Skip to main content
Erschienen in: Zeitschrift für Epileptologie 1/2014

01.02.2014 | Leitthema

Evaluation von Parametern der Hirnstimulation

Tierexperimentelle Epilepsiemodelle

verfasst von: K.H. Somerlik-Fuchs, T. Stieglitz, A. Schulze-Bonhage

Erschienen in: Clinical Epileptology | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die Hirnstimulation hat das Potenzial, Linderung bei bislang untherapierbaren neurologischen Krankheiten zu erzielen. Die Erfolge bei der Behandlung von Bewegungsstörungen haben dazu beigetragen, dass viele Forschungsgruppen die elektrische Stimulation weiteruntersuchen und ihren Einsatz u. a. auch für die Therapie von Epilepsien prüfen. Die Arbeit mit Tiermodellen ist dabei essenziell. Da die Effekte elektrischer Stimulationen auf Hirngewebe sehr komplex sind und der mögliche Parameterraum groß ist, können optimale Paradigmen nur durch tierexperimentelle Studien systematisch entwickelt werden. Angesichts der multifaktoriellen Ätiologie von Epilepsien können unterschiedliche Modelle dazu dienen, die Krankheit bestmöglich nachzubilden. Diese Übersichtsarbeit stellt verschiedene Epilepsiemodelle dar, die zur Erprobung von Stimulationstherapien verwendet wurden, und erörtert, welche Stimulationsparadigmen das größte Potenzial gezeigt haben.
Literatur
1.
Zurück zum Zitat Bantli H, Bloedel JR, Anderson G et al (1978) Effects of stimulating the cerebellar surface on the activity in penicillin foci. J Neurosurg 48:69–84PubMedCrossRef Bantli H, Bloedel JR, Anderson G et al (1978) Effects of stimulating the cerebellar surface on the activity in penicillin foci. J Neurosurg 48:69–84PubMedCrossRef
2.
Zurück zum Zitat Bragin A, Engel J, Wilson CL et al (1999) Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 40:127–137PubMedCrossRef Bragin A, Engel J, Wilson CL et al (1999) Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 40:127–137PubMedCrossRef
3.
Zurück zum Zitat Berényi A, Belluscio M, Mao D, Buzsáki G (2012) Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337:735–737PubMedCrossRef Berényi A, Belluscio M, Mao D, Buzsáki G (2012) Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337:735–737PubMedCrossRef
4.
Zurück zum Zitat Cordeiro JG, Somerlik KH, Cordeiro KK et al (2013) Modulation of excitability by continuous low- and high-frequency stimulation in fully hippocampal kindled rats. Epilepsy Res. http://dx.doi.org/10.1016/j.eplepsyres.2013.08.014 Cordeiro JG, Somerlik KH, Cordeiro KK et al (2013) Modulation of excitability by continuous low- and high-frequency stimulation in fully hippocampal kindled rats. Epilepsy Res. http://​dx.​doi.​org/​10.​1016/​j.​eplepsyres.​2013.​08.​014
5.
Zurück zum Zitat Cortez MA, Snead OC Ill (2006) Pharmacologic models of generalized absence seizures in rodents. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 111–126 Cortez MA, Snead OC Ill (2006) Pharmacologic models of generalized absence seizures in rodents. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 111–126
6.
Zurück zum Zitat Cuellar-Herrera M, Neri-Bazan L, Rocha LL (2006) Behavioral effects of high frequency electrical stimulation of the hippocampus on electrical kindling in rats. Epilepsy Res 72:10–17PubMedCrossRef Cuellar-Herrera M, Neri-Bazan L, Rocha LL (2006) Behavioral effects of high frequency electrical stimulation of the hippocampus on electrical kindling in rats. Epilepsy Res 72:10–17PubMedCrossRef
7.
