Skip to main content
Erschienen in: Journal of NeuroEngineering and Rehabilitation 1/2014

Open Access 01.12.2014 | Research

Facilitating myoelectric-control with transcranial direct current stimulation: a preliminary study in healthy humans

verfasst von: Anirban Dutta, Walter Paulus, Michael A Nitsche

Erschienen in: Journal of NeuroEngineering and Rehabilitation | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Background

Functional Electrical Stimulation (FES) can electrically activate paretic muscles to assist movement for post-stroke neurorehabilitation. Here, sensory-motor integration may be facilitated by triggering FES with residual electromyographic (EMG) activity. However, muscle activity following stroke often suffers from delays in initiation and termination which may be alleviated with an adjuvant treatment at the central nervous system (CNS) level with transcranial direct current stimulation (tDCS) thereby facilitating re-learning and retaining of normative muscle activation patterns.

Methods

This study on 12 healthy volunteers was conducted to investigate the effects of anodal tDCS of the primary motor cortex (M1) and cerebellum on latencies during isometric contraction of tibialis anterior (TA) muscle for myoelectric visual pursuit with quick initiation/termination of muscle activation i.e. 'ballistic EMG control’ as well as modulation of EMG for 'proportional EMG control’.

Results

The normalized delay in initiation and termination of muscle activity during post-intervention 'ballistic EMG control’ trials showed a significant main effect of the anodal tDCS target: cerebellar, M1, sham (F(2) = 2.33, p < 0.1), and interaction effect between tDCS target and step-response type: initiation/termination of muscle activation (F(2) = 62.75, p < 0.001), but no significant effect for the step-response type (F(1) = 0.03, p = 0.87). The post-intervention population marginal means during 'ballistic EMG control’ showed two important findings at 95% confidence interval (critical values from Scheffe’s S procedure): 1. Offline cerebellar anodal tDCS increased the delay in initiation of TA contraction while M1 anodal tDCS decreased the same when compared to sham tDCS, 2. Offline M1 anodal tDCS increased the delay in termination of TA contraction when compared to cerebellar anodal tDCS or sham tDCS. Moreover, online cerebellar anodal tDCS decreased the learning rate during 'proportional EMG control’ when compared to M1 anodal and sham tDCS.

