Skip to main content
Erschienen in: Journal of Experimental & Clinical Cancer Research 1/2020

Open Access 01.12.2020 | Review

Exosomal miRNAs in tumor microenvironment

verfasst von: Shiming Tan, Longzheng Xia, Pin Yi, Yaqian Han, Lu Tang, Qing Pan, Yutong Tian, Shan Rao, Linda Oyang, Jiaxin Liang, Jinguan Lin, Min Su, Yingrui Shi, Deliang Cao, Yujuan Zhou, Qianjin Liao

Erschienen in: Journal of Experimental & Clinical Cancer Research | Ausgabe 1/2020

Abstract

Tumor microenvironment (TME) is the internal environment in which tumor cells survive, consisting of tumor cells, fibroblasts, endothelial cells, and immune cells, as well as non-cellular components, such as exosomes and cytokines. Exosomes are tiny extracellular vesicles (40-160nm) containing active substances, such as proteins, lipids and nucleic acids. Exosomes carry biologically active miRNAs to shuttle between tumor cells and TME, thereby affecting tumor development. Tumor-derived exosomal miRNAs induce matrix reprogramming in TME, creating a microenvironment that is conducive to tumor growth, metastasis, immune escape and chemotherapy resistance. In this review, we updated the role of exosomal miRNAs in the process of TME reshaping.
Hinweise
Shiming Tan and Longzheng Xia contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
TME
Tumor microenvironment
CAFs
Cancer-associated fibroblasts;
ECM
Extracellular matrix
MMPs
Matrix metalloproteinases
HIF-1α
Hypoxia inducible factor-1α
VEGF
Vascular endothelial growth factor
miRNAs
MicroRNAs
NFs
Normal fibroblasts
EVs
Extracellular vesicles
sEVs
Small extracellular vesicle
ILV
Intraluminal vesicles
MVB
Multivesicular bodies
nSMase2
Neural Sphingomyelinase 2
hnRNP
Heterogeneous nuclear Ribonucleoprotein
Ago2
Argonaute 2
α-SMA
α-Smooth muscle actin
FGF2
Fibroblast growth factor 2
FAP
Fibroblast activating protein
SPHK1
Sphingosine kinase 1
CRC
Colorectal cancer
HCC
Hepatocarcinoma
NPC
Nasopharyngeal carcinoma
HUVECs
Human umbilical vein endothelial cells
MSCs
Mesenchymal stem cells
PHD1 and PHD2
Prolyl hydroxylase 1 and 2
HLSCs
Human liver stem-like cells
DCs
Dendritic cells
NKs
Natural killer cells
Treg
Regulatory T cells
TAMs
Tumor-associated macrophages
EOC
Epithelial ovarian cancer
MDSCs
Myeloid-derived suppressor cells
ESCRT
Endosome sorting complex required for transport
NVs
Non-membrane structure vesicles
dsDNA
Double-stranded DNA
GC
Gastric cancer
NCSLC
Non-small cell lung cancer
CLL
Chronic lymphocytic leukemia.

Background

TME is a complex ecosystem and an important player in all stages of tumorigenesis. TME consists of cancer cells, cancer-associated fibroblasts (CAFs), endothelial cells, immune cells, extracellular matrix (ECM), microvessels, and biomolecules infiltrated [15]. Compared with the normal internal environment, TME is more prominently characterized by hypoxia. Hypoxia caused by rapid appreciation of tumor cells leads to release of matrix metalloproteinases (MMPs), hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and other stimulating factors. Reshaping TME provides a niche for interaction between tumor cells and surrounding fibroblasts, endothelial cells, and immune cells [4, 69]. These cells interact with tumor cells through TME to induce a variety of biological events, such as appreciation, migration, angiogenesis, immunosuppression, and drug resistance for tumor development [1014].
MicroRNAs (miRNAs) are a class of short ncRNAs with 19-25 nucleotides in length [15]. Through regulating gene expression, miRNAs regulate a variety of important biological functions, such as proliferation, apoptosis, differentiation, migration, invasion and drug resistance. Genetic or epigenetic changes in cancer cells can induce abnormal expression of miRNAs, thus causing abnormal expression of their target genes [1621]. miRNAs function through 6-7 base complementary binding to target mRNA and inhibition of target gene expression at the level of protein [2224]. From the literature, miRNAs can work as oncogenes to promote the formation and biological changes of TME [2528]. For example, miR-9 and miR-200s induce normal fibroblasts (NFs) in TME to transform into CAFs and promote tumor metastasis [29, 30], miR-526b and miR-655 promote angiogenesis and lymphangiogenesis in TME [31], and miR-340-5p and miR-561 induce formation of immunosuppressive microenvironment [32, 33]. How these biologically active miRNAs are transmitted and function in cells and TME is an important breakthrough in the study of TME.
Recently, exosomes are considered to be the key mediators responsible for the heterogeneity of the TME and carry biologically active cargos, such as protein, metabolites, nucleic acids (e.g. ncRNAs), to shuttle between tumor cells and TME, thereby affecting tumor development [3437]. Among the biologically active substances, tumor-derived exosomal miRNAs can induce TME heterogeneity while changes in TME promote tumor progression. This paradigm, similar to a positive feedback loop, makes the uncontrollable growth of the tumor [3843]. In this article we updated the interaction of exosomal miRNAs and TME.

The overview of microenvironment and exosomes in cancer

The components of tumor microenvironment

Growth, metastasis and treatment resistance of tumors are inseparable from the support of TME, a dynamic ecosystem containing multiple cell types and non-cellular components. Some of the basic biological behavioral features of tumors, such as proliferation, migration, invasion, apoptosis inhibition, immune evasion, angiogenesis, and metabolic reprogramming are all affected by TME. The complex communication network in TME is the basis for the regulation of these biological functions, including autocrine and paracrine. Exocrine-mediated communication is an important emerging pathway in paracrine signal transduction [2].
Non-tumor cells in TME, such as fibroblasts, endothelial cells and immune cells, are affected by tumor-related active substances, and their original cellular functions undergo tumor-like changes, constantly adapt to new environments and promote tumor growth. Due to the influence of TME, NFs are activated into CAFs. CAFs are the most abundant stromal cells in TME, producing an ECM that differs from normal ECM in terms of stiffness and alignment, which support tumor cells migration [9]. Hypoxia in TME causes tumor to secrete angiogenic factors to act on endothelial cells and promote angiogenesis [44, 45]. The immune cells in TME show diversity, and they block the immune response. The inflammatory molecules around the tumor cells also cause the system to fail to recognize and eliminate cancer cells [38, 46, 47]. These make TME a complex heterogeneous environment and often leads to an uncontrollable trend in the development of tumors [48, 49].

The biosynthesis and function of extracellular vesicles and exosomes

Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles (40-1000nm in diameter) released by cells or detached from the plasma membrane [50, 51]. EVs are generally divided into two categories: ectosomes and exosomes. Ectosomes are vesicles formed from the plasma membrane sprouting outwards, including microvesicles, microparticles and large vesicles with a size range of 50-1000nm in diameter. Exosomes are small extracellular vesicle (sEVs) in a size range of 40-160nm in diameter with an endosomal origin. EVs have biological activities and mediate intercellular communication [36]. During tumor progression, EVs derived from different cells (tumor cells, stromal cells, immune cells, etc.) play an important role and participate in the formation of TME [44, 5254].
In this review, we mainly focused on the exosomes. However, because of absence of strict standards for exosome isolation and purification methods, the International Society for Extracellular Vesicles encouraged researchers to establish minimum requirements and strictly control the integrity, size, molecular cargo, and functionality of the vesicle population [38, 5557], so that we narrowed the research of exosomes based on the widely accepted methods. Exosomes are small extracellular vesicles (40-160 nm in diameter) formed by dynamic exocytosis [5860]. Exosomes originate from the luminal cavity or early intracellular bodies in the circulation pathway of the plasma membrane. These membranes or early intracellular bodies will sag inward to form intraluminal vesicles (ILV), which will further develop into multivesicular bodies (MVB) [61, 62]. In general, multivesicular bodies are fused with lysosomes to be degraded, but some multivesicular bodies are fused to the cell surface under the traction of intracellular molecular motors and eventually secreted outside the cell, which called exosomes [36, 63].
Exosomes are involved in the biology of many diseases. Exosomes can regulate the immune response and inflammation, possibly through transfer and presentation of antigen peptides, to induce expression of inflammatory genes in recipient cells [64, 65]. In metabolism and cardiovascular diseases, exosomes induce metabolic disorders in adipocytes and islet cells [66, 67]. Exosomes may impair the formation of neurotoxic oligomers and promote neurodegeneration [6870]. More importantly, exosomes are associated with tumor growth, angiogenesis, metastasis, sensitivity to chemotherapy, and immune evasion [47, 71, 72].

miRNAs sorting to exosomes

Exosomes contain a variety of biologically active molecules, such as proteins, lipids and nucleic acids. miRNAs are one of them and play an important role in intercellular cellular transport and signal transduction [7375]. Exosomes can transfer metabolites and promote communication between different cells through the exchange of exosomal miRNAs, and then play an immune response, tumor microenvironment remodeling and tumor metastasis during tumor progression [38, 7678]. Many reports indicate that exosomes affect the biology of recipient cells by transferring miRNAs from donor cells to recipient cells, but the mechanism of how exosomes sorting miRNAs has not been thoroughly solved. According to exosomes database (www.​exocarta.​org), 2838 miRNAs are listed in the latest update. Among the 2588 annotated miRNAs in the human genome, 593 miRNAs have been detected in exosomes [79]. Four potential mechanisms for sorting miRNAs into exosomes were proposed. The neural sphingomyelinase 2 (nSMase2) was the first molecule found to be linked with miRNAs packaging into exosomes. Overexpression of nSMase2 leads to an increased number of miRNAs loaded into exosomes. This suggests that the neural sphingomyelinase 2 (nSMase2)-dependent pathway is associated with the sorting of exosomal miRNAs [80]. The second is based on the control of the sumoylated form of heterogeneous nuclear ribonucleoprotein (hnRNP). Sumoylated hnRNPA2B1 controls the sorting of exosomal miRNAs by recognizing the GGAG and GGCU base sequence of the 3 ’end region of miRNAs [81, 82]. The third is that most exosomal miRNAs isolated from urine or B cells were uridylated at 3 ′ ends. The sorting of miRNAs to ILV may also require hydrophobic modification and GGAG base sequence at 3 ′ end of the miRNAs. This indicates that the 3 ’ends of miRNAs may be involved in directing miRNAs into exosomes [83, 84]. Finally, there are reports that Argonaute proteins (functional carriers of miRNAs) are related to the selection of exosomal miRNAs. Knocking out Argonaute 2 (Ago2) reduces the contents of certain exosomal miRNAs, such as miR-142-3p, miR-150, and miR-451 [85, 86]. In summary, some specific protein complexes and miRNAs own structural characteristics have affects the miRNAs' transfer to exosomes, but the complete sorting mechanism and process have not yet been elucidated and need further exploration.

The role of exosomal miRNAs in TME

During the progression of the tumor, primary tumor-derived exosomal miRNAs can be transferred to non-malignant cells in the tumor microenvironment to induce heterogeneity [50, 8789]. At the same time, with the changes in biological activity of non-malignant cells in the tumor microenvironment, non-malignant cells can also secrete exosomal miRNAs to further regulate tumor cells or other microenvironmental components [40, 90]. In most studies, the stromal cell receptors of cancer-derived exosomal miRNAs are cancer-associated fibroblasts (CAFs), endothelial cells and immune cells dynamically regulate each other in TME. Exosomal miRNAs on the heterogeneity of TME is mainly reflected in the fact that exosomal miRNAs can activate cancer-associated fibroblasts and thus reshape ECM, which is beneficial to the spread of tumor cells. Exosomal miRNAs promote endothelial cells to form tubes, and the formation of abundant vascular networks is conducive to the metabolism and survival of tumor cells. Exosomal miRNAs also mediate inflammatory cell infiltration and immune escape, which is conducive to colonization and proliferation of tumor cells. Through these macroscopic effects, exosomal miRNAs can make TME more suitable for tumor development [91]. Herein, we focused on the roles of exosomal miRNAs in following aspects.