Zurück zum Zitat Dow RS, Fernández-Guradiola A, Manni E (1962) The influence of the cerebellum on experimental epilepsy. Electroencephalogr Clin Neurophysiol 14:383–398PubMedCrossRef Dow RS, Fernández-Guradiola A, Manni E (1962) The influence of the cerebellum on experimental epilepsy. Electroencephalogr Clin Neurophysiol 14:383–398PubMedCrossRef
8.
Zurück zum Zitat Dow RS, Fernández-Guradiola A, Manni E (1962) The production of cobalt experimental epilepsy in rat. Electroencephalogr Clin Neurophysiol 14:399–407PubMedCrossRef Dow RS, Fernández-Guradiola A, Manni E (1962) The production of cobalt experimental epilepsy in rat. Electroencephalogr Clin Neurophysiol 14:399–407PubMedCrossRef
9.
Zurück zum Zitat Dudek FE, Clark S, Williams PA, Grabenstatter HL (2006) Kainate-induced status epilepticus: a chronic model of acquired epilepsy. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 415–432 Dudek FE, Clark S, Williams PA, Grabenstatter HL (2006) Kainate-induced status epilepticus: a chronic model of acquired epilepsy. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 415–432
10.
Zurück zum Zitat Durand D (1986) Electrical stimulation can inhibit synchronized neuronal activity. Brain Res 382:139–144PubMedCrossRef Durand D (1986) Electrical stimulation can inhibit synchronized neuronal activity. Brain Res 382:139–144PubMedCrossRef
11.
Zurück zum Zitat Durand DM, Jensen A, Bikson M (2006) Suppression of neural activity with high frequency stimulation. Proc 28th IEEE EMBS Ann Int Conf New York City, USA Durand DM, Jensen A, Bikson M (2006) Suppression of neural activity with high frequency stimulation. Proc 28th IEEE EMBS Ann Int Conf New York City, USA
12.
Zurück zum Zitat Feddersen B, Vercueil L, Noachtar S et al (2007) Controlling seizures is not controlling epilepsy: a parametric study of deep brain stimulation for epilepsy. Neurobiol Dis 27:292–300PubMedCrossRef Feddersen B, Vercueil L, Noachtar S et al (2007) Controlling seizures is not controlling epilepsy: a parametric study of deep brain stimulation for epilepsy. Neurobiol Dis 27:292–300PubMedCrossRef
14.
Zurück zum Zitat Gaito J, Nobrega JN, Gaito ST (1980) Interference effect of 3 Hz brain stimulation on kindling behavior induced by 60 Hz stimulation. Epilepsia 21:73–84PubMedCrossRef Gaito J, Nobrega JN, Gaito ST (1980) Interference effect of 3 Hz brain stimulation on kindling behavior induced by 60 Hz stimulation. Epilepsia 21:73–84PubMedCrossRef
15.
Zurück zum Zitat Ghai RS, Bikson M, Durand DM (2000) Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J Neurophysiol 84:274–280PubMed Ghai RS, Bikson M, Durand DM (2000) Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J Neurophysiol 84:274–280PubMed
16.
Zurück zum Zitat Ghorbani P, Mohammad-Zadeh M, Mirnajafi-Zadeh J, Fathollahi Y (2007) Effect of different patterns of low-frequency stimulation on piriform cortex kindled seizures. Neurosci Lett 425:162–166PubMedCrossRef Ghorbani P, Mohammad-Zadeh M, Mirnajafi-Zadeh J, Fathollahi Y (2007) Effect of different patterns of low-frequency stimulation on piriform cortex kindled seizures. Neurosci Lett 425:162–166PubMedCrossRef
17.
Zurück zum Zitat Goddard GV (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021PubMedCrossRef Goddard GV (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021PubMedCrossRef
18.
Zurück zum Zitat Goddard G, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330PubMedCrossRef Goddard G, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330PubMedCrossRef
19.
Zurück zum Zitat Godlevskii LS, Stepanenko KL, Lobasyuk BA et al (2004) The effects of electrical stimulation of the paleocerebellar cortex on penicillin-induced convulsive activity in rats. Neurosci Behav Physiol 34:797–802PubMedCrossRef Godlevskii LS, Stepanenko KL, Lobasyuk BA et al (2004) The effects of electrical stimulation of the paleocerebellar cortex on penicillin-induced convulsive activity in rats. Neurosci Behav Physiol 34:797–802PubMedCrossRef
20.