Conclusions

The preliminary results from healthy subjects showed specific, and at least partially antagonistic effects, of M1 and cerebellar anodal tDCS on motor performance during myoelectric control. These results are encouraging, but further studies are necessary to better define how tDCS over particular regions of the cerebellum may facilitate learning of myoelectric control for brain machine interfaces.
Literatur
1.
Zurück zum Zitat Graupe D, Kohn K: Functional electrical stimulation for ambulation by paraplegics . University of Michigan, USA: Krieger Publishing Company; 1994:113-115. Graupe D, Kohn K: Functional electrical stimulation for ambulation by paraplegics . University of Michigan, USA: Krieger Publishing Company; 1994:113-115.
2.
Zurück zum Zitat Kralj A, Bajd T: Functional Electrical Stimulation: Standing and Walking After Spinal Cord Injury. Boca Raton, USA: CRC Press; 1989:123-177. Kralj A, Bajd T: Functional Electrical Stimulation: Standing and Walking After Spinal Cord Injury. Boca Raton, USA: CRC Press; 1989:123-177.
3.
Zurück zum Zitat Sinkjaer T, Haugland M, Inmann A, Hansen M, Nielsen KD: Biopotentials as command and feedback signals in functional electrical stimulation systems. Med Eng Phys 2003,25(1):29-40. 10.1016/S1350-4533(02)00178-9CrossRefPubMed Sinkjaer T, Haugland M, Inmann A, Hansen M, Nielsen KD: Biopotentials as command and feedback signals in functional electrical stimulation systems. Med Eng Phys 2003,25(1):29-40. 10.1016/S1350-4533(02)00178-9CrossRefPubMed
4.
Zurück zum Zitat Chae J, Quinn A, El-Hayek K, Santing J, Berezovski R, Harley M: Delay in initiation and termination of tibialis anterior contraction in lower-limb hemiparesis: relationship to lower-limb motor impairment and mobility. Arch Phys Med Rehabil 2006,87(9):1230-1234. 10.1016/j.apmr.2006.05.007CrossRefPubMed Chae J, Quinn A, El-Hayek K, Santing J, Berezovski R, Harley M: Delay in initiation and termination of tibialis anterior contraction in lower-limb hemiparesis: relationship to lower-limb motor impairment and mobility. Arch Phys Med Rehabil 2006,87(9):1230-1234. 10.1016/j.apmr.2006.05.007CrossRefPubMed
5.
Zurück zum Zitat Nitsche MA, Paulus W: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000,527(3):633-639. 10.1111/j.1469-7793.2000.t01-1-00633.xCrossRefPubMedPubMedCentral Nitsche MA, Paulus W: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000,527(3):633-639. 10.1111/j.1469-7793.2000.t01-1-00633.xCrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Nitsche MA, Paulus W: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001,57(10):1899-1901. 10.1212/WNL.57.10.1899CrossRefPubMed Nitsche MA, Paulus W: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001,57(10):1899-1901. 10.1212/WNL.57.10.1899CrossRefPubMed
7.
Zurück zum Zitat Liebetanz D, Nitsche MA, Tergau F, Paulus W: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 2002,125(10):2238-2247. 10.1093/brain/awf238CrossRefPubMed Liebetanz D, Nitsche MA, Tergau F, Paulus W: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 2002,125(10):2238-2247. 10.1093/brain/awf238CrossRefPubMed
8.
Zurück zum Zitat Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W: Modulation of cortical excitability by weak direct current stimulation-technical, safety and functional aspects. Suppl Clin Neurophysiol 2003, 56: 255-276.CrossRefPubMed Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W: Modulation of cortical excitability by weak direct current stimulation-technical, safety and functional aspects. Suppl Clin Neurophysiol 2003, 56: 255-276.CrossRefPubMed
9.
Zurück zum Zitat Nitsche MA, Roth A, Kuo MF, Fischer AK, Liebetanz D, Lang N, Tergau F, Paulus W: Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. J Neurosci 2007,27(14):3807-3812. 10.1523/JNEUROSCI.5348-06.2007CrossRefPubMed Nitsche MA, Roth A, Kuo MF, Fischer AK, Liebetanz D, Lang N, Tergau F, Paulus W: Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. J Neurosci 2007,27(14):3807-3812. 10.1523/JNEUROSCI.5348-06.2007CrossRefPubMed
10.
Zurück zum Zitat Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F: Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci 2003,15(4):619-626. 10.1162/089892903321662994CrossRefPubMed Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F: Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci 2003,15(4):619-626. 10.1162/089892903321662994CrossRefPubMed
11.
Zurück zum Zitat Antal A, Varga ET, Nitsche MA, Chadaide Z, Paulus W, Kovács G, Vidnyánszky Z: Direct current stimulation over MT+/V5 modulates motion aftereffect in humans. Neuroreport 2004,15(16):2491-2494. 10.1097/00001756-200411150-00012CrossRefPubMed Antal A, Varga ET, Nitsche MA, Chadaide Z, Paulus W, Kovács G, Vidnyánszky Z: Direct current stimulation over MT+/V5 modulates motion aftereffect in humans. Neuroreport 2004,15(16):2491-2494. 10.1097/00001756-200411150-00012CrossRefPubMed
12.
Zurück zum Zitat Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, Rigonatti SP, Marcolin MA, Freedman SD, Nitsche MA, Pascual-Leone A: Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 2005,16(14):1551-1555. 10.1097/01.wnr.0000177010.44602.5eCrossRefPubMed Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, Rigonatti SP, Marcolin MA, Freedman SD, Nitsche MA, Pascual-Leone A: Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport 2005,16(14):1551-1555. 10.1097/01.wnr.0000177010.44602.5eCrossRefPubMed
13.
Zurück zum Zitat Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG: Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005,128(3):490-499. 10.1093/brain/awh369CrossRefPubMed Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG: Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005,128(3):490-499. 10.1093/brain/awh369CrossRefPubMed