Reshaping ECM to promote tumor progression

Extracellular matrix (ECM) is composed of protein and carbohydrates, with the functions of connection, support, water retention, anti-stress and protection. ECM supports the basic life activities of cells, such as proliferation, differentiation, and migration [92, 93]. However, tumors are often accompanied by dysfunction of ECM. Tumor development is a complex process involving dynamic interactions between malignant cells and their surrounding stroma composed of cells and non-cellular components. Within the stromal, fibroblasts represent not only the major cell types, but also the main source of extracellular matrix (ECM) and soluble factors [94, 95]. Normal fibroblasts exert multiple inhibitory functions against cancer-initiating and metastasis through direct cell-cell contact, paracrine signaling, and ECM integrity [96]. However, tumor-derived exosomal miRNAs can trigger a series of tumor-promoting signals, inducing normal fibroblasts (NFs) transformation into CAFs, which changes the original ECM physiological state, thus creating the optimal niche for the widespread growth of cancer cells [96, 97].
In tumors, tumor cell-derived exosomal miRNAs are highly diverse and are capable of differentiating NFs into CAFs through a variety of signaling pathways. Exosomal miRNAs from cancer cells elicit a parenchymal signaling response at the receptor site and effectively inducing fibroblast activation, such as α-smooth muscle actin (α-SMA), fibroblast growth factor 2 (FGF2) and fibroblast activating protein (FAP) expression [98100]. Matrix composed of CAFs is conducive to the proliferation and migration of tumor cells. In ovarian cancer, the cancer-related exosomal miR-124 targets sphingosine kinase 1 (SPHK1) and upregulates α-SMA and FAP, which differentiates NFs into CAFs and regulates CAFs migration and invasion [101, 102]. High expression of exosomal miR-27b-3p and miR-214-3p in myeloma cells triggers proliferation and apoptotic resistance of bone marrow fibroblasts via the FBXW7 and PTEN/AKT/GSK3 pathways. At the same time, miR-27-3p and miR-214-3p were up-regulated in fibroblasts co-cultured with myeloma, and activated expression of fibroblast activation markers α-SMA and FAP. The biological behavior of bone marrow fibroblasts is programmed to alter the myeloma microenvironment [103, 104]. Exosomal miRNAs in digestive system tumors also reshaped ECM in adjacent sites and promote tumor progression. Exosomal miR-27a derived from gastric cancer (GC) is transported to fibroblasts, and thus results in decreased expression of CSRP2, enhanced expression of α-SMA, and differentiation of fibroblasts into CAFs [105]. Exosomal miR-10b secreted by colorectal cancer cells can be transferred to fibroblasts, where it inhibits PIK3CA expression and PI3K/Akt/mTOR pathway activity, promote expression of TGF-β and α-SMA, and enable fibroblasts to acquire the characteristics of CAFs [106, 107]. These changes promote the proliferation, migration and invasion of tumor cells. Exosomal miRNAs have found similar effects in colorectal cancer (CRC). Exosomal miR-2149-5p, miR-6737-5p, and miR-6819-5p can inhibit the expression of TP53 in fibroblasts to promote tumor proliferation [108].
In addition, changes in ECM also affect angiogenesis, inflammatory response, and metabolic reprogramming. Phenomenon was shown in melanoma where highly expressed exosomal miR-155 inhibits the expression of SOCS1, activates the JAK2/STAT3 pathway, up-regulates the expression of FGF2, VEGFA and MMP9 in CAFs, and promotes the formation of blood vessels in the tumor [109, 110]. In hepatocarcinoma (HCC), exosomal miR-21 is transferred to CAFs, directly targeting PTEN to activate PDK1/Akt signaling, up-regulating VEGF, MMP2, MMP9, bFGF, and TGF-beta and thus promoting angiogenesis [111, 112]. Exosomal miR-1247 targets B4GALT3 and activates the beta1-integrin-NF-kappaB signaling pathway, which activates CAFs to secrete the inflammatory cytokines IL-6 and IL-8 and induce inflammatory infiltration [113]. Exosomal miR-9 and miR-105 are derived from breast cancer; the former promotes the activation of NFs into CAFs by affecting MMP1, EFEMP1 and COL1A1 [30], and the latter activates MYC signal transduction to induce metabolic reprogramming of CAFs, and adapts CAFs to different metabolic environments, promoting tumor growth [18]. Similar reports include miRNA-142-3p in EVs secreted by lung cancer cells, which promotes the cancer phenotype of lung fibroblasts [114] (Fig. 1 and Table 1).
Table 1
Exosomal miRNAs involved in tumor microenvironments
Host cell
Exosomal miRNAs
Target mRNA
Involved meleculs
Function
Reference
OC
miR-124
SPHK1
α-SMA, FAP
Reshaping ECM
[101, 102]
Myeloma
miR-27-3p, miR-214-3p
FBXW7
α-SMA, FAP
Reshaping ECM
[103, 104]
GC
miR-27a
CSRP2
α-SMA
Reshaping ECM
[105]
CRC
miR-10b
PIK3CA
α-SMA, TGF-β
Reshaping ECM
[106, 107]
CRC
miR-2149-5p, miR-6737-5p, miR-6819-5p
 
TP53
Reshaping ECM
[108]
Melanoma
miR-155
SOCS1
FGF2
Reshaping ECM
[109, 110]
HCC
miR-21
PTEN
bFGF, TGF-β
Reshaping ECM
[111, 112]
HCC
miR-1247
B4GALT3
β1-integrin-NF-κB
Reshaping ECM
[113]
Breast cancer
miR-9
 
MMP1, EFEMP1, COL1A1
Reshaping ECM
[30]
Breast cancer
miR-105
 
MYC
Reshaping ECM
[18]
CAFs
miR-148b
DNMT1
EMT-related molecules
Promoting metastasis
[65]
CAFs
miR-196a
CDKN1B, ING5
P21, CDK2, CDK4, Cyclin D1 and Cyclin E1
Chemotherapy resistance
[115]
CAFs
miR-522
 
ALOX15
Chemotherapy resistance
[12]
NPC
miR-23a
TSGA10
p-ERK
Promoting angiogenesis
[121, 122]
Glioma
miR-21
 
VEGF, p-FLK,
VEGFR2
Promoting angiogenesis
[123, 124]
HCC
miR-210-3p
SAMD4, STAT6
 
Promoting angiogenesis
[125]
MSCs
miR-100
 
mTOR, HIF-1α,
VEGF
Promoting angiogenesis
[127]
NSCLC
miR-619-5p
 
RCAN1.4
Promoting angiogenesis
[128]
OC
miR-205
PTEN
p-AKT, p-ERK
Promoting angiogenesis
[129]
CRC
miR-25-3p
KLF2
VEGFR2, p-AKT,
p-ERK
Promoting angiogenesis
[130]
CRC
miR-25-3p
KLF4
ZO-1, Occludin,
Claudin5
Promoting angiogenesis
[130]
Lung cancer
miR-23a
PHD1, PHD2, ZO-1
HIF-1α
Promoting angiogenesis
[132]
Glioma
miR-9
MYC, OCT4
MYC, OCT4
Promoting angiogenesis
[133]
HCC
miR-451
LPIN1
 
Inhibiting angiogenesis
[134]
NPC
miR-9
MDK
PDK, AKT
Inhibiting angiogenesis
[135]
Pancreatic cancer
miR-212-3p
RFXAP
HLA-DR, -DP, -DQ molecules
Suppressing immune
[145, 146]
Pancreatic cancer
miR-203
TLR4, TNF-α, IL-12
TLR4, TNF-α, IL-12
Suppressing immune
[147]
Breast cancer
miR-let-7i
 
TGF-β, IFNγ, TLR4
Suppressing immune
[148]
Treg
miR-150-5p, miR-142-3p
IL-10, IL-6
IL-10, IL-6
ISuppressing immune
[149]
Treg
miR-let-7d
 
IFNγ
Suppressing immune
[150]
NSCLC
miR-125b
 
p53
Enhancing immune
[154]
Melanoma
miR-125b-5p
LIPA
Il-1β, CCL1, CCL2, CD80
Enhancing immune
[71]
Head and neck cancer
miR-21
MRC1
MRC1
Suppressing immune
[155]
EOC
miR-222-3p
SOCS3
p-STAT3
Suppressing immune
[156]
EOC
miR-21-3p, miR-125b-5p, miR-181d-5p, miR-940
  
Suppressing immune
[157, 158]
Pancreatic cancer
miR-301a-3p
PTEN
p-mTOR, p-AKT, PI3K p110γ
Suppressing immune
[159, 160]
Colon cancer
miR-1246
 
IL-10, TGF-β, MMPs
Suppressing immune
[161]
Glioma
miR-10a
RORA
p53
Suppressing immune
[165]
Glioma
miR-21
PTEN
p-STAT3, p-p65, p-AKT
Suppressing immune
[165]
CLL
miR-155
 
p-STAT1, NF-κ
Suppressing immune
[166]
MDSCs
miR-126a
 
IL-13, IL-33
Promoting angiogenesis
[167]
These researches show that cancer-derived exosomal miRNAs can affect the physiological function of stroma. Conversely, a reciprocal exosomal miRNAs exchange from the stroma to cancer cells also modulates cancer progression. For example, CAFs-derived exosomal miR-148b in the matrix surrounding endometrial cancer can up-regulate DNMT1, leading to changes in EMT-related molecules like E-cadherin, N-cadherin, vimentin, and fibronectin and promoting cancer cell metastasis [65]. CAFs are resistant to cisplatin and deliver exosomal miR-196a, which binds to target CDKN1B and ING5, mediates the expressions of p27, CDK2, CDK4, Cyclin D1 and Cyclin E1 and thus induces cisplatin resistance to cancer cells [115]. CAFs-derived exosomal miR-522 reduces the contents of lipid-ROS in gastric cancer cells by inhibiting the expression of ALOX15, which leads to a decrease in the sensitivity of gastric cancer to chemotherapy [12].
Compared with NFs, CAFs have the characteristics of excessive proliferation and unique cytokines. This not only induces the formation of new blood vessels, but also promotes the entry of immune cells into TME, which greatly changes the physiological function of ECM to support tumor proliferation, metastasis and treatment resistance [116, 117]. However, cells involved in ECM formation are not only fibroblasts, but also chondrocytes, osteoblasts, and certain epithelial cells. Exosomal miRNA remodeling of ECM can also be achieved by affecting the function of these cells. For example, studies have shown that cancer-secreted exosomal miR-940 promotes osteogenic differentiation of mesenchymal cells by targeting ARHGAP1 and FAM134A, and then induces osteogenic phenotypes in the bone metastasis microenvironment and promotes tumor metastasis [118]. But research on the interaction of exosomal miRNAs with these cells is not comprehensive. At the same time, the composition of ECM not only includes collagen (synthesized by fibroblasts, chondrocytes, osteoblasts and certain epithelial cells and secreted outside the cell), but also includes non-collagen glycoproteins, glycans and elastin. Whether exosomal miRNAs reshape ECM by affecting these ingredients remains to be proven.

Promoting angiogenesis to enhance proliferation and migration

Tumor growth depends to a large extent on the metabolism of cancer cells [119]. The disordered distribution of tumor blood vessels and the loss of normal vascular function lead to local hypoxia and impaired nutrient supplies. At the same time, the distance gradient between different vascular beds also leads to the imbalance of drug distribution and absorption [120]. These changes of vascular network promote the formation of internal microenvironment and intratumoral heterogeneity.
The exosomal miRNAs can be taken up by the vascular endothelial cells to change the original distribution and physiological functions of the blood vessels in the microenvironment. Exosomal miRNAs secreted by tumor cells have been reported to promote angiogenesis in TME. In nasopharyngeal carcinoma (NPC), exosomal miR-23a mediates angiogenesis by repressing TSGA10 and phosphorylation of ERK, which enhances tube generation ability of human umbilical vein endothelial cells (HUVECs) in vitro and in vivo [121, 122]. Glioma stem cell-derived exosomal miR-21 stimulates VEGF/p-FLK/VEGFR2 signaling pathway to promote angiogenesis in endothelial cells [123, 124]. The exosomal miR-210-3p secreted by HCC cells is transferred to endothelial cells, targeting SMAD4 and STAT6 to promote angiogenesis, and it is found that the higher miR-210-3p in the serum of HCC patients is positively correlated with the microvessel density in HCC tissues [125]. EVs and sEVs-mediated miRNAs transfer also promotes angiogenesis in TME. In NSCLC, EVs-mediated miR-142-3p transferred to endothelial cells and fibroblasts, inhibiting the expression of TGFβR1, PDGFR-β and p-SMAD2/3 to promote angiogenesis [114]. Human ovarian carcinoma cell line SKOV-3 secretes miR-141-3p in small extracellular vesicles (sEVs), which activates the JAK-STAT3 pathway in endothelial cells and promotes angiogenesis [126]. Besides, exosomal miRNAs that promote angiogenesis can also be derived from other cells. Exosomal miR-100 from human mesenchymal stem cells (MSCs) affects the mTOR/HIF-1α/VEGF signaling axis to promote angiogenesis in breast cancer [127].
The rich vascular network in TME is beneficial to the proliferation and metastasis of cancer cells. Exosomal miR-619-5p inhibits the expression of RCAN1.4, promotes angiogenesis, and facilitates the growth and metastasis of cancer cells [128]. Recent studies have shown that circulating exosomal miR-205 expression is elevated in OC patients and is related to microvessel density, and exosomal miR-205 induces angiogenesis via the PTEN-AKT pathway, and promotes tumor cell proliferation in vitro [129]. Changes in the vascular microenvironment are not only in the number of blood vessels, but also in vascular permeability, adhesion, and ability to form a ring. The colorectal cancer-derived exosomal miR-25-3p can down-regulate KLF2 and KLF4, and KLF2 affects the tube formation ability of HUVECs through the VEGFR2/p-Erk/p-Akt pathway while KLF4 activates ZO-1/Occludin/Claudin5 pathway to affect the growth of the aortic rings, which in turn changes the vascular microenvironment [130, 131]. Under hypoxic conditions, lung cancer cell-derived exosomal miR-23a directly inhibits prolyl hydroxylase 1 and 2 (PHD1 and PHD2) and accumulates HIF-1α in endothelial cells, inducing angiogenesis, and exosomal miR- 23a also inhibits ZO-1, increasing vascular permeability and transendothelial migration of cancer cells [132]. In human glioma, exosomal miR-9 promotes angiogenesis, vascular permeability and adhesion through the MYC/OCT4 pathway [133] (Fig. 2).
Exosomal miRNAs influence on vascular network is not only promotion, but sometimes also play an inhibitory effect. Studies have found that exosomal miR-451 acts as a tumor suppressor and targets LPIN1 to induce apoptosis both in HCC cell lines and HUVECs. In addition, miR-451a suppresses HUVECs tube formation and vascular permeability [134]. NPC-derived exosomal miR-9 up-regulates MDK and activates the PDK/Akt signaling pathway to inhibit the formation of endothelial cells. High expression of MDK in NPC tumor samples is positively correlated with microvessel density, revealing the anti-angiogenic effects of exosomal miR-9 in the development of nasopharyngeal carcinoma [135]. Except for tumor-derived exosomal miRNAs, which inhibit angiogenesis, non-tumor cells have similar functions. miR-15a, miR-181b, miR-320c, and miR-874 in EVs released by human liver stem-like cells (HLSCs) possess an anti-tumorigenic effect by inhibiting tumor angiogenesis [136]. According to these reports, it can be found that exosomal miRNAs can regulate the vascular network in TME through multiple signaling pathways, but these molecular mechanisms have not been fully elucidated and need to be explored in the future.