Zurück zum Zitat Jahangiri A, Durand DM (2011) Phase resetting analysis of high potassium epileptiform activity in CA3 region of the rat hippocampus. Int J Neural Syst 21:127–138PubMedCrossRef Jahangiri A, Durand DM (2011) Phase resetting analysis of high potassium epileptiform activity in CA3 region of the rat hippocampus. Int J Neural Syst 21:127–138PubMedCrossRef
21.
Zurück zum Zitat Jefferys JG, Walker MC (2006) Tetanus toxin model of focal epilepsy. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 407–414 Jefferys JG, Walker MC (2006) Tetanus toxin model of focal epilepsy. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 407–414
22.
Zurück zum Zitat Kalitzin S, Velis D, Suffczynski P et al (2005) Electrical brain-stimulation paradigm for estimating the seizure onset site and the time to ictal transition in temporal lobe epilepsy. Clin Neurophysiol 116:718–728PubMedCrossRef Kalitzin S, Velis D, Suffczynski P et al (2005) Electrical brain-stimulation paradigm for estimating the seizure onset site and the time to ictal transition in temporal lobe epilepsy. Clin Neurophysiol 116:718–728PubMedCrossRef
23.
Zurück zum Zitat Lado FA (2006) Chronic bilateral stimulation of the anterior thalamus of kainate-treated rats increases seizure frequency. Epilepsia 47:27–32PubMedCrossRef Lado FA (2006) Chronic bilateral stimulation of the anterior thalamus of kainate-treated rats increases seizure frequency. Epilepsia 47:27–32PubMedCrossRef
24.
Zurück zum Zitat La Grutta V, Sabatino M (1988) Focal hippocampal epilepsy: effect of caudate stimulation. Exp Neurol 99:38–49CrossRef La Grutta V, Sabatino M (1988) Focal hippocampal epilepsy: effect of caudate stimulation. Exp Neurol 99:38–49CrossRef
25.
Zurück zum Zitat Lian J, Bikson M, Sciortino C et al (2003) Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. J Physiol 547:427–434PubMedCrossRef Lian J, Bikson M, Sciortino C et al (2003) Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. J Physiol 547:427–434PubMedCrossRef
26.
Zurück zum Zitat Liu H, Yang A, Meng D et al (2012) Stimulation of the anterior nucleus of the thalamus induces changes in amino acids in the hippocampi of epileptic rats. Brain Res 477:37–44CrossRef Liu H, Yang A, Meng D et al (2012) Stimulation of the anterior nucleus of the thalamus induces changes in amino acids in the hippocampi of epileptic rats. Brain Res 477:37–44CrossRef
27.
Zurück zum Zitat Liu H, Yang A, Meng D et al (2012) Effect of anterior nucleus of thalamus stimulation on glucose metabolism in hippocampus of epileptic rats. Chin Med J 125:3081–3086PubMed Liu H, Yang A, Meng D et al (2012) Effect of anterior nucleus of thalamus stimulation on glucose metabolism in hippocampus of epileptic rats. Chin Med J 125:3081–3086PubMed
28.
Zurück zum Zitat Löscher W (2011) Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20:359–368PubMedCrossRef Löscher W (2011) Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20:359–368PubMedCrossRef
29.
Zurück zum Zitat Lüttjohann A, Luijtelaar G van (2013) Thalamic stimulation in absence epilepsy. Epilepsy Res 106:136–145PubMedCrossRef Lüttjohann A, Luijtelaar G van (2013) Thalamic stimulation in absence epilepsy. Epilepsy Res 106:136–145PubMedCrossRef
30.
