Skip to main content
Erschienen in: European Journal of Applied Physiology 4/2019

29.01.2019 | Original Article

Experimental validation of the 3-parameter critical power model in cycling

verfasst von: Giovanni Vinetti, Anna Taboni, Paolo Bruseghini, Stefano Camelio, Matteo D’Elia, Nazzareno Fagoni, Christian Moia, Guido Ferretti

Erschienen in: European Journal of Applied Physiology | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The three-parameter model of critical power (3-p) implies that in the severe exercise intensity domain time to exhaustion (Tlim) decreases hyperbolically with power output starting from the power asymptote (critical power, cr) and reaching 0 s at a finite power limit (0) thanks to a negative time asymptote (k). We aimed to validate 3-p for short Tlim and to test the hypothesis that 0 represents the maximal instantaneous muscular power.

Methods

Ten subjects performed an incremental test and nine constant-power trials to exhaustion on an electronically braked cycle ergometer. All trials were fitted to 3-p by means of non-linear regression, and those with Tlim greater than 2 min also to the 2-parameter model (2-p), obtained constraining k to 0 s. Five vertical squat jumps on a force platform were also performed to determine the single-leg (i.e., halved) maximal instantaneous power.

Results

Tlim ranged from 26 ± 4 s to 15.7 ± 4.9 min. In 3-p, with respect to 2-p, cr was identical (177 ± 26 W), while curvature constant W’ was higher (17.0 ± 4.3 vs 15.9 ± 4.2 kJ, p < 0.01). 3-p-derived 0 was lower than single-leg maximal instantaneous power (1184 ± 265 vs 1554 ± 235 W, p < 0.01).