Promoting the formation of immunosuppressive environment

In the TME, immune cells including lymphocytes, dendritic cells, and macrophages, regularly infiltrate tumor tissues and adjacent sites. Through multiple signal transduction pathways mediated by exosomal miRNAs, tumor cells can inhibit the maturation and differentiation of immune cells, thereby creating an immune microenvironment suitable for tumor growth [41, 137, 138]. At the same time, in hypoxia and low nutrient supplies in the microenvironment, tumor cells often secrete metabolic by-products, such as lactic acid, nitric oxide, reactive oxygen species, prostaglandins and arachidonic acid, leading to the formation of an inflammatory microenvironment [139, 140]. Changes in the biological functions of various immune cells in microenvironment and the production of inflammatory mediators result in tumor cell escaping from immune surveillance.
Dendritic cells (DCs) are the most powerful professional antigen presenting cells in the body. Mature DCs can effectively activate the initial T cells and maintain the central part of the immune response [141, 142]. Tumor-derived and endogenous exosomal miRNAs can regulate cross-presentation in dendritic cells and with other immune cells, this exomsomal miRNAs-mediated intercellular communication may affect the maturation of DCs [143, 144]. In pancreatic cancer, exosomal miR-212-3p targets MHC class II TF RFXAP resulting in reduced expression of HLA-DR, -DP, and -DQ molecules and thus interfering with the function of DCs cells [145, 146]. Exosomal miR-203 is able to reduce the expression of TLR4, TNF-α and IL-12 in DCs, affecting the activation of natural killer cells (NKs) [147]. Up-regulated exosomal miR-let-7i in tumor-derived exosomes (TEX) can be taken up by mDCs, resulting in changes in intracellular levels of IL-6, IL-17, IL-1b, TGFbeta, SOCS1, KLRK1, IFNγ, and TLR4, thereby suppressing the immune response [148]. miRNAs from regulatory T cells (Treg) can also affect the immune response, EVs-mediated miR-150-5p and miR-142-3p can be transferred to DCs to induce a cell-refractory phenotype, resulting in increased IL-10 and decreased IL-6 expression [149], exosomal miR-let-7d is transferred to T helper 1 (Th1) cells to inhibit Th1 cells proliferation and IFNγ secretion, and IFNγ secreted by Th1 cells (a subtype of Naïve CD4 T cells) plays a central role in anti-tumor immunity [150].
Tumor-associated macrophages (TAMs) are one of the most abundant immune cells in TME. TAMs play a huge role in the proliferation and migration of tumor cells and counteract the cytotoxic effect of T lymphocytes and NKs, facilitating cancer cells to evade immune surveillance [140, 151]. TAMs have strong plasticity and can differentiate into immune-stimulating (M1-polarized) TAMs or oppositely immune-suppressive (M2-polarized) TAMs, respectively, having different biological functions [152]. TAMs in tumors often behave as M2 phenotype and are usually associated with poor prognosis [153]. A large number of studies have reported that exosomal miRNAs can regulate the phenotypes of TAMs. Exosomal miR-125b derivied from lung adenocarcinoma cells promotes macrophage repolarization toward an anti-tumor M1 phenotype [154]. Exsomal miR-125b-5p secreted by melanoma cells targets LIPA and increases the expression of M1 phenotype markers IL-1β, CCL1, CCL2, and CD80 [71]. Oppositely, exosomal miR-21 taken up by CD14+ human monocytes inhibits the expression of the M1 marker and increases the expression of the M2 marker. Knockout of miR-21 in Snail-expressing human head and neck cancer cells attenuated M2 polarization of TAMs, and miR-21 was found to be positively correlated with M2 marker MRC1 in head and neck cancer tissues [155]. In epithelial ovarian cancer (EOC), exosomal miR-222-3p can be transferred to macrophages, down-regulating SOCS3, inducing phosphorylation of STAT3, and thus leading to polarization of the M2 macrophages [156]. In hypoxia, EOC-derived exosomal miR-21-3p, miR-125b-5p, miR-181d-5p, and miR-940 differentiate TAMs into M2 phenotypes and promote tumor progression [157, 158]. Likewise, exosomal miR-301a-3p derived from hypoxic pancreatic cancer cells activates the PTEN/PI3Kγ signaling pathway to trigger M2 phenotype polarization of macrophages [159, 160]. Mutant p53 colon cancer cells-derievd exosomal miR-1246 induces M2 polarization of macrophages and reshapes the TME through increase the expression of IL-10, TGFβ, and MMPs [161] (Fig.3).
Abnormal differentiation and function of myeloid cells is a hallmark of cancer. Among them, myeloid-derived suppressor cells (MDSCs) have the function of suppressing adaptive immunity and innate immune response, and play an important role in tumor immune escape [162164]. Exosomal miRNAs affect the function of MDSCs by regulating the activity of transcription factors and transcription activators, thereby reshaping the immune microenvironment. In the research of glioblastoma, exosomal miR-10a targets RORA and affects the differentiation of MDSCs through the NFκB pathway, exosomal miR-21 targets PTEN and affects the activation of MDSCs via the p-STAT3/p-p65/p-Akt pathway [165]. Exosomal miR-155 istransmitted to monocytes, leading to nuclear translocation of NFkB and phosphorylation of STAT1, reprograming conventional monocytes into MDSCs [166]. Changes in the function of MDSCs affect the progression of the tumor itself. Recent research shows that exosmal miR-126a derived from MDSCs promotes angiogenesis and benefit breast cancer lung metastases [167].
The immunomodulation induced by exosomal miRNAs is complex and dynamic. In TME, tumor cells interact with various types of immune cells and cross-promote immunosuppressive activity. Among them, exosomal miRNAs play a pivotal role in them, but the mechanism has not been elucidated. Thereby, the function of exosomal miRNAs in the reciprocal interplays between cancer cells and hosts immune system merits further investigation.

Perspectives of exosomal miRNAs

With the vigorous development of the biology of exosomes in tumors, more and more evidence indicates that exosomal miRNAs play an important role in tumor progression and TME reshaping. Compared with miRNAs released directly into the circulatory system, exosomal miRNAs are protected by lipid bilayer encapsulation and avoid degradation by ribonuclease in the blood. Notebalely, exosomal miRNAs are more bioactive pool of circulating miRNAs compared to those miRNAs transported with liposomes [41, 168, 169]. Considering the advantages of exosomal miRNAs and the widespread presence of exosomes in all biological fluids (blood, breast milk, semen, and urine), diagnostic and therapeutic technologies based on exosomal miRNAs have a bright future.
Some specific exosomal miRNAs have high diagnostic value in tumors, and detecting them is helpful for early diagnosis of tumors. For example, in prostate cancer, breast cancer, and oral squamous cell carcinoma, the expression of exosomal miR-1246 is closely related to pathological grades, distant metastasis and poor prognosis [170173]. Circulating exosomal miR-375 is valuable for the diagnosis of ovarian, rectal and prostate cancer [174176]. The combination of multiple exosomal ncRNAs can enhance the diagnostic and prognostic potential of exosomal miRNAs. For example, the combination of expression of plasma exosomal miR-30d-5p and let-7d-3p is valuable diagnostic markers for non-invasive screening of cervical cancer and its precursors [177]. Circulating exosomal miRNA-21 and lncRNA-ATB are related to the TNM stage of liver cancer and other prognostic factors, including the T stage and portal vein thrombosis [178].
Exosomal miRNAs, as a new tumor treatment method, are being widely explored. Based on the fact that exosomal miRNAs effectively bind to target mRNA and inhibit gene expression in recipient cells, related exosomal engineering techniques have been used to treat tumors by delivering tumor suppressor exosomal miRNAs. For example, delivery of exogenous miR-155 into DCs using TEX as a vector results in increased expression of MHCII (I/A-I/E), CD86, CD40 and CD83, promoting activation of DCs. Exosomal miRNA-155 significantly increases the levels of IL12p70, IFN-γ and IL10 and improves immune function [179]. By fusing Her2 affinity to the extracellular N-terminus of human Lamp2, and then using the modified exosomes to co-deliver 5-FU and miR-21 inhibitors (miR-21i), which targets colon cancer cells, effectively reverses the resistance of tumor cells and significantly enhances the toxicity of 5-FU resistant cancer cells [180].
Although exosomal miRNAs have made exciting progress in oncology, most of these results are experimental. Extension of exosomal miRNAs technologies to clinic remains challenging. There is no doubt that the function of exosomes is determined by their specific contents. A large amount of literature has reported that tumor-derived exosomal miRNAs can reshape TME and promote tumor progression, but little is known about the sorting mechanism of exosomal miRNAs. Although the basic framework of the endosome sorting complex required for transport (ESCRT) and Ago2 in MVB sorting has been reported in previous studies, it remains to be elucidate whether other novel sorting signals are involved in the release of exosomal miRNAs [86, 181184].
The potential of exosomal miRNAs as diagnostic markers is unquestionable, but how to improve the sensitivity and specificity of exosomal miRNAs remains to be solved. The combination of different exosomal cargos, such as proteins, lipids, RNA and miRNAs for cancer diagnosis and prognosis can more comprehensively reflect the characteristics of tumors. At the same time, the scope of application of exosomal miRNAs also needs attention. The expression level of exosomal miRNAs is related to tumor types, clinical stages or other underlying diseases, and there are differences between individual patients. Therefore, how to use exosomal miRNAs accurately is also worth of considering.
The widespread use of exosomal miRNAs in clinical treatment remains challenging. First, exosomes-based therapeutic tools require more accurate and standardized exosomal purification methods, and the economic cost of mass-producing exsomes for clinical application cannot be ignored [56, 57]. The second is that exosomal miRNAs-induced biological behavioral changes are often released through the cultivation of supra-physiological numbers of cell, and how many orders of magnitude of exosomal miRNAs are needed to achieve the corresponding efficacy in clinical applications remains to be determined.

Conclusion

Exosomal miRNAs, as a signaling molecule for communication between tumor cells and TME, play an important role in the formation and remodeling of TME, but its regulatory mechanism is still worth of further exploration. At present, most of the biological studies of exosomal miRNAs have been revealed by cell-culture systems in vitro. But the problems still remain whether exosomal miRNAs derived from supra-physiological numbers of cell reflect the biological conditions in vivo. It is necessary to conduct more experiments in vivo or in mammals.
With the increase of exosomes researches, people have gradually discovered that the exosomes obtained by traditional exosomal separation and purification methods (ultracentrifugation, density-gradient centrifugation, immune-affinity capture, and precipitation) not only contain sEVs, but also contain non-membrane structure vesicles (NVs). Components, double-stranded DNA (dsDNA) and histones, are more in the NVs rather than in exosomes or sEVs. Moreover, many of the most abundant miRNAs were more associated with extracellular NV fractions than with either parental cells or sEV fractions [56]. This indicates that we may need to re-evaluate the composition of exosomes, and it is urgent to explore the generation and sorting mechanisms of exosomal miRNAs or miRNAs in other type of sEVs.