Zurück zum Zitat Magdaleno-Madrigal VM, Valdés-Cruz A, Martínez-Vargas et al (2002) Effect of electrical stimulation of the nucleus of the solitary tract on the development of electrical amygdaloid kindling in the cat. Epilepsia 43:964–969PubMedCrossRef Magdaleno-Madrigal VM, Valdés-Cruz A, Martínez-Vargas et al (2002) Effect of electrical stimulation of the nucleus of the solitary tract on the development of electrical amygdaloid kindling in the cat. Epilepsia 43:964–969PubMedCrossRef
31.
Zurück zum Zitat McIntyre DC (2006) The kindling phenomenon. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 351–363 McIntyre DC (2006) The kindling phenomenon. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 351–363
32.
Zurück zum Zitat Mirski MA, Rossel LA, Terry JB, Fischer RS (1997) Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy Res 28:89–100PubMedCrossRef Mirski MA, Rossel LA, Terry JB, Fischer RS (1997) Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy Res 28:89–100PubMedCrossRef
33.
Zurück zum Zitat Mirski MA, Ziai WC, Chiang J et al (2009) Anticonvulsant serotonergic and deep brain stimulation in anterior thalamus. Seizure 18:64–70PubMedCrossRef Mirski MA, Ziai WC, Chiang J et al (2009) Anticonvulsant serotonergic and deep brain stimulation in anterior thalamus. Seizure 18:64–70PubMedCrossRef
34.
Zurück zum Zitat Mohammad-Zadeh M, Mirnajafi-Zadeh J, Fathollahi Y et al (2007) Effect of low frequency stimulation of perforant path on kindling rate and synaptic transmission in the dentate gyrus during kindling acquisition in rats. Epilepsy Res 75:154–161PubMedCrossRef Mohammad-Zadeh M, Mirnajafi-Zadeh J, Fathollahi Y et al (2007) Effect of low frequency stimulation of perforant path on kindling rate and synaptic transmission in the dentate gyrus during kindling acquisition in rats. Epilepsy Res 75:154–161PubMedCrossRef
35.
Zurück zum Zitat Mutani R, Fariello R (1969) Effect of low frequency caudate stimulation on the EEG of epileptic neocortex. Brain Res 14:749–753PubMedCrossRef Mutani R, Fariello R (1969) Effect of low frequency caudate stimulation on the EEG of epileptic neocortex. Brain Res 14:749–753PubMedCrossRef
36.
Zurück zum Zitat Nadler JV, Perry BW, Cotman CW (1978) Intraventricular kainic acid preferentially destroys hippocampal cells. Nature 271:676–677PubMedCrossRef Nadler JV, Perry BW, Cotman CW (1978) Intraventricular kainic acid preferentially destroys hippocampal cells. Nature 271:676–677PubMedCrossRef
37.
Zurück zum Zitat Nanobashvili Z, Chachua T, Nanobashvili A et al (2003) Suppression of limbic motor seizures by electrical stimulation in thalamic reticular nucleus. Exp Neurol 181:224–230PubMedCrossRef Nanobashvili Z, Chachua T, Nanobashvili A et al (2003) Suppression of limbic motor seizures by electrical stimulation in thalamic reticular nucleus. Exp Neurol 181:224–230PubMedCrossRef
38.
Zurück zum Zitat Nelson TS, Suhr CL, Freestone DR et al (2011) Closed-loop seizure control with very high frequency electrical stimulation at seizure onset in the GAERS model of absence epilepsy. Int J Neural Syst 21:163–173PubMedCrossRef Nelson TS, Suhr CL, Freestone DR et al (2011) Closed-loop seizure control with very high frequency electrical stimulation at seizure onset in the GAERS model of absence epilepsy. Int J Neural Syst 21:163–173PubMedCrossRef
39.
Zurück zum Zitat Nishida N, Huang ZL, Mikuni N et al (2007) Deep brain stimulation of the posterior hypothalamus activates the histaminergic system to exert antiepileptic effect in rat pentylenetetrazol model. Exp Neurol 205:132–144PubMedCrossRef Nishida N, Huang ZL, Mikuni N et al (2007) Deep brain stimulation of the posterior hypothalamus activates the histaminergic system to exert antiepileptic effect in rat pentylenetetrazol model. Exp Neurol 205:132–144PubMedCrossRef
40.