Conclusions

3-p is a good descriptor of the work capacity above cr up to Tlim as short as 20 s. However, since there is a discrepancy between estimated 0 and measured maximal instantaneous power, a modification of the model has been proposed.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adami A, Sivieri A, Moia C, Perini R, Ferretti G (2013) Effects of step duration in incremental ramp protocols on peak power and maximal oxygen consumption. Eur J Appl Physiol 113:2647–2653CrossRefPubMed Adami A, Sivieri A, Moia C, Perini R, Ferretti G (2013) Effects of step duration in incremental ramp protocols on peak power and maximal oxygen consumption. Eur J Appl Physiol 113:2647–2653CrossRefPubMed
Zurück zum Zitat Antonutto G, Capelli C, Girardis M, Zamparo P, di Prampero PE (1999) Effects of microgravity on maximal power of lower limbs during very short efforts in humans. J Appl Physiol 86:85–92CrossRefPubMed Antonutto G, Capelli C, Girardis M, Zamparo P, di Prampero PE (1999) Effects of microgravity on maximal power of lower limbs during very short efforts in humans. J Appl Physiol 86:85–92CrossRefPubMed
Zurück zum Zitat Arsac LM, Belli A, Lacour JR (1996) Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer. Eur J Appl Physiol Occup Physiol 74:100–106CrossRefPubMed Arsac LM, Belli A, Lacour JR (1996) Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer. Eur J Appl Physiol Occup Physiol 74:100–106CrossRefPubMed
Zurück zum Zitat Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Lewis RW, Camic CL, Schmidt RJ, Johnson GO (2014) Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test. J Strength Cond Res 28:592–600CrossRefPubMed Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Lewis RW, Camic CL, Schmidt RJ, Johnson GO (2014) Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test. J Strength Cond Res 28:592–600CrossRefPubMed
Zurück zum Zitat Bishop D, Jenkins DG, Howard A (1998) The critical power function is dependent on the duration of the predictive exercise tests chosen. Int J Sports Med 19:125–129CrossRefPubMed Bishop D, Jenkins DG, Howard A (1998) The critical power function is dependent on the duration of the predictive exercise tests chosen. Int J Sports Med 19:125–129CrossRefPubMed
Zurück zum Zitat Bonjour J, Capelli C, Antonutto G, Calza S, Tam E, Linnarsson D, Ferretti G (2010) Determinants of oxygen consumption during exercise on cycle ergometer: The effects of gravity acceleration. Respir Physiol Neurobiol 171:128–134CrossRefPubMed Bonjour J, Capelli C, Antonutto G, Calza S, Tam E, Linnarsson D, Ferretti G (2010) Determinants of oxygen consumption during exercise on cycle ergometer: The effects of gravity acceleration. Respir Physiol Neurobiol 171:128–134CrossRefPubMed
Zurück zum Zitat Bonnefoy M, Kostka T, Arsac LM, Berthouze SE, Lacour J-R (1998) Peak anaerobic power in elderly men. Eur J Appl Physiol Occup Physiol 77:182–188CrossRefPubMed Bonnefoy M, Kostka T, Arsac LM, Berthouze SE, Lacour J-R (1998) Peak anaerobic power in elderly men. Eur J Appl Physiol Occup Physiol 77:182–188CrossRefPubMed
Zurück zum Zitat Bull AJ, Housh TJ, Johnson GO, Perry SR (2000) Effect of mathematical modeling on the estimation of critical power. Med Sci Sports Exerc 32:526–530CrossRefPubMed Bull AJ, Housh TJ, Johnson GO, Perry SR (2000) Effect of mathematical modeling on the estimation of critical power. Med Sci Sports Exerc 32:526–530CrossRefPubMed
Zurück zum Zitat Bull AJ, Housh TJ, Johnson GO, Rana SR (2008) Physiological responses at five estimates of critical velocity. Eur J Appl Physiol 102:711–720CrossRefPubMed Bull AJ, Housh TJ, Johnson GO, Rana SR (2008) Physiological responses at five estimates of critical velocity. Eur J Appl Physiol 102:711–720CrossRefPubMed
Zurück zum Zitat Capmal S, Vandewalle H (2010) Interpretation of crank torque during an all-out cycling exercise at high pedal rate. Sport Eng 13:31–38CrossRef Capmal S, Vandewalle H (2010) Interpretation of crank torque during an all-out cycling exercise at high pedal rate. Sport Eng 13:31–38CrossRef
Zurück zum Zitat Chatagnon M, Pouilly J-P, Thomas V, Busso T (2005) Comparison between maximal power in the power-endurance relationship and maximal instantaneous power. Eur J Appl Physiol 94:711–717CrossRefPubMed Chatagnon M, Pouilly J-P, Thomas V, Busso T (2005) Comparison between maximal power in the power-endurance relationship and maximal instantaneous power. Eur J Appl Physiol 94:711–717CrossRefPubMed