Acknowledgments

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Li K, Chen Y, Li A, Tan C, Liu X. Exosomes play roles in sequential processes of tumor metastasis. Int J Cancer. 2019;144(7):1486–95.PubMedCrossRef Li K, Chen Y, Li A, Tan C, Liu X. Exosomes play roles in sequential processes of tumor metastasis. Int J Cancer. 2019;144(7):1486–95.PubMedCrossRef
2.
Zurück zum Zitat Giraldo NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Petitprez F, et al. The clinical role of the TME in solid cancer. Br J Cancer. 2019;120(1):45–53.PubMedCrossRef Giraldo NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Petitprez F, et al. The clinical role of the TME in solid cancer. Br J Cancer. 2019;120(1):45–53.PubMedCrossRef
3.
Zurück zum Zitat Rossi GR, Trindade ES, Souza-Fonseca-Guimaraes F. Tumor Microenvironment-Associated Extracellular Matrix Components Regulate NK Cell Function. Front Immunol. 2020;11:73.PubMedPubMedCentralCrossRef Rossi GR, Trindade ES, Souza-Fonseca-Guimaraes F. Tumor Microenvironment-Associated Extracellular Matrix Components Regulate NK Cell Function. Front Immunol. 2020;11:73.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol. 2020;62:166-81. Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol. 2020;62:166-81.
5.
Zurück zum Zitat Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.PubMedCrossRef Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.PubMedCrossRef
6.
Zurück zum Zitat Ma L, Hernandez MO, Zhao Y, Mehta M, Tran B, Kelly M, et al. Tumor Cell Biodiversity Drives Microenvironmental Reprogramming in Liver Cancer. Cancer Cell. 2019;36(4):418–30 e6.PubMedCrossRef Ma L, Hernandez MO, Zhao Y, Mehta M, Tran B, Kelly M, et al. Tumor Cell Biodiversity Drives Microenvironmental Reprogramming in Liver Cancer. Cancer Cell. 2019;36(4):418–30 e6.PubMedCrossRef
7.
Zurück zum Zitat Zhang X, Shen L, Liu Q, Hou L, Huang L. Inhibiting PI3 kinase-gamma in both myeloid and plasma cells remodels the suppressive tumor microenvironment in desmoplastic tumors. J Control Release. 2019;309:173–80.PubMedCrossRef Zhang X, Shen L, Liu Q, Hou L, Huang L. Inhibiting PI3 kinase-gamma in both myeloid and plasma cells remodels the suppressive tumor microenvironment in desmoplastic tumors. J Control Release. 2019;309:173–80.PubMedCrossRef
8.
Zurück zum Zitat Clement-Colmou K, Potiron V, Pietri M, Guillonneau M, Jouglar E, Chiavassa S, et al. Influence of Radiotherapy Fractionation Schedule on the Tumor Vascular Microenvironment in Prostate and Lung Cancer Models. Cancers (Basel). 2020;12:1.CrossRef Clement-Colmou K, Potiron V, Pietri M, Guillonneau M, Jouglar E, Chiavassa S, et al. Influence of Radiotherapy Fractionation Schedule on the Tumor Vascular Microenvironment in Prostate and Lung Cancer Models. Cancers (Basel). 2020;12:1.CrossRef
10.
Zurück zum Zitat Armignacco R, Cantini G, Poli G, Guasti D, Nesi G, Romagnoli P, et al. The Adipose Stem Cell as a Novel Metabolic Actor in Adrenocortical Carcinoma Progression: Evidence from an In Vitro Tumor Microenvironment Crosstalk Model. Cancers (Basel). 2019;11:12.CrossRef Armignacco R, Cantini G, Poli G, Guasti D, Nesi G, Romagnoli P, et al. The Adipose Stem Cell as a Novel Metabolic Actor in Adrenocortical Carcinoma Progression: Evidence from an In Vitro Tumor Microenvironment Crosstalk Model. Cancers (Basel). 2019;11:12.CrossRef
11.
Zurück zum Zitat Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, et al. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 2020;470:126–33.PubMedCrossRef Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, et al. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 2020;470:126–33.PubMedCrossRef
12.
Zurück zum Zitat Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19(1):43.PubMedPubMedCentralCrossRef Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19(1):43.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457–74.PubMedCrossRef De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457–74.PubMedCrossRef
14.
Zurück zum Zitat Moriwaki K, Asahi M. Augmented TME O-GlcNAcylation Promotes Tumor Proliferation through the Inhibition of p38 MAPK. Mol Cancer Res. 2017;15(9):1287–98.PubMedCrossRef Moriwaki K, Asahi M. Augmented TME O-GlcNAcylation Promotes Tumor Proliferation through the Inhibition of p38 MAPK. Mol Cancer Res. 2017;15(9):1287–98.PubMedCrossRef
15.
Zurück zum Zitat Anfossi S, Fu X, Nagvekar R, Calin GA. MicroRNAs, Regulatory Messengers Inside and Outside Cancer Cells. Adv Exp Med Biol. 2018;1056:87–108.PubMedCrossRef Anfossi S, Fu X, Nagvekar R, Calin GA. MicroRNAs, Regulatory Messengers Inside and Outside Cancer Cells. Adv Exp Med Biol. 2018;1056:87–108.PubMedCrossRef
16.
Zurück zum Zitat Fattore L, Ruggiero CF, Pisanu ME, Liguoro D, Cerri A, Costantini S, et al. Reprogramming miRNAs global expression orchestrates development of drug resistance in BRAF mutated melanoma. Cell Death Differ. 2019;26(7):1267-82. Fattore L, Ruggiero CF, Pisanu ME, Liguoro D, Cerri A, Costantini S, et al. Reprogramming miRNAs global expression orchestrates development of drug resistance in BRAF mutated melanoma. Cell Death Differ. 2019;26(7):1267-82.
17.
Zurück zum Zitat Malhotra A, Sharma U, Puhan S, Chandra Bandari N, Kharb A, Arifa PP, et al. Stabilization of miRNAs in esophageal cancer contributes to radioresistance and limits efficacy of therapy. Biochimie. 2019;156:148–57.PubMedCrossRef Malhotra A, Sharma U, Puhan S, Chandra Bandari N, Kharb A, Arifa PP, et al. Stabilization of miRNAs in esophageal cancer contributes to radioresistance and limits efficacy of therapy. Biochimie. 2019;156:148–57.PubMedCrossRef
18.
Zurück zum Zitat Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 2018;20(5):597–609.PubMedPubMedCentralCrossRef Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 2018;20(5):597–609.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Zhou CF, Ma J, Huang L, Yi HY, Zhang YM, Wu XG, et al. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene. 2019;38(8):1256–68.PubMedCrossRef Zhou CF, Ma J, Huang L, Yi HY, Zhang YM, Wu XG, et al. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene. 2019;38(8):1256–68.PubMedCrossRef
20.
Zurück zum Zitat Cai L, Ye Y, Jiang Q, Chen Y, Lyu X, Li J, et al. Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma. Nat Commun. 2015;6:7353.PubMedPubMedCentralCrossRef Cai L, Ye Y, Jiang Q, Chen Y, Lyu X, Li J, et al. Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma. Nat Commun. 2015;6:7353.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Tian R, Wang J, Yan H, Wu J, Xu Q, Zhan X, et al. Differential expression of miR16 in glioblastoma and glioblastoma stem cells: their correlation with proliferation, differentiation, metastasis and prognosis. Oncogene. 2017;36(42):5861–73.PubMedPubMedCentralCrossRef Tian R, Wang J, Yan H, Wu J, Xu Q, Zhan X, et al. Differential expression of miR16 in glioblastoma and glioblastoma stem cells: their correlation with proliferation, differentiation, metastasis and prognosis. Oncogene. 2017;36(42):5861–73.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Xiao X, Lu Z, Lin V, May A, Shaw DH, Wang Z, et al. MicroRNA miR-24-3p Reduces Apoptosis and Regulates Keap1-Nrf2 Pathway in Mouse Cardiomyocytes Responding to Ischemia/Reperfusion Injury. Oxid Med Cell Longev. 2018;2018:7042105.PubMedPubMedCentral Xiao X, Lu Z, Lin V, May A, Shaw DH, Wang Z, et al. MicroRNA miR-24-3p Reduces Apoptosis and Regulates Keap1-Nrf2 Pathway in Mouse Cardiomyocytes Responding to Ischemia/Reperfusion Injury. Oxid Med Cell Longev. 2018;2018:7042105.PubMedPubMedCentral
23.
Zurück zum Zitat Song J, Ma Q, Hu M, Qian D, Wang B, He N. The Inhibition of miR-144-3p on Cell Proliferation and Metastasis by Targeting TOP2A in HCMV-Positive Glioblastoma Cells. Molecules. 2018;23:12. Song J, Ma Q, Hu M, Qian D, Wang B, He N. The Inhibition of miR-144-3p on Cell Proliferation and Metastasis by Targeting TOP2A in HCMV-Positive Glioblastoma Cells. Molecules. 2018;23:12.
24.
Zurück zum Zitat Sun J, Hong J, Sun S, Wang X, Peng Y, Zhou J, et al. Transcription factor 7-like 2 controls matrix degradation through nuclear factor kappaB signaling and is repressed by microRNA-155 in nucleus pulposus cells. Biomed Pharmacother. 2018;108:646–55.PubMedCrossRef Sun J, Hong J, Sun S, Wang X, Peng Y, Zhou J, et al. Transcription factor 7-like 2 controls matrix degradation through nuclear factor kappaB signaling and is repressed by microRNA-155 in nucleus pulposus cells. Biomed Pharmacother. 2018;108:646–55.PubMedCrossRef
25.
Zurück zum Zitat Uddin MN, Li M, Wang X. Identification of Transcriptional Markers and microRNA-mRNA Regulatory Networks in Colon Cancer by Integrative Analysis of mRNA and microRNA Expression Profiles in Colon Tumor Stroma. Cells. 2019;8:9.CrossRef Uddin MN, Li M, Wang X. Identification of Transcriptional Markers and microRNA-mRNA Regulatory Networks in Colon Cancer by Integrative Analysis of mRNA and microRNA Expression Profiles in Colon Tumor Stroma. Cells. 2019;8:9.CrossRef
26.
Zurück zum Zitat Slack FJ, Chinnaiyan AM. The Role of Non-coding RNAs in Oncology. Cell. 2019;179(5):1033–55.PubMedCrossRef Slack FJ, Chinnaiyan AM. The Role of Non-coding RNAs in Oncology. Cell. 2019;179(5):1033–55.PubMedCrossRef
27.
Zurück zum Zitat Kanchan RK, Siddiqui JA, Mahapatra S, Batra SK, Nasser MW. microRNAs Orchestrate Pathophysiology of Breast Cancer Brain Metastasis: Advances in Therapy. Mol Cancer. 2020;19(1):29.PubMedPubMedCentralCrossRef Kanchan RK, Siddiqui JA, Mahapatra S, Batra SK, Nasser MW. microRNAs Orchestrate Pathophysiology of Breast Cancer Brain Metastasis: Advances in Therapy. Mol Cancer. 2020;19(1):29.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Conti I, Varano G, Simioni C, Laface I, Milani D, Rimondi E, et al. miRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment. Cells. 2020;9:1.CrossRef Conti I, Varano G, Simioni C, Laface I, Milani D, Rimondi E, et al. miRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment. Cells. 2020;9:1.CrossRef
29.
Zurück zum Zitat Tang X, Hou Y, Yang G, Wang X, Tang S, Du YE, et al. Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death Differ. 2016;23(1):132–45.PubMedCrossRef Tang X, Hou Y, Yang G, Wang X, Tang S, Du YE, et al. Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death Differ. 2016;23(1):132–45.PubMedCrossRef
30.
Zurück zum Zitat Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D'Ippolito E, Cataldo A, et al. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 2016;7(7):e2312.PubMedPubMedCentralCrossRef Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D'Ippolito E, Cataldo A, et al. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 2016;7(7):e2312.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Hunter S, Nault B, Ugwuagbo KC, Maiti S, Majumder M. Mir526b and Mir655 Promote Tumour Associated Angiogenesis and Lymphangiogenesis in Breast Cancer. Cancers (Basel). 2019;11:7.CrossRef Hunter S, Nault B, Ugwuagbo KC, Maiti S, Majumder M. Mir526b and Mir655 Promote Tumour Associated Angiogenesis and Lymphangiogenesis in Breast Cancer. Cancers (Basel). 2019;11:7.CrossRef
32.
Zurück zum Zitat Liu Y, Li X, Zhang Y, Wang H, Rong X, Peng J, et al. An miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of glioblastoma multiforme. Oncogene. 2019;38(49):7399–415.PubMedCrossRef Liu Y, Li X, Zhang Y, Wang H, Rong X, Peng J, et al. An miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of glioblastoma multiforme. Oncogene. 2019;38(49):7399–415.PubMedCrossRef
33.
Zurück zum Zitat Chen EB, Zhou ZJ, Xiao K, Zhu GQ, Yang Y, Wang B, et al. The miR-561-5p/CX3CL1 Signaling Axis Regulates Pulmonary Metastasis in Hepatocellular Carcinoma Involving CX3CR1(+) Natural Killer Cells Infiltration. Theranostics. 2019;9(16):4779–94.PubMedPubMedCentralCrossRef Chen EB, Zhou ZJ, Xiao K, Zhu GQ, Yang Y, Wang B, et al. The miR-561-5p/CX3CL1 Signaling Axis Regulates Pulmonary Metastasis in Hepatocellular Carcinoma Involving CX3CR1(+) Natural Killer Cells Infiltration. Theranostics. 2019;9(16):4779–94.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Wu F, Li F, Lin X, Xu F, Cui R. Zhong J, et al. Endocr Relat Cancer: Exosomes increased angiogenesis in papillary thyroid cancer microenvironment; 2019. Wu F, Li F, Lin X, Xu F, Cui R. Zhong J, et al. Endocr Relat Cancer: Exosomes increased angiogenesis in papillary thyroid cancer microenvironment; 2019.
35.
Zurück zum Zitat Hwang WL, Lan HY, Cheng WC, Huang SC, Yang MH. Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J Hematol Oncol. 2019;12(1):10.PubMedPubMedCentralCrossRef Hwang WL, Lan HY, Cheng WC, Huang SC, Yang MH. Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J Hematol Oncol. 2019;12(1):10.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:6478.CrossRef Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:6478.CrossRef
37.
Zurück zum Zitat Tian X, Shen H, Li Z, Wang T, Wang S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol. 2019;12(1):84.PubMedPubMedCentralCrossRef Tian X, Shen H, Li Z, Wang T, Wang S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol. 2019;12(1):84.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79.PubMedCrossRef Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79.PubMedCrossRef