Zurück zum Zitat Racine RJ (1972) Modification of seizure activity by electrical stimulation: II motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294PubMedCrossRef Racine RJ (1972) Modification of seizure activity by electrical stimulation: II motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294PubMedCrossRef
41.
Zurück zum Zitat Reimer GR, Grimm RJ, Dow RS (1967) Effects of cerebellar stimulation on cobalt-induced epilepsy in the cat. Electroencephalogr Clin Neurophysiol 23:456–462PubMedCrossRef Reimer GR, Grimm RJ, Dow RS (1967) Effects of cerebellar stimulation on cobalt-induced epilepsy in the cat. Electroencephalogr Clin Neurophysiol 23:456–462PubMedCrossRef
42.
Zurück zum Zitat Rubio C, Custodio V, Juárez F, Paz C (2004) Stimulation of the superior cerebellar peduncle during the development of amygdaloid kindling in rats. Brain Res 1010:151–155PubMedCrossRef Rubio C, Custodio V, Juárez F, Paz C (2004) Stimulation of the superior cerebellar peduncle during the development of amygdaloid kindling in rats. Brain Res 1010:151–155PubMedCrossRef
43.
Zurück zum Zitat Sabatino M, La Grutta V, Ferraro G, La Grutta G (1986) Relations between basal ganglia and hippocampus: action of substantia nigra and pallidum. Rev Electroencephalogr Neurophysiol Clin 16:179–190PubMedCrossRef Sabatino M, La Grutta V, Ferraro G, La Grutta G (1986) Relations between basal ganglia and hippocampus: action of substantia nigra and pallidum. Rev Electroencephalogr Neurophysiol Clin 16:179–190PubMedCrossRef
44.
Zurück zum Zitat Sabatino M, Savatteri V, Liberti G et al (1986) Effects of substantia nigra and pallidum on hippocampal interictal activity in the cat. Neurosci Lett 64:293–298PubMedCrossRef Sabatino M, Savatteri V, Liberti G et al (1986) Effects of substantia nigra and pallidum on hippocampal interictal activity in the cat. Neurosci Lett 64:293–298PubMedCrossRef
45.
Zurück zum Zitat Sabatino M, Gravante G, Ferraro G et al (1988) Inhibitory control by substantia nigra of generalized epilepsy in the cat. Epilepsy Res 2:380–386PubMedCrossRef Sabatino M, Gravante G, Ferraro G et al (1988) Inhibitory control by substantia nigra of generalized epilepsy in the cat. Epilepsy Res 2:380–386PubMedCrossRef
46.
Zurück zum Zitat Sabatino M, Gravante G, Ferraro G et al (1989) Striatonigral suppression of focal hippocampal epilepsy. Neurosci Lett 98:285–290PubMedCrossRef Sabatino M, Gravante G, Ferraro G et al (1989) Striatonigral suppression of focal hippocampal epilepsy. Neurosci Lett 98:285–290PubMedCrossRef
47.
Zurück zum Zitat Sabatino M, Ferraro G, Vella N, La Grutta V (1990) Nigral influence on focal epilepsy. Neurophysiol Clin 20:189–201PubMedCrossRef Sabatino M, Ferraro G, Vella N, La Grutta V (1990) Nigral influence on focal epilepsy. Neurophysiol Clin 20:189–201PubMedCrossRef
48.
Zurück zum Zitat Shao J, Valenstein ES (1982) Long-term inhibition of kindled seizures by brain stimulation. Exp Neurol 76:376–392PubMedCrossRef Shao J, Valenstein ES (1982) Long-term inhibition of kindled seizures by brain stimulation. Exp Neurol 76:376–392PubMedCrossRef
49.
Zurück zum Zitat Shapari M, Mirnajafi-Zadeh J, Firoozabadi SMP, Yadollahpour A (2012) Effect of low-frequency electrical stimulation parameters on its anticonvulsant action during rapid perforant path kindling in rat. Epilepsy Res 99:69–77CrossRef Shapari M, Mirnajafi-Zadeh J, Firoozabadi SMP, Yadollahpour A (2012) Effect of low-frequency electrical stimulation parameters on its anticonvulsant action during rapid perforant path kindling in rat. Epilepsy Res 99:69–77CrossRef
50.
Zurück zum Zitat Shi LH, Luo F, Woodward D, Chang JY (2006) Deep brain stimulation of the substantia nigra pars reticulata exerts long lasting suppression of amygdala-kindled seizures. Brain Res 1090:202–207PubMedCrossRef Shi LH, Luo F, Woodward D, Chang JY (2006) Deep brain stimulation of the substantia nigra pars reticulata exerts long lasting suppression of amygdala-kindled seizures. Brain Res 1090:202–207PubMedCrossRef
51.
Zurück zum Zitat Somerlik KH, Cosandier-Rimélé D, Cordeiro JG et al (2011) Measuring epileptogenicity in kainic acid injected rats. Proc 5th Int IEEE EMBS Conf Neur Eng, Cancun, Mexico, S 188–191 Somerlik KH, Cosandier-Rimélé D, Cordeiro JG et al (2011) Measuring epileptogenicity in kainic acid injected rats. Proc 5th Int IEEE EMBS Conf Neur Eng, Cancun, Mexico, S 188–191
52.
Zurück zum Zitat Su Y, Radman T, Vaynshteyn J et al (2008) Effects of high-frequency stimulation on epileptiform activity in vitro: ON/OFF control paradigm. Epilepsia 49:1586–1593PubMedCrossRef Su Y, Radman T, Vaynshteyn J et al (2008) Effects of high-frequency stimulation on epileptiform activity in vitro: ON/OFF control paradigm. Epilepsia 49:1586–1593PubMedCrossRef
53.
Zurück zum Zitat Sun HL, Zhang SH, Zhong K et al (2010) Mode-dependent effect of low-frequency stimulation targeting the hippocampal CA3 subfield on amygdala-kindled seizures in rats. Epilepsy Res 90:83–90PubMedCrossRef Sun HL, Zhang SH, Zhong K et al (2010) Mode-dependent effect of low-frequency stimulation targeting the hippocampal CA3 subfield on amygdala-kindled seizures in rats. Epilepsy Res 90:83–90PubMedCrossRef
54.
Zurück zum Zitat Sunderam S, Chernyy N, Peixoto N et al (2009) Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model. J Neural Eng 6:046009PubMedCentralPubMedCrossRef Sunderam S, Chernyy N, Peixoto N et al (2009) Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model. J Neural Eng 6:046009PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Takebayashi S, Hashizume K, Tanaka T, Hodozuka A (2007) Anti-convulsant effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal limbic seizure in rats. Epilepsy Res 74:163–170PubMedCrossRef Takebayashi S, Hashizume K, Tanaka T, Hodozuka A (2007) Anti-convulsant effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal limbic seizure in rats. Epilepsy Res 74:163–170PubMedCrossRef
56.
Zurück zum Zitat Takebayashi S, Hashizume K, Tanaka T, Hodozuka A (2007) The effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal cortical seizure status in rats. Epilepsia 48:348–358PubMedCrossRef Takebayashi S, Hashizume K, Tanaka T, Hodozuka A (2007) The effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal cortical seizure status in rats. Epilepsia 48:348–358PubMedCrossRef
57.