Zurück zum Zitat Ferguson C, Rossiter HB, Whipp BJ, Cathcart AJ, Murgatroyd SR, Ward SA (2010) Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship. J Appl Physiol 108:866–874CrossRefPubMed Ferguson C, Rossiter HB, Whipp BJ, Cathcart AJ, Murgatroyd SR, Ward SA (2010) Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship. J Appl Physiol 108:866–874CrossRefPubMed
Zurück zum Zitat Ferretti G, Gussoni M, Di Prampero PE, Cerretelli P (1987) Effects of exercise on maximal instantaneous muscular power of humans. J Appl Physiol 62:2288–2294CrossRefPubMed Ferretti G, Gussoni M, Di Prampero PE, Cerretelli P (1987) Effects of exercise on maximal instantaneous muscular power of humans. J Appl Physiol 62:2288–2294CrossRefPubMed
Zurück zum Zitat Ferretti G, Ishii M, Moia C, Cerretelli P (1992) Effects of temperature on the maximal instantaneous muscle power of humans. Eur J Appl Physiol Occup Physiol 64:112–116CrossRefPubMed Ferretti G, Ishii M, Moia C, Cerretelli P (1992) Effects of temperature on the maximal instantaneous muscle power of humans. Eur J Appl Physiol Occup Physiol 64:112–116CrossRefPubMed
Zurück zum Zitat Ferretti G, Narici MV, Binzoni T, Gariod L, Le Bas JF, Reutenauer H, Cerretelli P (1994) Determinants of peak muscle power: effects of age and physical conditioning. Eur J Appl Physiol Occup Physiol 68:111–115CrossRefPubMed Ferretti G, Narici MV, Binzoni T, Gariod L, Le Bas JF, Reutenauer H, Cerretelli P (1994) Determinants of peak muscle power: effects of age and physical conditioning. Eur J Appl Physiol Occup Physiol 68:111–115CrossRefPubMed
Zurück zum Zitat Ferretti G, Berg HE, Minetti AE, Moia C, Rampichini S, Narici MV (2001) Maximal instantaneous muscular power after prolonged bed rest in humans. J Appl Physiol 90:431–435CrossRefPubMed Ferretti G, Berg HE, Minetti AE, Moia C, Rampichini S, Narici MV (2001) Maximal instantaneous muscular power after prolonged bed rest in humans. J Appl Physiol 90:431–435CrossRefPubMed
Zurück zum Zitat Ferretti G, Fagoni N, Taboni A, Bruseghini P, Vinetti G (2017) The physiology of submaximal exercise: the steady state concept. Respir Physiol Neurobiol 246:76–85CrossRefPubMed Ferretti G, Fagoni N, Taboni A, Bruseghini P, Vinetti G (2017) The physiology of submaximal exercise: the steady state concept. Respir Physiol Neurobiol 246:76–85CrossRefPubMed
Zurück zum Zitat Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO, Womack CJ (1995) Estimation of critical power with nonlinear and linear models. Med Sci Sports Exerc 27:1430–1438CrossRefPubMed Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO, Womack CJ (1995) Estimation of critical power with nonlinear and linear models. Med Sci Sports Exerc 27:1430–1438CrossRefPubMed
Zurück zum Zitat Hill DW (2004) The relationship between power and time to fatigue in cycle ergometer exercise. Int J Sports Med 25:357–361CrossRefPubMed Hill DW (2004) The relationship between power and time to fatigue in cycle ergometer exercise. Int J Sports Med 25:357–361CrossRefPubMed
Zurück zum Zitat Hill DW, Smith JC, Leuschel JL, Chasteen SD, Miller SA (1995) Effect of pedal cadence on parameters of the hyperbolic power-time relationship. Int J Sports Med 16:82–87CrossRefPubMed Hill DW, Smith JC, Leuschel JL, Chasteen SD, Miller SA (1995) Effect of pedal cadence on parameters of the hyperbolic power-time relationship. Int J Sports Med 16:82–87CrossRefPubMed
Zurück zum Zitat Hill DW, Poole DC, Smith JC (2002) The relationship between power and the time to achieve VO2max. Med Sci Sports Exerc 34:709–714PubMed Hill DW, Poole DC, Smith JC (2002) The relationship between power and the time to achieve VO2max. Med Sci Sports Exerc 34:709–714PubMed
Zurück zum Zitat Housh DJ, Housh TJ, Bauge SM (1990) A methodological consideration for the determination of critical power and anaerobic work capacity. Res Q Exerc Sport 61:406–409CrossRefPubMed Housh DJ, Housh TJ, Bauge SM (1990) A methodological consideration for the determination of critical power and anaerobic work capacity. Res Q Exerc Sport 61:406–409CrossRefPubMed
Zurück zum Zitat Jones AM, Vanhatalo A (2017) The ‘Critical Power’ concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sport Med 47:65–78CrossRef Jones AM, Vanhatalo A (2017) The ‘Critical Power’ concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sport Med 47:65–78CrossRef