39.
Zurück zum Zitat Cheng WC, Liao TT, Lin CC, Yuan LE, Lan HY, Lin HH, et al. RAB27B-activated secretion of stem-like tumor exosomes delivers the biomarker microRNA-146a-5p, which promotes tumorigenesis and associates with an immunosuppressive tumor microenvironment in colorectal cancer. Int J Cancer. 2019. Cheng WC, Liao TT, Lin CC, Yuan LE, Lan HY, Lin HH, et al. RAB27B-activated secretion of stem-like tumor exosomes delivers the biomarker microRNA-146a-5p, which promotes tumorigenesis and associates with an immunosuppressive tumor microenvironment in colorectal cancer. Int J Cancer. 2019.
40.
Zurück zum Zitat Patel H, Nilendu P, Jahagirdar D, Pal JK, Sharma NK. Modulating secreted components of tumor microenvironment: A masterstroke in tumor therapeutics. Cancer Biol Ther. 2018;19(1):3–12.PubMedCrossRef Patel H, Nilendu P, Jahagirdar D, Pal JK, Sharma NK. Modulating secreted components of tumor microenvironment: A masterstroke in tumor therapeutics. Cancer Biol Ther. 2018;19(1):3–12.PubMedCrossRef
41.
Zurück zum Zitat Wang M, Yu F, Ding H, Wang Y, Li P, Wang K. Emerging Function and Clinical Values of Exosomal MicroRNAs in Cancer. Mol Ther Nucleic Acids. 2019;16:791–804.PubMedPubMedCentralCrossRef Wang M, Yu F, Ding H, Wang Y, Li P, Wang K. Emerging Function and Clinical Values of Exosomal MicroRNAs in Cancer. Mol Ther Nucleic Acids. 2019;16:791–804.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018;17(1):147.PubMedPubMedCentralCrossRef Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018;17(1):147.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Pontecorvi G, Bellenghi M, Puglisi R, Care A, Mattia G. Tumor-derived extracellular vesicles and microRNAs: Functional roles, diagnostic, prognostic and therapeutic options. Cytokine Growth Factor Rev. 2020;51:75–83.PubMedCrossRef Pontecorvi G, Bellenghi M, Puglisi R, Care A, Mattia G. Tumor-derived extracellular vesicles and microRNAs: Functional roles, diagnostic, prognostic and therapeutic options. Cytokine Growth Factor Rev. 2020;51:75–83.PubMedCrossRef
44.
Zurück zum Zitat Lucero R, Zappulli V, Sammarco A, Murillo OD, Cheah PS, Srinivasan S, et al. Glioma-Derived miRNA-Containing Extracellular Vesicles Induce Angiogenesis by Reprogramming Brain Endothelial Cells. Cell Rep. 2020;30(7):2065–74 e4.PubMedPubMedCentralCrossRef Lucero R, Zappulli V, Sammarco A, Murillo OD, Cheah PS, Srinivasan S, et al. Glioma-Derived miRNA-Containing Extracellular Vesicles Induce Angiogenesis by Reprogramming Brain Endothelial Cells. Cell Rep. 2020;30(7):2065–74 e4.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Varricchi G, Loffredo S, Galdiero MR, Marone G, Cristinziano L, Granata F, et al. Innate effector cells in angiogenesis and lymphangiogenesis. Curr Opin Immunol. 2018;53:152–60.PubMedCrossRef Varricchi G, Loffredo S, Galdiero MR, Marone G, Cristinziano L, Granata F, et al. Innate effector cells in angiogenesis and lymphangiogenesis. Curr Opin Immunol. 2018;53:152–60.PubMedCrossRef
46.
Zurück zum Zitat Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, et al. Extracellular Vesicles in Cancer Immune Microenvironment and Cancer Immunotherapy. Adv Sci (Weinh). 2019;6(24):1901779.PubMedPubMedCentralCrossRef Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, et al. Extracellular Vesicles in Cancer Immune Microenvironment and Cancer Immunotherapy. Adv Sci (Weinh). 2019;6(24):1901779.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol. 2020;20(4):209-15. Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol. 2020;20(4):209-15.
48.
Zurück zum Zitat Jarosz-Biej M, Smolarczyk R, Cichon T, Kulach N. Tumor Microenvironment as A "Game Changer" in Cancer Radiotherapy. Int J Mol Sci. 2019;20:13.CrossRef Jarosz-Biej M, Smolarczyk R, Cichon T, Kulach N. Tumor Microenvironment as A "Game Changer" in Cancer Radiotherapy. Int J Mol Sci. 2019;20:13.CrossRef
49.
Zurück zum Zitat Peng J, Yang Q, Shi K, Xiao Y, Wei X, Qian Z. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv Drug Deliv Rev. 2019;143:37–67.PubMedCrossRef Peng J, Yang Q, Shi K, Xiao Y, Wei X, Qian Z. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv Drug Deliv Rev. 2019;143:37–67.PubMedCrossRef
50.
Zurück zum Zitat Gao X, Zhang Z, Mashimo T, Shen B, Nyagilo J, Wang H, et al. Gliomas Interact with Non-glioma Brain Cells via Extracellular Vesicles. Cell Rep. 2020;30(8):2489–500 e5.PubMedCrossRef Gao X, Zhang Z, Mashimo T, Shen B, Nyagilo J, Wang H, et al. Gliomas Interact with Non-glioma Brain Cells via Extracellular Vesicles. Cell Rep. 2020;30(8):2489–500 e5.PubMedCrossRef
51.
Zurück zum Zitat van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRef van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRef
52.
Zurück zum Zitat Yekula A, Yekula A, Muralidharan K, Kang K, Carter BS, Balaj L. Extracellular Vesicles in Glioblastoma Tumor Microenvironment. Front Immunol. 2019;10:3137.PubMedCrossRef Yekula A, Yekula A, Muralidharan K, Kang K, Carter BS, Balaj L. Extracellular Vesicles in Glioblastoma Tumor Microenvironment. Front Immunol. 2019;10:3137.PubMedCrossRef
53.
Zurück zum Zitat Xie M, Xiong W, She Z, Wen Z, Abdirahman AS, Wan W, et al. Immunoregulatory Effects of Stem Cell-Derived Extracellular Vesicles on Immune Cells. Front Immunol. 2020;11:13.PubMedPubMedCentralCrossRef Xie M, Xiong W, She Z, Wen Z, Abdirahman AS, Wan W, et al. Immunoregulatory Effects of Stem Cell-Derived Extracellular Vesicles on Immune Cells. Front Immunol. 2020;11:13.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Harmati M, Gyukity-Sebestyen E, Dobra G, Janovak L, Dekany I, Saydam O, et al. Small extracellular vesicles convey the stress-induced adaptive responses of melanoma cells. Sci Rep. 2019;9(1):15329. Harmati M, Gyukity-Sebestyen E, Dobra G, Janovak L, Dekany I, Saydam O, et al. Small extracellular vesicles convey the stress-induced adaptive responses of melanoma cells. Sci Rep. 2019;9(1):15329.
55.
Zurück zum Zitat Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.PubMedPubMedCentralCrossRef Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of Exosome Composition. Cell. 2019;177(2):428–45 e18.PubMedPubMedCentralCrossRef Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of Exosome Composition. Cell. 2019;177(2):428–45 e18.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Tian Y, Gong M, Hu Y, Liu H, Zhang W, Zhang M, et al. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J Extracell Vesicles. 2020;9(1):1697028.PubMedCrossRef Tian Y, Gong M, Hu Y, Liu H, Zhang W, Zhang M, et al. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J Extracell Vesicles. 2020;9(1):1697028.PubMedCrossRef
59.
Zurück zum Zitat Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17.PubMedCrossRef Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17.PubMedCrossRef
60.
Zurück zum Zitat Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1–11.PubMedCrossRef Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018;188:1–11.PubMedCrossRef
62.
Zurück zum Zitat Kowal J, Tkach M, Thery C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25.PubMedCrossRef Kowal J, Tkach M, Thery C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25.PubMedCrossRef
63.
Zurück zum Zitat Hyenne V, Labouesse M, Goetz JG. The Small GTPase Ral orchestrates MVB biogenesis and exosome secretion. Small GTPases. 2018;9(6):445–51.PubMedCrossRef Hyenne V, Labouesse M, Goetz JG. The Small GTPase Ral orchestrates MVB biogenesis and exosome secretion. Small GTPases. 2018;9(6):445–51.PubMedCrossRef
64.
Zurück zum Zitat Mills JT, Schwenzer A, Marsh EK, Edwards MR, Sabroe I, Midwood KS, et al. Airway Epithelial Cells Generate Pro-inflammatory Tenascin-C and Small Extracellular Vesicles in Response to TLR3 Stimuli and Rhinovirus Infection. Front Immunol. 2019;10:1987.PubMedPubMedCentralCrossRef Mills JT, Schwenzer A, Marsh EK, Edwards MR, Sabroe I, Midwood KS, et al. Airway Epithelial Cells Generate Pro-inflammatory Tenascin-C and Small Extracellular Vesicles in Response to TLR3 Stimuli and Rhinovirus Infection. Front Immunol. 2019;10:1987.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Gao K, Jin J, Huang C, Li J, Luo H, Li L, et al. Exosomes Derived From Septic Mouse Serum Modulate Immune Responses via Exosome-Associated Cytokines. Front Immunol. 2019;10:1560.PubMedPubMedCentralCrossRef Gao K, Jin J, Huang C, Li J, Luo H, Li L, et al. Exosomes Derived From Septic Mouse Serum Modulate Immune Responses via Exosome-Associated Cytokines. Front Immunol. 2019;10:1560.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Castano C, Kalko S, Novials A, Parrizas M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci U S A. 2018;115(48):12158–63.PubMedPubMedCentralCrossRef Castano C, Kalko S, Novials A, Parrizas M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci U S A. 2018;115(48):12158–63.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Zhang Y, Hu YW, Zheng L, Wang Q. Characteristics and Roles of Exosomes in Cardiovascular Disease. DNA Cell Biol. 2017;36(3):202–11.PubMedCrossRef Zhang Y, Hu YW, Zheng L, Wang Q. Characteristics and Roles of Exosomes in Cardiovascular Disease. DNA Cell Biol. 2017;36(3):202–11.PubMedCrossRef
68.
Zurück zum Zitat Gao G, Li C, Zhu J, Wang Y, Huang Y, Zhao S, et al. Glutaminase 1 Regulates Neuroinflammation After Cerebral Ischemia Through Enhancing Microglial Activation and Pro-Inflammatory Exosome Release. Front Immunol. 2020;11:161.PubMedPubMedCentralCrossRef Gao G, Li C, Zhu J, Wang Y, Huang Y, Zhao S, et al. Glutaminase 1 Regulates Neuroinflammation After Cerebral Ischemia Through Enhancing Microglial Activation and Pro-Inflammatory Exosome Release. Front Immunol. 2020;11:161.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Lai N, Wu D, Liang T, Pan P, Yuan G, Li X, et al. Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. J Neuroinflammation. 2020;17(1):74.PubMedPubMedCentralCrossRef Lai N, Wu D, Liang T, Pan P, Yuan G, Li X, et al. Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. J Neuroinflammation. 2020;17(1):74.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Ge X, Guo M, Hu T, Li W, Huang S, Yin Z, et al. Increased Microglial Exosomal miR-124-3p Alleviates Neurodegeneration and Improves Cognitive Outcome after rmTBI. Mol Ther. 2020;28(2):503–22.PubMedCrossRef Ge X, Guo M, Hu T, Li W, Huang S, Yin Z, et al. Increased Microglial Exosomal miR-124-3p Alleviates Neurodegeneration and Improves Cognitive Outcome after rmTBI. Mol Ther. 2020;28(2):503–22.PubMedCrossRef
71.
Zurück zum Zitat Gerloff D, Lutzkendorf J, Moritz RKC, Wersig T, Mader K, Muller LP, et al. Melanoma-Derived Exosomal miR-125b-5p Educates Tumor Associated Macrophages (TAMs) by Targeting Lysosomal Acid Lipase A (LIPA). Cancers (Basel). 2020;12:2.CrossRef Gerloff D, Lutzkendorf J, Moritz RKC, Wersig T, Mader K, Muller LP, et al. Melanoma-Derived Exosomal miR-125b-5p Educates Tumor Associated Macrophages (TAMs) by Targeting Lysosomal Acid Lipase A (LIPA). Cancers (Basel). 2020;12:2.CrossRef
72.
Zurück zum Zitat Xiao Y, Zhong J, Zhong B, Huang J, Jiang L, Jiang Y, et al. Exosomes as potential sources of biomarkers in colorectal cancer. Cancer Lett. 2020;476:13–22.PubMedCrossRef Xiao Y, Zhong J, Zhong B, Huang J, Jiang L, Jiang Y, et al. Exosomes as potential sources of biomarkers in colorectal cancer. Cancer Lett. 2020;476:13–22.PubMedCrossRef
73.
Zurück zum Zitat Castellanos-Rizaldos E, Grimm DG, Tadigotla V, Hurley J, Healy J, Neal PL, et al. Exosome-Based Detection of EGFR T790M in Plasma from Non-Small Cell Lung Cancer Patients. Clin Cancer Res. 2018;24(12):2944–50.PubMedCrossRef Castellanos-Rizaldos E, Grimm DG, Tadigotla V, Hurley J, Healy J, Neal PL, et al. Exosome-Based Detection of EGFR T790M in Plasma from Non-Small Cell Lung Cancer Patients. Clin Cancer Res. 2018;24(12):2944–50.PubMedCrossRef
74.
Zurück zum Zitat Li ZG, Scott MJ, Brzoska T, Sundd P, Li YH, Billiar TR, et al. Lung epithelial cell-derived IL-25 negatively regulates LPS-induced exosome release from macrophages. Mil Med Res. 2018;5(1):24.PubMedPubMedCentralCrossRef Li ZG, Scott MJ, Brzoska T, Sundd P, Li YH, Billiar TR, et al. Lung epithelial cell-derived IL-25 negatively regulates LPS-induced exosome release from macrophages. Mil Med Res. 2018;5(1):24.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Zhang Z, Xing T, Chen Y, Xiao J. Exosome-mediated miR-200b promotes colorectal cancer proliferation upon TGF-beta1 exposure. Biomed Pharmacother. 2018;106:1135–43.PubMedCrossRef Zhang Z, Xing T, Chen Y, Xiao J. Exosome-mediated miR-200b promotes colorectal cancer proliferation upon TGF-beta1 exposure. Biomed Pharmacother. 2018;106:1135–43.PubMedCrossRef
76.
Zurück zum Zitat Wu CX, Liu ZF. Proteomic Profiling of Sweat Exosome Suggests its Involvement in Skin Immunity. J Invest Dermatol. 2018;138(1):89–97.PubMedCrossRef Wu CX, Liu ZF. Proteomic Profiling of Sweat Exosome Suggests its Involvement in Skin Immunity. J Invest Dermatol. 2018;138(1):89–97.PubMedCrossRef
77.
Zurück zum Zitat Zhang P, Zhou H, Lu K, Lu Y, Wang Y, Feng T. Exosome-mediated delivery of MALAT1 induces cell proliferation in breast cancer. Onco Targets Ther. 2018;11:291–9.PubMedPubMedCentralCrossRef Zhang P, Zhou H, Lu K, Lu Y, Wang Y, Feng T. Exosome-mediated delivery of MALAT1 induces cell proliferation in breast cancer. Onco Targets Ther. 2018;11:291–9.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Guay C, Regazzi R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab. 2017;19(Suppl 1):137–46.PubMedCrossRef Guay C, Regazzi R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab. 2017;19(Suppl 1):137–46.PubMedCrossRef
79.
Zurück zum Zitat Schwarzenbach H, Gahan PB. MicroRNA Shuttle from Cell-To-Cell by Exosomes and Its Impact in Cancer. Noncoding RNA. 2019;5:1. Schwarzenbach H, Gahan PB. MicroRNA Shuttle from Cell-To-Cell by Exosomes and Its Impact in Cancer. Noncoding RNA. 2019;5:1.
80.
Zurück zum Zitat Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem. 2013;288(15):10849–59.PubMedPubMedCentralCrossRef Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem. 2013;288(15):10849–59.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, et al. The RNA-Binding Protein SYNCRIP Is a Component of the Hepatocyte Exosomal Machinery Controlling MicroRNA Sorting. Cell Rep. 2016;17(3):799–808.PubMedCrossRef Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, et al. The RNA-Binding Protein SYNCRIP Is a Component of the Hepatocyte Exosomal Machinery Controlling MicroRNA Sorting. Cell Rep. 2016;17(3):799–808.PubMedCrossRef
82.
Zurück zum Zitat Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.PubMedPubMedCentralCrossRef Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MAJ, Sadek P, Sie D, et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014;8(6):1649–58.PubMedCrossRef Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MAJ, Sadek P, Sie D, et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 2014;8(6):1649–58.PubMedCrossRef
84.
Zurück zum Zitat Yokoi A, Villar-Prados A, Oliphint PA, Zhang J, Song X, De Hoff P, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv. 2019;5(11):eaax8849.PubMedPubMedCentralCrossRef Yokoi A, Villar-Prados A, Oliphint PA, Zhang J, Song X, De Hoff P, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv. 2019;5(11):eaax8849.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Guduric-Fuchs J, O'Connor A, Camp B, O'Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics. 2012;13:357.PubMedPubMedCentralCrossRef Guduric-Fuchs J, O'Connor A, Camp B, O'Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics. 2012;13:357.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat McKenzie AJ, Hoshino D, Hong NH, Cha DJ, Franklin JL, Coffey RJ, et al. KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep. 2016;15(5):978–87.PubMedPubMedCentralCrossRef McKenzie AJ, Hoshino D, Hong NH, Cha DJ, Franklin JL, Coffey RJ, et al. KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep. 2016;15(5):978–87.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15(10):617–38.PubMedCrossRef Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15(10):617–38.PubMedCrossRef
88.
Zurück zum Zitat Fabbri M. MicroRNAs and miRceptors: a new mechanism of action for intercellular communication. Philos Trans R Soc Lond B Biol Sci. 2018;373:1737.CrossRef Fabbri M. MicroRNAs and miRceptors: a new mechanism of action for intercellular communication. Philos Trans R Soc Lond B Biol Sci. 2018;373:1737.CrossRef
90.
Zurück zum Zitat Wu P, Zhang B, Shi H, Qian H, Xu W. MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy. 2018;20(3):291–301.PubMedCrossRef Wu P, Zhang B, Shi H, Qian H, Xu W. MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy. 2018;20(3):291–301.PubMedCrossRef
91.
Zurück zum Zitat Zhan C, Yang X. Yin X, Hou J. Oral Dis: Exosomes and other extracellular vesicles in oral and salivary gland cancers; 2019. Zhan C, Yang X. Yin X, Hou J. Oral Dis: Exosomes and other extracellular vesicles in oral and salivary gland cancers; 2019.
92.
Zurück zum Zitat Salarian M, Ibhagui OY, Yang JJ. Molecular imaging of extracellular matrix proteins with targeted probes using magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020. p. e1622. Salarian M, Ibhagui OY, Yang JJ. Molecular imaging of extracellular matrix proteins with targeted probes using magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020. p. e1622.
93.
Zurück zum Zitat Abyaneh HS, Regenold M, McKee TD, Allen C, Gauthier MA. Towards extracellular matrix normalization for improved treatment of solid tumors. Theranostics. 2020;10(4):1960–80.PubMedPubMedCentralCrossRef Abyaneh HS, Regenold M, McKee TD, Allen C, Gauthier MA. Towards extracellular matrix normalization for improved treatment of solid tumors. Theranostics. 2020;10(4):1960–80.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Sun Y, Wang R, Qiao M, Xu Y, Guan W, Wang L. Cancer associated fibroblasts tailored tumor microenvironment of therapy resistance in gastrointestinal cancers. J Cell Physiol. 2018;233(9):6359–69.PubMedCrossRef Sun Y, Wang R, Qiao M, Xu Y, Guan W, Wang L. Cancer associated fibroblasts tailored tumor microenvironment of therapy resistance in gastrointestinal cancers. J Cell Physiol. 2018;233(9):6359–69.PubMedCrossRef
95.
Zurück zum Zitat Houthuijzen JM, Jonkers J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastasis Rev. 2018;37(4):577–97.PubMedCrossRef Houthuijzen JM, Jonkers J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastasis Rev. 2018;37(4):577–97.PubMedCrossRef
96.
Zurück zum Zitat Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K. Fibroblasts in the Tumor Microenvironment: Shield or Spear? Int J Mol Sci. 2018;19:5.CrossRef Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K. Fibroblasts in the Tumor Microenvironment: Shield or Spear? Int J Mol Sci. 2018;19:5.CrossRef
97.
Zurück zum Zitat Karakasheva TA, Lin EW, Tang Q, Qiao E, Waldron TJ, Soni M, et al. IL-6 Mediates Cross-Talk between Tumor Cells and Activated Fibroblasts in the Tumor Microenvironment. Cancer Res. 2018;78(17):4957–70.PubMedPubMedCentralCrossRef Karakasheva TA, Lin EW, Tang Q, Qiao E, Waldron TJ, Soni M, et al. IL-6 Mediates Cross-Talk between Tumor Cells and Activated Fibroblasts in the Tumor Microenvironment. Cancer Res. 2018;78(17):4957–70.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70(23):9621–30.PubMedCrossRef Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70(23):9621–30.PubMedCrossRef
99.
Zurück zum Zitat Wu HJ, Hao M, Yeo SK, Guan JL. FAK signaling in cancer-associated fibroblasts promotes breast cancer cell migration and metastasis by exosomal miRNAs-mediated intercellular communication. Oncogene. 2020. Wu HJ, Hao M, Yeo SK, Guan JL. FAK signaling in cancer-associated fibroblasts promotes breast cancer cell migration and metastasis by exosomal miRNAs-mediated intercellular communication. Oncogene. 2020.
100.
101.
Zurück zum Zitat Zhang Y, Cai H, Chen S, Sun D, Zhang D, He Y. Exosomal transfer of miR-124 inhibits normal fibroblasts to cancer-associated fibroblasts transition by targeting sphingosine kinase 1 in ovarian cancer. J Cell Biochem. 2019. Zhang Y, Cai H, Chen S, Sun D, Zhang D, He Y. Exosomal transfer of miR-124 inhibits normal fibroblasts to cancer-associated fibroblasts transition by targeting sphingosine kinase 1 in ovarian cancer. J Cell Biochem. 2019.
102.
Zurück zum Zitat Lu Y, Zhang T, Shan S, Wang S, Bian W, Ren T, et al. MiR-124 regulates transforming growth factor-beta1 induced differentiation of lung resident mesenchymal stem cells to myofibroblast by repressing Wnt/beta-catenin signaling. Dev Biol. 2019;449(2):115–21.PubMedCrossRef Lu Y, Zhang T, Shan S, Wang S, Bian W, Ren T, et al. MiR-124 regulates transforming growth factor-beta1 induced differentiation of lung resident mesenchymal stem cells to myofibroblast by repressing Wnt/beta-catenin signaling. Dev Biol. 2019;449(2):115–21.PubMedCrossRef
103.
Zurück zum Zitat Frassanito MA, Desantis V, Di Marzo L, Craparotta I, Beltrame L, Marchini S, et al. Bone marrow fibroblasts overexpress miR-27b and miR-214 in step with multiple myeloma progression, dependent on tumour cell-derived exosomes. J Pathol. 2019;247(2):241–53.PubMedCrossRef Frassanito MA, Desantis V, Di Marzo L, Craparotta I, Beltrame L, Marchini S, et al. Bone marrow fibroblasts overexpress miR-27b and miR-214 in step with multiple myeloma progression, dependent on tumour cell-derived exosomes. J Pathol. 2019;247(2):241–53.PubMedCrossRef
104.
Zurück zum Zitat Lv X, Li J, Hu Y, Wang S, Yang C, Li C, et al. Overexpression of miR-27b-3p Targeting Wnt3a Regulates the Signaling Pathway of Wnt/beta-Catenin and Attenuates Atrial Fibrosis in Rats with Atrial Fibrillation. Oxid Med Cell Longev. 2019;2019:5703764.PubMedPubMedCentral Lv X, Li J, Hu Y, Wang S, Yang C, Li C, et al. Overexpression of miR-27b-3p Targeting Wnt3a Regulates the Signaling Pathway of Wnt/beta-Catenin and Attenuates Atrial Fibrosis in Rats with Atrial Fibrillation. Oxid Med Cell Longev. 2019;2019:5703764.PubMedPubMedCentral
105.
Zurück zum Zitat Wang J, Guan X, Zhang Y, Ge S, Zhang L, Li H, et al. Exosomal miR-27a Derived from Gastric Cancer Cells Regulates the Transformation of Fibroblasts into Cancer-Associated Fibroblasts. Cell Physiol Biochem. 2018;49(3):869–83.PubMedCrossRef Wang J, Guan X, Zhang Y, Ge S, Zhang L, Li H, et al. Exosomal miR-27a Derived from Gastric Cancer Cells Regulates the Transformation of Fibroblasts into Cancer-Associated Fibroblasts. Cell Physiol Biochem. 2018;49(3):869–83.PubMedCrossRef
106.
Zurück zum Zitat Dai G, Yao X, Zhang Y, Gu J, Geng Y, Xue F, et al. Colorectal cancer cell-derived exosomes containing miR-10b regulate fibroblast cells via the PI3K/Akt pathway. Bull Cancer. 2018;105(4):336–49.PubMedCrossRef Dai G, Yao X, Zhang Y, Gu J, Geng Y, Xue F, et al. Colorectal cancer cell-derived exosomes containing miR-10b regulate fibroblast cells via the PI3K/Akt pathway. Bull Cancer. 2018;105(4):336–49.PubMedCrossRef
107.
Zurück zum Zitat Liang HX, Sun LB, Liu NJ. Neferine inhibits proliferation, migration and invasion of U251 glioma cells by down-regulation of miR-10b. Biomed Pharmacother. 2019;109:1032–40.PubMedCrossRef Liang HX, Sun LB, Liu NJ. Neferine inhibits proliferation, migration and invasion of U251 glioma cells by down-regulation of miR-10b. Biomed Pharmacother. 2019;109:1032–40.PubMedCrossRef
108.
Zurück zum Zitat Yoshii S, Hayashi Y, Iijima H, Inoue T, Kimura K, Sakatani A, et al. Exosomal microRNAs derived from colon cancer cells promote tumor progression by suppressing fibroblast TP53 expression. Cancer Sci. 2019;110(8):2396–407.PubMedPubMedCentral Yoshii S, Hayashi Y, Iijima H, Inoue T, Kimura K, Sakatani A, et al. Exosomal microRNAs derived from colon cancer cells promote tumor progression by suppressing fibroblast TP53 expression. Cancer Sci. 2019;110(8):2396–407.PubMedPubMedCentral
109.
Zurück zum Zitat Zhou X, Yan T, Huang C, Xu Z, Wang L, Jiang E, et al. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 2018;37(1):242.PubMedPubMedCentralCrossRef Zhou X, Yan T, Huang C, Xu Z, Wang L, Jiang E, et al. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 2018;37(1):242.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Hu J, Huang CX, Rao PP, Cao GQ, Zhang Y, Zhou JP, et al. MicroRNA-155 inhibition attenuates endoplasmic reticulum stress-induced cardiomyocyte apoptosis following myocardial infarction via reducing macrophage inflammation. Eur J Pharmacol. 2019;857:172449.PubMedCrossRef Hu J, Huang CX, Rao PP, Cao GQ, Zhang Y, Zhou JP, et al. MicroRNA-155 inhibition attenuates endoplasmic reticulum stress-induced cardiomyocyte apoptosis following myocardial infarction via reducing macrophage inflammation. Eur J Pharmacol. 2019;857:172449.PubMedCrossRef
111.
Zurück zum Zitat Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J, et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res. 2018;37(1):324.PubMedPubMedCentralCrossRef Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J, et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res. 2018;37(1):324.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Jiang C, Guo Y, Yu H, Lu S, Meng L. Pleiotropic microRNA-21 in pulmonary remodeling: novel insights for molecular mechanism and present advancements. Allergy Asthma Clin Immunol. 2019;15:33.PubMedPubMedCentralCrossRef Jiang C, Guo Y, Yu H, Lu S, Meng L. Pleiotropic microRNA-21 in pulmonary remodeling: novel insights for molecular mechanism and present advancements. Allergy Asthma Clin Immunol. 2019;15:33.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Fang T, Lv H, Lv G, Li T, Wang C, Han Q, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 2018;9(1):191.PubMedPubMedCentralCrossRef Fang T, Lv H, Lv G, Li T, Wang C, Han Q, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 2018;9(1):191.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Lawson J, Dickman C, Towle R, Jabalee J, Javer A, Garnis C. Extracellular vesicle secretion of miR-142-3p from lung adenocarcinoma cells induces tumor promoting changes in the stroma through cell-cell communication. Mol Carcinog. 2019;58(3):376–87.PubMedCrossRef Lawson J, Dickman C, Towle R, Jabalee J, Javer A, Garnis C. Extracellular vesicle secretion of miR-142-3p from lung adenocarcinoma cells induces tumor promoting changes in the stroma through cell-cell communication. Mol Carcinog. 2019;58(3):376–87.PubMedCrossRef