Zurück zum Zitat Toprani S, Durand DM (2013) Fiber tract stimulation can reduce epileptiform activity in an in-vitro bilateral hippocampal slice preparation. Exp Neurol 240:28–43PubMedCentralPubMedCrossRef Toprani S, Durand DM (2013) Fiber tract stimulation can reduce epileptiform activity in an in-vitro bilateral hippocampal slice preparation. Exp Neurol 240:28–43PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Ullal GR, Ninchoji T, Uemura K (1989) Low frequency stimulation induces an increase in after-discharge thresholds in hippocampal and amygdaloid kindling. Epilepsy Res 3:232–235PubMedCrossRef Ullal GR, Ninchoji T, Uemura K (1989) Low frequency stimulation induces an increase in after-discharge thresholds in hippocampal and amygdaloid kindling. Epilepsy Res 3:232–235PubMedCrossRef
59.
Zurück zum Zitat Usui N, Maesawa S, Kajita Y et al (2005) Suppression of secondary generalization of limbic seizures by stimulation of subthalamic nucleus in rats. J Neurosurg 102:1122–1129PubMedCrossRef Usui N, Maesawa S, Kajita Y et al (2005) Suppression of secondary generalization of limbic seizures by stimulation of subthalamic nucleus in rats. J Neurosurg 102:1122–1129PubMedCrossRef
60.
Zurück zum Zitat Velísek L, Velísková J, Stanton PK (2002) Low-frequency stimulation of the kindling focus delays basolateral amygdala kindling in immature rats. Neurosci Lett 326:61–63PubMedCrossRef Velísek L, Velísková J, Stanton PK (2002) Low-frequency stimulation of the kindling focus delays basolateral amygdala kindling in immature rats. Neurosci Lett 326:61–63PubMedCrossRef
61.
Zurück zum Zitat Velíšek L (2006) Models of chemically induced acute seizures. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 127–152 Velíšek L (2006) Models of chemically induced acute seizures. In: Pitkänen A, Schwarzkroin PA, Moshé SL (Hrsg) Models of seizures and epilepsy. Elsevier, Oxford, S 127–152
62.
Zurück zum Zitat Vercueil L, Benazzouz A, Deransart C et al (1998) High-frequency stimulation of the subthalamic nucleus suppresses absence seizures in the rat: comparison with neurotoxic lesions. Epilepsy Res 31:39–46PubMedCrossRef Vercueil L, Benazzouz A, Deransart C et al (1998) High-frequency stimulation of the subthalamic nucleus suppresses absence seizures in the rat: comparison with neurotoxic lesions. Epilepsy Res 31:39–46PubMedCrossRef
63.
Zurück zum Zitat Wagner R 2nd, Feeney DM, Gullotta FP, Cote IL (1975) Suppression of cortical epileptiform activity by generalized and localized ECoG desynchronization. Electroencephalogr Clin Neurophysiol 39:499–506PubMedCrossRef Wagner R 2nd, Feeney DM, Gullotta FP, Cote IL (1975) Suppression of cortical epileptiform activity by generalized and localized ECoG desynchronization. Electroencephalogr Clin Neurophysiol 39:499–506PubMedCrossRef
64.
Zurück zum Zitat Weiss SB, Eidsath A, Li XL et al (1998) Quenching revisited: low level direct current inhibits amygdala-kindled seizures. Exp Neurol 154:185–192PubMedCrossRef Weiss SB, Eidsath A, Li XL et al (1998) Quenching revisited: low level direct current inhibits amygdala-kindled seizures. Exp Neurol 154:185–192PubMedCrossRef
65.
Zurück zum Zitat Wyckhuys T, De Smedt T, Claeys P et al (2007) High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats. Epilepsia 48:1543–1550PubMedCrossRef Wyckhuys T, De Smedt T, Claeys P et al (2007) High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats. Epilepsia 48:1543–1550PubMedCrossRef
66.
Zurück zum Zitat Wyckhuys T, Raedt R, Vonck K et al (2010) Comparison of hippocampal deep brain stimulation with high (130 Hz) and low frequency (5 Hz) on afterdischarges in kindled rats. Epilepsy Res 88:239–246PubMedCrossRef Wyckhuys T, Raedt R, Vonck K et al (2010) Comparison of hippocampal deep brain stimulation with high (130 Hz) and low frequency (5 Hz) on afterdischarges in kindled rats. Epilepsy Res 88:239–246PubMedCrossRef
67.