Zurück zum Zitat Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC (2010) Critical power: implications for determination of V̇O2max and exercise tolerance. Med Sci Sports Exerc 42:1876–1890CrossRefPubMed Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC (2010) Critical power: implications for determination of V̇O2max and exercise tolerance. Med Sci Sports Exerc 42:1876–1890CrossRefPubMed
Zurück zum Zitat Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM, Pogliaghi S (2015) Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sport Exerc 47:1932–1940CrossRef Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM, Pogliaghi S (2015) Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sport Exerc 47:1932–1940CrossRef
Zurück zum Zitat Martin JC, Wagner BM, Coyle EF (1997) Inertial-load method determines maximal cycling power in a single exercise bout. Med Sci Sports Exerc 29:1505–1512CrossRefPubMed Martin JC, Wagner BM, Coyle EF (1997) Inertial-load method determines maximal cycling power in a single exercise bout. Med Sci Sports Exerc 29:1505–1512CrossRefPubMed
Zurück zum Zitat Mattioni Maturana F, Fontana FY, Pogliaghi S, Passfield L, Murias JM (2018) Critical power: how different protocols and models affect its determination. J Sci Med Sport 21:742–747CrossRefPubMed Mattioni Maturana F, Fontana FY, Pogliaghi S, Passfield L, Murias JM (2018) Critical power: how different protocols and models affect its determination. J Sci Med Sport 21:742–747CrossRefPubMed
Zurück zum Zitat Monod H, Scherrer J (1965) The work capacity of a synergic muscular group. Ergonomics 8:329–338CrossRef Monod H, Scherrer J (1965) The work capacity of a synergic muscular group. Ergonomics 8:329–338CrossRef
Zurück zum Zitat Moritani T, Nagata A, Devries HA, Muro M (1981) Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 24:339–350CrossRefPubMed Moritani T, Nagata A, Devries HA, Muro M (1981) Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 24:339–350CrossRefPubMed
Zurück zum Zitat Mourot L, Hintzy F, Messonier L, Zameziati K, Belli A (2004) Supra-maximal cycling efficiency assessed in humans by using a new protocol. Eur J Appl Physiol 93:325–332CrossRefPubMed Mourot L, Hintzy F, Messonier L, Zameziati K, Belli A (2004) Supra-maximal cycling efficiency assessed in humans by using a new protocol. Eur J Appl Physiol 93:325–332CrossRefPubMed
Zurück zum Zitat Poole DC, Ward SA, Gardner GW, Whipp BJ (1988) Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31:1265–1279CrossRefPubMed Poole DC, Ward SA, Gardner GW, Whipp BJ (1988) Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31:1265–1279CrossRefPubMed
Zurück zum Zitat Sargeant AJ, Hoinville E, Young A (1981) Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 51:1175–1182CrossRefPubMed Sargeant AJ, Hoinville E, Young A (1981) Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 51:1175–1182CrossRefPubMed
Zurück zum Zitat Vinetti G, Fagoni N, Taboni A, Camelio S, di Prampero PE, Ferretti G (2017) Effects of recovery interval duration on the parameters of the critical power model for incremental exercise. Eur J Appl Physiol 117:1859–1867CrossRefPubMed Vinetti G, Fagoni N, Taboni A, Camelio S, di Prampero PE, Ferretti G (2017) Effects of recovery interval duration on the parameters of the critical power model for incremental exercise. Eur J Appl Physiol 117:1859–1867CrossRefPubMed
Zurück zum Zitat Zamparo P, Antonutto G, Capelli C, Girardis M, Sepulcri L, di Prampero PE (1997) Effects of elastic recoil on maximal explosive power of the lower limbs. Eur J Appl Physiol Occup Physiol 75:289–297CrossRefPubMed Zamparo P, Antonutto G, Capelli C, Girardis M, Sepulcri L, di Prampero PE (1997) Effects of elastic recoil on maximal explosive power of the lower limbs. Eur J Appl Physiol Occup Physiol 75:289–297CrossRefPubMed
Metadaten
Titel
Experimental validation of the 3-parameter critical power model in cycling
verfasst von
Giovanni Vinetti
Anna Taboni
Paolo Bruseghini
Stefano Camelio
Matteo D’Elia
Nazzareno Fagoni
Christian Moia
Guido Ferretti
Publikationsdatum
29.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Applied Physiology / Ausgabe 4/2019
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-019-04083-z

Weitere Artikel der Ausgabe 4/2019

European Journal of Applied Physiology 4/2019 Zur Ausgabe