115.
Zurück zum Zitat Qin X, Guo H, Wang X, Zhu X, Yan M, Wang X, et al. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol. 2019;20(1):12.PubMedPubMedCentralCrossRef Qin X, Guo H, Wang X, Zhu X, Yan M, Wang X, et al. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol. 2019;20(1):12.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Ham IH, Lee D, Hur H. Role of Cancer-Associated Fibroblast in Gastric Cancer Progression and Resistance to Treatments. J Oncol. 2019;2019:6270784.PubMedPubMedCentralCrossRef Ham IH, Lee D, Hur H. Role of Cancer-Associated Fibroblast in Gastric Cancer Progression and Resistance to Treatments. J Oncol. 2019;2019:6270784.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Deepak KGK, Vempati R, Nagaraju GP, Dasari VR, N S, Rao DN, et al. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res. 2020;153:104683.PubMedCrossRef Deepak KGK, Vempati R, Nagaraju GP, Dasari VR, N S, Rao DN, et al. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res. 2020;153:104683.PubMedCrossRef
118.
Zurück zum Zitat Hashimoto K, Ochi H, Sunamura S, Kosaka N, Mabuchi Y, Fukuda T, et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci U S A. 2018;115(9):2204–9.PubMedPubMedCentralCrossRef Hashimoto K, Ochi H, Sunamura S, Kosaka N, Mabuchi Y, Fukuda T, et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci U S A. 2018;115(9):2204–9.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Wang FT, Sun W, Zhang JT, Fan YZ. Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer. Oncol Lett. 2019;17(3):3055–65.PubMedPubMedCentral Wang FT, Sun W, Zhang JT, Fan YZ. Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer. Oncol Lett. 2019;17(3):3055–65.PubMedPubMedCentral
120.
Zurück zum Zitat Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–15.PubMedPubMedCentralCrossRef Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–15.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Bao L, You B, Shi S, Shan Y, Zhang Q, Yue H, et al. Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10. Oncogene. 2018;37(21):2873–89.PubMedPubMedCentralCrossRef Bao L, You B, Shi S, Shan Y, Zhang Q, Yue H, et al. Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10. Oncogene. 2018;37(21):2873–89.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Lu S, Xu Q. MicroRNA-23a inhibits melanoma cell proliferation, migration, and invasion in mice through a negative feedback regulation of sdcbp and the MAPK/ERK signaling pathway. IUBMB Life. 2019;71(5):587–600.PubMedCrossRef Lu S, Xu Q. MicroRNA-23a inhibits melanoma cell proliferation, migration, and invasion in mice through a negative feedback regulation of sdcbp and the MAPK/ERK signaling pathway. IUBMB Life. 2019;71(5):587–600.PubMedCrossRef
123.
Zurück zum Zitat Sun X, Ma X, Wang J, Zhao Y, Wang Y, Bihl JC, et al. Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through miR-21/VEGF signal. Oncotarget. 2017;8(22):36137–48.PubMedPubMedCentralCrossRef Sun X, Ma X, Wang J, Zhao Y, Wang Y, Bihl JC, et al. Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through miR-21/VEGF signal. Oncotarget. 2017;8(22):36137–48.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Sabry D, El-Deek SEM, Maher M, El-Baz MAH, El-Bader HM, Amer E, et al. Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: impact of HIF-1alpha-VEGF signaling pathway. Mol Cell Biochem. 2019;454(1-2):177–89.PubMedCrossRef Sabry D, El-Deek SEM, Maher M, El-Baz MAH, El-Bader HM, Amer E, et al. Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: impact of HIF-1alpha-VEGF signaling pathway. Mol Cell Biochem. 2019;454(1-2):177–89.PubMedCrossRef
125.
Zurück zum Zitat Lin XJ, Fang JH, Yang XJ, Zhang C, Yuan Y, Zheng L, et al. Hepatocellular Carcinoma Cell-Secreted Exosomal MicroRNA-210 Promotes Angiogenesis In Vitro and In Vivo. Mol Ther Nucleic Acids. 2018;11:243–52.PubMedPubMedCentralCrossRef Lin XJ, Fang JH, Yang XJ, Zhang C, Yuan Y, Zheng L, et al. Hepatocellular Carcinoma Cell-Secreted Exosomal MicroRNA-210 Promotes Angiogenesis In Vitro and In Vivo. Mol Ther Nucleic Acids. 2018;11:243–52.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Masoumi-Dehghi S, Babashah S, Sadeghizadeh M. microRNA-141-3p-containing small extracellular vesicles derived from epithelial ovarian cancer cells promote endothelial cell angiogenesis through activating the JAK/STAT3 and NF-kappaB signaling pathways. J Cell Commun Signal. 2020. Masoumi-Dehghi S, Babashah S, Sadeghizadeh M. microRNA-141-3p-containing small extracellular vesicles derived from epithelial ovarian cancer cells promote endothelial cell angiogenesis through activating the JAK/STAT3 and NF-kappaB signaling pathways. J Cell Commun Signal. 2020.
127.
Zurück zum Zitat Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1alpha/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr). 2017;40(5):457–70.PubMedCrossRef Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1alpha/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr). 2017;40(5):457–70.PubMedCrossRef
128.
Zurück zum Zitat Kim DH, Park S, Kim H, Choi YJ, Kim SY, Sung KJ, et al. Tumor-derived exosomal miR-619-5p promotes tumor angiogenesis and metastasis through the inhibition of RCAN1.4. Cancer Lett. 2020;475:2–13.PubMedCrossRef Kim DH, Park S, Kim H, Choi YJ, Kim SY, Sung KJ, et al. Tumor-derived exosomal miR-619-5p promotes tumor angiogenesis and metastasis through the inhibition of RCAN1.4. Cancer Lett. 2020;475:2–13.PubMedCrossRef
129.
Zurück zum Zitat He L, Zhu W, Chen Q, Yuan Y, Wang Y, Wang J, et al. Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics. 2019;9(26):8206–20.PubMedPubMedCentralCrossRef He L, Zhu W, Chen Q, Yuan Y, Wang Y, Wang J, et al. Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics. 2019;9(26):8206–20.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9(1):5395.PubMedPubMedCentralCrossRef Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9(1):5395.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Farrugia MK, Vanderbilt DB, Salkeni MA, Ruppert JM. Kruppel-like Pluripotency Factors as Modulators of Cancer Cell Therapeutic Responses. Cancer Res. 2016;76(7):1677–82.PubMedPubMedCentralCrossRef Farrugia MK, Vanderbilt DB, Salkeni MA, Ruppert JM. Kruppel-like Pluripotency Factors as Modulators of Cancer Cell Therapeutic Responses. Cancer Res. 2016;76(7):1677–82.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 2017;36(34):4929–42.PubMedCrossRef Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 2017;36(34):4929–42.PubMedCrossRef
133.
Zurück zum Zitat Chen X, Yang F, Zhang T, Wang W, Xi W, Li Y, et al. MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma. J Exp Clin Cancer Res. 2019;38(1):99.PubMedPubMedCentralCrossRef Chen X, Yang F, Zhang T, Wang W, Xi W, Li Y, et al. MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma. J Exp Clin Cancer Res. 2019;38(1):99.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Zhao S, Li J, Zhang G, Wang Q, Wu C, Zhang Q, et al. Exosomal miR-451a Functions as a Tumor Suppressor in Hepatocellular Carcinoma by Targeting LPIN1. Cell Physiol Biochem. 2019;53(1):19–35.PubMedCrossRef Zhao S, Li J, Zhang G, Wang Q, Wu C, Zhang Q, et al. Exosomal miR-451a Functions as a Tumor Suppressor in Hepatocellular Carcinoma by Targeting LPIN1. Cell Physiol Biochem. 2019;53(1):19–35.PubMedCrossRef
135.
Zurück zum Zitat Lu J, Liu QH, Wang F, Tan JJ, Deng YQ, Peng XH, et al. Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma. J Exp Clin Cancer Res. 2018;37(1):147.PubMedPubMedCentralCrossRef Lu J, Liu QH, Wang F, Tan JJ, Deng YQ, Peng XH, et al. Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma. J Exp Clin Cancer Res. 2018;37(1):147.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Lopatina T, Grange C, Fonsato V, Tapparo M, Brossa A, Fallo S, et al. Extracellular vesicles from human liver stem cells inhibit tumor angiogenesis. Int J Cancer. 2019;144(2):322–33.PubMedCrossRef Lopatina T, Grange C, Fonsato V, Tapparo M, Brossa A, Fallo S, et al. Extracellular vesicles from human liver stem cells inhibit tumor angiogenesis. Int J Cancer. 2019;144(2):322–33.PubMedCrossRef
137.
Zurück zum Zitat Vignard V, Labbe M, Marec N, Andre-Gregoire G, Jouand N, Fonteneau JF, et al. MicroRNAs in Tumor Exosomes Drive Immune Escape in Melanoma. Cancer Immunol Res. 2020;8(2):255–67.PubMedCrossRef Vignard V, Labbe M, Marec N, Andre-Gregoire G, Jouand N, Fonteneau JF, et al. MicroRNAs in Tumor Exosomes Drive Immune Escape in Melanoma. Cancer Immunol Res. 2020;8(2):255–67.PubMedCrossRef
138.
Zurück zum Zitat Schmittgen TD. Exosomal miRNA Cargo as Mediator of Immune Escape Mechanisms in Neuroblastoma. Cancer Res. 2019;79(7):1293–4.PubMedCrossRef Schmittgen TD. Exosomal miRNA Cargo as Mediator of Immune Escape Mechanisms in Neuroblastoma. Cancer Res. 2019;79(7):1293–4.PubMedCrossRef
139.
Zurück zum Zitat Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett. 2018;413:102–9.PubMedCrossRef Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett. 2018;413:102–9.PubMedCrossRef
140.
Zurück zum Zitat van Dalen FJ, van Stevendaal M, Fennemann FL, Verdoes M, Ilina O. Molecular Repolarisation of Tumour-Associated Macrophages. Molecules. 2018;24:1.CrossRef van Dalen FJ, van Stevendaal M, Fennemann FL, Verdoes M, Ilina O. Molecular Repolarisation of Tumour-Associated Macrophages. Molecules. 2018;24:1.CrossRef
141.
Zurück zum Zitat Fotaki G, Jin C, Ramachandran M, Kerzeli IK, Karlsson-Parra A, Yu D, et al. Pro-inflammatory allogeneic DCs promote activation of bystander immune cells and thereby license antigen-specific T-cell responses. Oncoimmunology. 2018;7(3):e1395126.PubMedCrossRef Fotaki G, Jin C, Ramachandran M, Kerzeli IK, Karlsson-Parra A, Yu D, et al. Pro-inflammatory allogeneic DCs promote activation of bystander immune cells and thereby license antigen-specific T-cell responses. Oncoimmunology. 2018;7(3):e1395126.PubMedCrossRef
142.
Zurück zum Zitat Diao J, Gu H, Tang M, Zhao J, Cattral MS. Tumor Dendritic Cells (DCs) Derived from Precursors of Conventional DCs Are Dispensable for Intratumor CTL Responses. J Immunol. 2018;201(4):1306–14.PubMedPubMedCentralCrossRef Diao J, Gu H, Tang M, Zhao J, Cattral MS. Tumor Dendritic Cells (DCs) Derived from Precursors of Conventional DCs Are Dispensable for Intratumor CTL Responses. J Immunol. 2018;201(4):1306–14.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Kikete S, Chu X, Wang L, Bian Y. Endogenous and tumour-derived microRNAs regulate cross-presentation in dendritic cells and consequently cytotoxic T cell function. Cytotechnology. 2016;68(6):2223–33.PubMedPubMedCentralCrossRef Kikete S, Chu X, Wang L, Bian Y. Endogenous and tumour-derived microRNAs regulate cross-presentation in dendritic cells and consequently cytotoxic T cell function. Cytotechnology. 2016;68(6):2223–33.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–66.PubMedPubMedCentralCrossRef Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–66.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Ding G, Zhou L, Shen T, Cao L. IFN-gamma induces the upregulation of RFXAP via inhibition of miR-212-3p in pancreatic cancer cells: A novel mechanism for IFN-gamma response. Oncol Lett. 2018;15(3):3760–5.PubMedPubMedCentral Ding G, Zhou L, Shen T, Cao L. IFN-gamma induces the upregulation of RFXAP via inhibition of miR-212-3p in pancreatic cancer cells: A novel mechanism for IFN-gamma response. Oncol Lett. 2018;15(3):3760–5.PubMedPubMedCentral
146.
Zurück zum Zitat Ding G, Zhou L, Qian Y, Fu M, Chen J, Chen J, et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget. 2015;6(30):29877–88.PubMedPubMedCentralCrossRef Ding G, Zhou L, Qian Y, Fu M, Chen J, Chen J, et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget. 2015;6(30):29877–88.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol. 2014;292(1-2):65–9.PubMedCrossRef Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol. 2014;292(1-2):65–9.PubMedCrossRef
148.
Zurück zum Zitat Taghikhani A, Hassan ZM, Ebrahimi M, Moazzeni SM. microRNA modified tumor-derived exosomes as novel tools for maturation of dendritic cells. J Cell Physiol. 2019;234(6):9417–27.PubMedCrossRef Taghikhani A, Hassan ZM, Ebrahimi M, Moazzeni SM. microRNA modified tumor-derived exosomes as novel tools for maturation of dendritic cells. J Cell Physiol. 2019;234(6):9417–27.PubMedCrossRef
149.
Zurück zum Zitat Tung SL, Boardman DA, Sen M, Letizia M, Peng Q, Cianci N, et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci Rep. 2018;8(1):6065.PubMedPubMedCentralCrossRef Tung SL, Boardman DA, Sen M, Letizia M, Peng Q, Cianci N, et al. Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci Rep. 2018;8(1):6065.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T, et al. MicroRNA-Containing T-Regulatory-Cell-Derived Exosomes Suppress Pathogenic T Helper 1 Cells. Immunity. 2014;41(3):503.PubMedPubMedCentralCrossRef Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T, et al. MicroRNA-Containing T-Regulatory-Cell-Derived Exosomes Suppress Pathogenic T Helper 1 Cells. Immunity. 2014;41(3):503.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Grossman JG, Nywening TM, Belt BA, Panni RZ, Krasnick BA, DeNardo DG, et al. Recruitment of CCR2(+) tumor associated macrophage to sites of liver metastasis confers a poor prognosis in human colorectal cancer. Oncoimmunology. 2018;7(9):e1470729.PubMedPubMedCentralCrossRef Grossman JG, Nywening TM, Belt BA, Panni RZ, Krasnick BA, DeNardo DG, et al. Recruitment of CCR2(+) tumor associated macrophage to sites of liver metastasis confers a poor prognosis in human colorectal cancer. Oncoimmunology. 2018;7(9):e1470729.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Eichmuller SB, Osen W, Mandelboim O, Seliger B. Immune Modulatory microRNAs Involved in Tumor Attack and Tumor Immune Escape. J Natl Cancer Inst. 2017;109:10.CrossRef Eichmuller SB, Osen W, Mandelboim O, Seliger B. Immune Modulatory microRNAs Involved in Tumor Attack and Tumor Immune Escape. J Natl Cancer Inst. 2017;109:10.CrossRef