Zurück zum Zitat Yang LX, Jin CL, Zhu-Ge ZB et al (2006) Unilateral low-frequency stimulation of central piriform cortex delays seizure development induced by amygdaloid kindling in rats. Neuroscience 138:1089–1096PubMedCrossRef Yang LX, Jin CL, Zhu-Ge ZB et al (2006) Unilateral low-frequency stimulation of central piriform cortex delays seizure development induced by amygdaloid kindling in rats. Neuroscience 138:1089–1096PubMedCrossRef
68.
Zurück zum Zitat Zhang SH, Sun HL, Fang Q et al (2009) Low-frequency stimulation of the hippocampal CA3 subfield is anti-epileptogenic and anti-ictogenic in rat amygdaloid kindling model of epilepsy. Neurosci Lett 455:51–55PubMedCrossRef Zhang SH, Sun HL, Fang Q et al (2009) Low-frequency stimulation of the hippocampal CA3 subfield is anti-epileptogenic and anti-ictogenic in rat amygdaloid kindling model of epilepsy. Neurosci Lett 455:51–55PubMedCrossRef
69.
Zurück zum Zitat Zhang Q, Wu ZC, Yu JT et al (2012) Mode-dependent effect of high-frequency electrical stimulation of the anterior thalamic nucleus on amygdala-kindled seizures in rats. Neuroscience 217:113–122PubMedCrossRef Zhang Q, Wu ZC, Yu JT et al (2012) Mode-dependent effect of high-frequency electrical stimulation of the anterior thalamic nucleus on amygdala-kindled seizures in rats. Neuroscience 217:113–122PubMedCrossRef
70.
Zurück zum Zitat Zhang Q, Wu ZC, Yu JT et al (2012) Anticonvulsant effect of unilateral anterior thalamic high frequency electrical stimulation on amygdala-kindled seizures in rat. Brain Res Bull 87:221–226PubMedCrossRef Zhang Q, Wu ZC, Yu JT et al (2012) Anticonvulsant effect of unilateral anterior thalamic high frequency electrical stimulation on amygdala-kindled seizures in rat. Brain Res Bull 87:221–226PubMedCrossRef
71.
Zurück zum Zitat Zhu-Ge ZB, Zhu YY, Wu DC et al (2007) Unilateral low-frequency stimulation of central piriform cortex inhibits amygdaloid-kindled seizures in Sprague-Dawley rats. Neuroscience 146:901–906PubMedCrossRef Zhu-Ge ZB, Zhu YY, Wu DC et al (2007) Unilateral low-frequency stimulation of central piriform cortex inhibits amygdaloid-kindled seizures in Sprague-Dawley rats. Neuroscience 146:901–906PubMedCrossRef
72.
Zurück zum Zitat Ziai WC, Sherman DL, Bhardwaj A et al (2005) Target-specific catecholamine elevation induced by anticonvulsant thalamic deep brain stimulation. Epilepsia 46:878–888PubMedCrossRef Ziai WC, Sherman DL, Bhardwaj A et al (2005) Target-specific catecholamine elevation induced by anticonvulsant thalamic deep brain stimulation. Epilepsia 46:878–888PubMedCrossRef
Metadaten
Titel
Evaluation von Parametern der Hirnstimulation
Tierexperimentelle Epilepsiemodelle
verfasst von
K.H. Somerlik-Fuchs
T. Stieglitz
A. Schulze-Bonhage
Publikationsdatum
01.02.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Epileptology / Ausgabe 1/2014
Print ISSN: 2948-104X
Elektronische ISSN: 2948-1058
DOI
https://doi.org/10.1007/s10309-013-0339-x

Weitere Artikel der Ausgabe 1/2014

Zeitschrift für Epileptologie 1/2014 Zur Ausgabe

Mitteilungen der Deutschen Gesellschaft für Epileptologie

Mitteilungen der DGfE

Für Sie gelesen

Journal Club

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.