Skip to main content
main-content

01.12.2018 | Research | Ausgabe 1/2018 Open Access

Critical Care 1/2018

Estimation of the diaphragm neuromuscular efficiency index in mechanically ventilated critically ill patients

Zeitschrift:
Critical Care > Ausgabe 1/2018
Autoren:
Diana Jansen, Annemijn H. Jonkman, Lisanne Roesthuis, Suvarna Gadgil, Johannes G. van der Hoeven, Gert-Jan J. Scheffer, Armand Girbes, Jonne Doorduin, Christer S. Sinderby, Leo M. A. Heunks
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13054-018-2172-0) contains supplementary material, which is available to authorized users.

Abstract

Background

Diaphragm dysfunction develops frequently in ventilated intensive care unit (ICU) patients. Both disuse atrophy (ventilator over-assist) and high respiratory muscle effort (ventilator under-assist) seem to be involved. A strong rationale exists to monitor diaphragm effort and titrate support to maintain respiratory muscle activity within physiological limits. Diaphragm electromyography is used to quantify breathing effort and has been correlated with transdiaphragmatic pressure and esophageal pressure. The neuromuscular efficiency index (NME) can be used to estimate inspiratory effort, however its repeatability has not been investigated yet. Our goal is to evaluate NME repeatability during an end-expiratory occlusion (NMEoccl) and its use to estimate the pressure generated by the inspiratory muscles (Pmus).

Methods

This is a prospective cohort study, performed in a medical-surgical ICU. A total of 31 adult patients were included, all ventilated in neurally adjusted ventilator assist (NAVA) mode with an electrical activity of the diaphragm (EAdi) catheter in situ. At four time points within 72 h five repeated end-expiratory occlusion maneuvers were performed. NMEoccl was calculated by delta airway pressure (ΔPaw)/ΔEAdi and was used to estimate Pmus. The repeatability coefficient (RC) was calculated to investigate the NMEoccl variability.

Results

A total number of 459 maneuvers were obtained. At time T = 0 mean NMEoccl was 1.22 ± 0.86 cmH2O/μV with a RC of 82.6%. This implies that when NMEoccl is 1.22 cmH2O/μV, it is expected with a probability of 95% that the subsequent measured NMEoccl will be between 2.22 and 0.22 cmH2O/μV. Additional EAdi waveform analysis to correct for non-physiological appearing waveforms, did not improve NMEoccl variability. Selecting three out of five occlusions with the lowest variability reduced the RC to 29.8%.

Conclusions

Repeated measurements of NMEoccl exhibit high variability, limiting the ability of a single NMEoccl maneuver to estimate neuromuscular efficiency and therefore the pressure generated by the inspiratory muscles based on EAdi.
Zusatzmaterial
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Critical Care 1/2018 Zur Ausgabe

Neu im Fachgebiet AINS

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update AINS und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise