/bhr148 CrossRefPubMed Inan M, Welagen J, Anderson SA (2012) Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Cereb Cortex 22:820–827. doi:10.​1093/​cercor/​bhr148 CrossRefPubMed
Zurück zum Zitat Kalatsky VA, Stryker MP (2003) New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38:529–545 (pii:S0896627303002861) CrossRefPubMed Kalatsky VA, Stryker MP (2003) New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38:529–545 (pii:S0896627303002861) CrossRefPubMed
Zurück zum Zitat Lehmann K, Isstas M, Teichert M, Knölker V, Bolz J (2014) Cells from the medial, but not the caudal ganglionic eminence induce ocular dominance plasticity in adult mice. In: FENS forum 2015, Milan, p 2817 Lehmann K, Isstas M, Teichert M, Knölker V, Bolz J (2014) Cells from the medial, but not the caudal ganglionic eminence induce ocular dominance plasticity in adult mice. In: FENS forum 2015, Milan, p 2817
Zurück zum Zitat Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A (1999) Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci 2:461–466. doi:10.1038/8131 CrossRefPubMed Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A (1999) Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci 2:461–466. doi:10.​1038/​8131 CrossRefPubMed
Zurück zum Zitat Zimmer G, Rudolph J, Landmann J, Gerstmann K, Steinecke A, Gampe C, Bolz J (2011) Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence- and preoptic area-derived interneurons in the deep and superficial migratory stream. J Neurosci 31:18364–18380. doi:10.1523/JNEUROSCI.4690-11.2011 CrossRefPubMed Zimmer G, Rudolph J, Landmann J, Gerstmann K, Steinecke A, Gampe C, Bolz J (2011) Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence- and preoptic area-derived interneurons in the deep and superficial migratory stream. J Neurosci 31:18364–18380. doi:10.​1523/​JNEUROSCI.​4690-11.​2011 CrossRefPubMed
Metadaten
Titel
Embryonic interneurons from the medial, but not the caudal ganglionic eminence trigger ocular dominance plasticity in adult mice
verfasst von
Marcel Isstas
Manuel Teichert
Jürgen Bolz
Konrad Lehmann
Publikationsdatum
10.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 1/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1232-y

Weitere Artikel der Ausgabe 1/2017

Brain Structure and Function 1/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.