153.
Zurück zum Zitat Choo YW, Kang M, Kim HY, Han J, Kang S, Lee JR, et al. M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. ACS Nano. 2018;12(9):8977–93.PubMedCrossRef Choo YW, Kang M, Kim HY, Han J, Kang S, Lee JR, et al. M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. ACS Nano. 2018;12(9):8977–93.PubMedCrossRef
154.
Zurück zum Zitat Trivedi M, Talekar M, Shah P, Ouyang Q, Amiji M. Modification of tumor cell exosome content by transfection with wt-p53 and microRNA-125b expressing plasmid DNA and its effect on macrophage polarization. Oncogenesis. 2016;5(8):e250.PubMedPubMedCentralCrossRef Trivedi M, Talekar M, Shah P, Ouyang Q, Amiji M. Modification of tumor cell exosome content by transfection with wt-p53 and microRNA-125b expressing plasmid DNA and its effect on macrophage polarization. Oncogenesis. 2016;5(8):e250.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Hsieh CH, Tai SK, Yang MH. Snail-overexpressing Cancer Cells Promote M2-Like Polarization of Tumor-Associated Macrophages by Delivering MiR-21-Abundant Exosomes. Neoplasia. 2018;20(8):775–88.PubMedPubMedCentralCrossRef Hsieh CH, Tai SK, Yang MH. Snail-overexpressing Cancer Cells Promote M2-Like Polarization of Tumor-Associated Macrophages by Delivering MiR-21-Abundant Exosomes. Neoplasia. 2018;20(8):775–88.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Ying X, Wu Q, Wu X, Zhu Q, Wang X, Jiang L, et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 2016;7(28):43076–87.PubMedPubMedCentralCrossRef Ying X, Wu Q, Wu X, Zhu Q, Wang X, Jiang L, et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 2016;7(28):43076–87.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Chen X, Zhou J, Li X, Wang X, Lin Y, Wang X. Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett. 2018;435:80–91.PubMedCrossRef Chen X, Zhou J, Li X, Wang X, Lin Y, Wang X. Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett. 2018;435:80–91.PubMedCrossRef
158.
Zurück zum Zitat Chen X, Ying X, Wang X, Wu X, Zhu Q, Wang X. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep. 2017;38(1):522–8.PubMedCrossRef Chen X, Ying X, Wang X, Wu X, Zhu Q, Wang X. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep. 2017;38(1):522–8.PubMedCrossRef
159.
Zurück zum Zitat Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Hypoxic Tumor-Derived Exosomal miR-301a Mediates M2 Macrophage Polarization via PTEN/PI3Kgamma to Promote Pancreatic Cancer Metastasis. Cancer Res. 2018;78(16):4586–98.PubMedCrossRef Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Hypoxic Tumor-Derived Exosomal miR-301a Mediates M2 Macrophage Polarization via PTEN/PI3Kgamma to Promote Pancreatic Cancer Metastasis. Cancer Res. 2018;78(16):4586–98.PubMedCrossRef
160.
Zurück zum Zitat Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Correction: Hypoxic Tumor-Derived Exosomal miR-301a Mediates M2 Macrophage Polarization via PTEN/PI3Kgamma to Promote Pancreatic Cancer Metastasis. Cancer Res. 2020;80(4):922.PubMedCrossRef Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Correction: Hypoxic Tumor-Derived Exosomal miR-301a Mediates M2 Macrophage Polarization via PTEN/PI3Kgamma to Promote Pancreatic Cancer Metastasis. Cancer Res. 2020;80(4):922.PubMedCrossRef
161.
Zurück zum Zitat Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, et al. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun. 2018;9(1):771.PubMedPubMedCentralCrossRef Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, et al. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun. 2018;9(1):771.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat DeVito NC, Plebanek MP, Theivanthiran B, Hanks BA. Role of Tumor-Mediated Dendritic Cell Tolerization in Immune Evasion. Front Immunol. 2019;10:2876.PubMedPubMedCentralCrossRef DeVito NC, Plebanek MP, Theivanthiran B, Hanks BA. Role of Tumor-Mediated Dendritic Cell Tolerization in Immune Evasion. Front Immunol. 2019;10:2876.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Mohammadpour H, MacDonald CR, Qiao G, Chen M, Dong B, Hylander BL, et al. beta2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J Clin Invest. 2019;129(12):5537–52.PubMedPubMedCentralCrossRef Mohammadpour H, MacDonald CR, Qiao G, Chen M, Dong B, Hylander BL, et al. beta2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J Clin Invest. 2019;129(12):5537–52.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Yang Z, Guo J, Weng L, Tang W, Jin S, Ma W. Myeloid-derived suppressor cells-new and exciting players in lung cancer. J Hematol Oncol. 2020;13(1):10.PubMedPubMedCentralCrossRef Yang Z, Guo J, Weng L, Tang W, Jin S, Ma W. Myeloid-derived suppressor cells-new and exciting players in lung cancer. J Hematol Oncol. 2020;13(1):10.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Guo X, Qiu W, Liu Q, Qian M, Wang S, Zhang Z, et al. Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene. 2018;37(31):4239–59.PubMedCrossRef Guo X, Qiu W, Liu Q, Qian M, Wang S, Zhang Z, et al. Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene. 2018;37(31):4239–59.PubMedCrossRef
166.
Zurück zum Zitat Bruns H, Bottcher M, Qorraj M, Fabri M, Jitschin S, Dindorf J, et al. CLL-cell-mediated MDSC induction by exosomal miR-155 transfer is disrupted by vitamin D. Leukemia. 2017;31(4):985–8.PubMedCrossRef Bruns H, Bottcher M, Qorraj M, Fabri M, Jitschin S, Dindorf J, et al. CLL-cell-mediated MDSC induction by exosomal miR-155 transfer is disrupted by vitamin D. Leukemia. 2017;31(4):985–8.PubMedCrossRef
167.
Zurück zum Zitat Deng Z, Rong Y, Teng Y, Zhuang X, Samykutty A, Mu J, et al. Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene. 2017;36(5):639–51.PubMedCrossRef Deng Z, Rong Y, Teng Y, Zhuang X, Samykutty A, Mu J, et al. Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene. 2017;36(5):639–51.PubMedCrossRef
168.
Zurück zum Zitat Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. 2014;3. Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. 2014;3.
169.
Zurück zum Zitat Zickler AM, El Andaloussi S. Functional extracellular vesicles aplenty. Nat Biomed Eng. 2020;4(1):9–11.PubMedCrossRef Zickler AM, El Andaloussi S. Functional extracellular vesicles aplenty. Nat Biomed Eng. 2020;4(1):9–11.PubMedCrossRef
170.
Zurück zum Zitat Bhagirath D, Yang TL, Bucay N, Sekhon K, Majid S, Shahryari V, et al. microRNA-1246 Is an Exosomal Biomarker for Aggressive Prostate Cancer. Cancer Res. 2018;78(7):1833–44.PubMedPubMedCentralCrossRef Bhagirath D, Yang TL, Bucay N, Sekhon K, Majid S, Shahryari V, et al. microRNA-1246 Is an Exosomal Biomarker for Aggressive Prostate Cancer. Cancer Res. 2018;78(7):1833–44.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Li XJ, Ren ZJ, Tang JH, Yu Q. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer. Cell Physiol Biochem. 2017;44(5):1741–8.PubMedCrossRef Li XJ, Ren ZJ, Tang JH, Yu Q. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer. Cell Physiol Biochem. 2017;44(5):1741–8.PubMedCrossRef
172.
Zurück zum Zitat Sakha S, Muramatsu T, Ueda K, Inazawa J. Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci Rep. 2016;6:38750.PubMedPubMedCentralCrossRef Sakha S, Muramatsu T, Ueda K, Inazawa J. Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci Rep. 2016;6:38750.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Zhai LY, Li MX, Pan WL, Chen Y, Li MM, Pang JX, et al. In Situ Detection of Plasma Exosomal MicroRNA-1246 for Breast Cancer Diagnostics by a Au Nanoflare Probe. ACS Appl Mater Interfaces. 2018;10(46):39478–86.PubMedCrossRef Zhai LY, Li MX, Pan WL, Chen Y, Li MM, Pang JX, et al. In Situ Detection of Plasma Exosomal MicroRNA-1246 for Breast Cancer Diagnostics by a Au Nanoflare Probe. ACS Appl Mater Interfaces. 2018;10(46):39478–86.PubMedCrossRef
174.
Zurück zum Zitat Meltzer S, Bjornetro T, Lyckander LG, Flatmark K, Dueland S, Samiappan R, et al. Circulating Exosomal miR-141-3p and miR-375 in Metastatic Progression of Rectal Cancer. Transl Oncol. 2019;12(8):1038–44.PubMedPubMedCentralCrossRef Meltzer S, Bjornetro T, Lyckander LG, Flatmark K, Dueland S, Samiappan R, et al. Circulating Exosomal miR-141-3p and miR-375 in Metastatic Progression of Rectal Cancer. Transl Oncol. 2019;12(8):1038–44.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Su YY, Sun L, Guo ZR, Li JC, Bai TT, Cai XX, et al. Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer. J Ovarian Res. 2019;12(1):6.PubMedPubMedCentralCrossRef Su YY, Sun L, Guo ZR, Li JC, Bai TT, Cai XX, et al. Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer. J Ovarian Res. 2019;12(1):6.PubMedPubMedCentralCrossRef
176.
Zurück zum Zitat Foj L, Ferrer F, Serra M, Arevalo A, Gavagnach M, Gimenez N, et al. Exosomal and Non-Exosomal Urinary miRNAs in Prostate Cancer Detection and Prognosis. Prostate. 2017;77(6):573–83.PubMedCrossRef Foj L, Ferrer F, Serra M, Arevalo A, Gavagnach M, Gimenez N, et al. Exosomal and Non-Exosomal Urinary miRNAs in Prostate Cancer Detection and Prognosis. Prostate. 2017;77(6):573–83.PubMedCrossRef
177.
Zurück zum Zitat Zheng M, Hou L, Ma Y, Zhou L, Wang F, Cheng B, et al. Exosomal let-7d-3p and miR-30d-5p as diagnostic biomarkers for non-invasive screening of cervical cancer and its precursors. Mol Cancer. 2019;18(1):76.PubMedPubMedCentralCrossRef Zheng M, Hou L, Ma Y, Zhou L, Wang F, Cheng B, et al. Exosomal let-7d-3p and miR-30d-5p as diagnostic biomarkers for non-invasive screening of cervical cancer and its precursors. Mol Cancer. 2019;18(1):76.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Lee YR, Kim G, Tak WY, Jang SY, Kweon YO, Park JG, et al. Circulating exosomal noncoding RNAs as prognostic biomarkers in human hepatocellular carcinoma. Int J Cancer. 2019;144(6):1444–52.PubMedCrossRef Lee YR, Kim G, Tak WY, Jang SY, Kweon YO, Park JG, et al. Circulating exosomal noncoding RNAs as prognostic biomarkers in human hepatocellular carcinoma. Int J Cancer. 2019;144(6):1444–52.PubMedCrossRef
179.
Zurück zum Zitat Asadirad A, Hashemi SM, Baghaei K, Ghanbarian H, Mortaz E, Zali MR, et al. Phenotypical and functional evaluation of dendritic cells after exosomal delivery of miRNA-155. Life Sci. 2019;219:152–62.PubMedCrossRef Asadirad A, Hashemi SM, Baghaei K, Ghanbarian H, Mortaz E, Zali MR, et al. Phenotypical and functional evaluation of dendritic cells after exosomal delivery of miRNA-155. Life Sci. 2019;219:152–62.PubMedCrossRef
180.
Zurück zum Zitat Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology. 2020;18(1):10.PubMedPubMedCentralCrossRef Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology. 2020;18(1):10.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Jiang W, Ma P, Deng L, Liu Z, Wang X, Liu X, et al. Hepatitis A virus structural protein pX interacts with ALIX and promotes the secretion of virions and foreign proteins through exosome-like vesicles. J Extracell Vesicles. 2020;9(1):1716513.PubMedPubMedCentralCrossRef Jiang W, Ma P, Deng L, Liu Z, Wang X, Liu X, et al. Hepatitis A virus structural protein pX interacts with ALIX and promotes the secretion of virions and foreign proteins through exosome-like vesicles. J Extracell Vesicles. 2020;9(1):1716513.PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernandez-Delgado I, Torralba D, Moreno-Gonzalo O, et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7:13588.PubMedPubMedCentralCrossRef Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernandez-Delgado I, Torralba D, Moreno-Gonzalo O, et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7:13588.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Leidal AM, Huang HH, Marsh T, Solvik T, Zhang D, Ye J, et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat Cell Biol. 2020;22(2):187–99.PubMedCrossRef Leidal AM, Huang HH, Marsh T, Solvik T, Zhang D, Ye J, et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat Cell Biol. 2020;22(2):187–99.PubMedCrossRef
Metadaten
Titel
Exosomal miRNAs in tumor microenvironment
verfasst von
Shiming Tan
Longzheng Xia
Pin Yi
Yaqian Han
Lu Tang
Qing Pan
Yutong Tian
Shan Rao
Linda Oyang
Jiaxin Liang
Jinguan Lin
Min Su
Yingrui Shi
Deliang Cao
Yujuan Zhou
Qianjin Liao
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Experimental & Clinical Cancer Research / Ausgabe 1/2020
Elektronische ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-020-01570-6

Weitere Artikel der Ausgabe 1/2020

Journal of Experimental & Clinical Cancer Research 1/2020 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.