14.
Zurück zum Zitat Hallett M: Neuroplasticity and rehabilitation. J Rehabil Res Dev 2005,42((4):xv-xxii. Hallett M: Neuroplasticity and rehabilitation. J Rehabil Res Dev 2005,42((4):xv-xxii.
15.
Zurück zum Zitat Schlaug G, Renga V: Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery. Expert Rev Med Devices 2008,5(6):759-768. 10.1586/17434440.5.6.759CrossRefPubMedPubMedCentral Schlaug G, Renga V: Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery. Expert Rev Med Devices 2008,5(6):759-768. 10.1586/17434440.5.6.759CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Tanaka S, Hanakawa T, Honda M, Watanabe K: Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 2009,196(3):459-465. 10.1007/s00221-009-1863-9CrossRefPubMedPubMedCentral Tanaka S, Hanakawa T, Honda M, Watanabe K: Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 2009,196(3):459-465. 10.1007/s00221-009-1863-9CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Madhavan S, Weber KA, Stinear JW: Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: implications for rehabilitation. Exp Brain Res 2011,209(1):9-17. 10.1007/s00221-010-2511-0CrossRefPubMed Madhavan S, Weber KA, Stinear JW: Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: implications for rehabilitation. Exp Brain Res 2011,209(1):9-17. 10.1007/s00221-010-2511-0CrossRefPubMed
19.
Zurück zum Zitat Galea JM, Jayaram G, Ajagbe L, Celnik P: Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 2009,29(28):9115-9122. 10.1523/JNEUROSCI.2184-09.2009CrossRefPubMedPubMedCentral Galea JM, Jayaram G, Ajagbe L, Celnik P: Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 2009,29(28):9115-9122. 10.1523/JNEUROSCI.2184-09.2009CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P: Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex 2011,21(8):1761-1770. 10.1093/cercor/bhq246CrossRefPubMedPubMedCentral Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P: Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex 2011,21(8):1761-1770. 10.1093/cercor/bhq246CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Wolpert DM, Miall RC, Kawato M: Internal models in the cerebellum. Trends Cogn Sci 1998,2(9):338-347. 10.1016/S1364-6613(98)01221-2CrossRefPubMed Wolpert DM, Miall RC, Kawato M: Internal models in the cerebellum. Trends Cogn Sci 1998,2(9):338-347. 10.1016/S1364-6613(98)01221-2CrossRefPubMed
22.
Zurück zum Zitat Shadmehr R, Wise SP: Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning. Cambridge: MIT Press; 2005. Shadmehr R, Wise SP: Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning. Cambridge: MIT Press; 2005.
23.
24.
Zurück zum Zitat Lenhardt SA, McIntosh KC, Gabriel DA: The surface EMG-force relationship during isometric dorsiflexion in males and females. Electromyogr Clin Neurophysiol 2009,49(5):227-234.PubMed Lenhardt SA, McIntosh KC, Gabriel DA: The surface EMG-force relationship during isometric dorsiflexion in males and females. Electromyogr Clin Neurophysiol 2009,49(5):227-234.PubMed
25.
Zurück zum Zitat Dutta A: Development of an electromyogram-based controller for functional electrical stimulation assisted walking after partial paralysis. In PhD Thesis. Cleveland, USA: Case Western Reserve University, Biomedical Engineering Department; 2009. Dutta A: Development of an electromyogram-based controller for functional electrical stimulation assisted walking after partial paralysis. In PhD Thesis. Cleveland, USA: Case Western Reserve University, Biomedical Engineering Department; 2009.
26.
Zurück zum Zitat Dutta A, Kobetic R, Triolo RJ: An objective method for selecting command sources for myoelectrically triggered lower-limb neuroprostheses. J Rehabil Res Dev 2011,48(8):935-948. 10.1682/JRRD.2010.08.0141CrossRefPubMed Dutta A, Kobetic R, Triolo RJ: An objective method for selecting command sources for myoelectrically triggered lower-limb neuroprostheses. J Rehabil Res Dev 2011,48(8):935-948. 10.1682/JRRD.2010.08.0141CrossRefPubMed
27.
Zurück zum Zitat Yeom H, Chang YH: Autogenic EMG-controlled functional electrical stimulation for ankle dorsiflexion control. J Neurosci Methods 2010,193(1):118-125. 10.1016/j.jneumeth.2010.08.011CrossRefPubMedPubMedCentral Yeom H, Chang YH: Autogenic EMG-controlled functional electrical stimulation for ankle dorsiflexion control. J Neurosci Methods 2010,193(1):118-125. 10.1016/j.jneumeth.2010.08.011CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Jeffery DT, Norton JA, Roy FD, Gorassini MA: Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res 2007,182(2):281-287. 10.1007/s00221-007-1093-yCrossRefPubMed Jeffery DT, Norton JA, Roy FD, Gorassini MA: Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res 2007,182(2):281-287. 10.1007/s00221-007-1093-yCrossRefPubMed
29.
30.
Zurück zum Zitat Pelli DG: The videotoolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 1997, 10: 437-442. 10.1163/156856897X00366CrossRefPubMed Pelli DG: The videotoolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 1997, 10: 437-442. 10.1163/156856897X00366CrossRefPubMed
31.
Zurück zum Zitat Kleiner M, Brainard D, Pelli D: What’s new in Psychtoolbox-3? In Proceedings of the 30th European Conference on Visual Perception. Arezzo, Italy; 2007. Kleiner M, Brainard D, Pelli D: What’s new in Psychtoolbox-3? In Proceedings of the 30th European Conference on Visual Perception. Arezzo, Italy; 2007.
32.
Zurück zum Zitat Radhakrishnan SM, Baker SN, Jackson A: Learning a novel myoelectric-controlled interface task. J Neurophysiol 2008,100(4):2397-2408. 10.1152/jn.90614.2008CrossRefPubMedPubMedCentral Radhakrishnan SM, Baker SN, Jackson A: Learning a novel myoelectric-controlled interface task. J Neurophysiol 2008,100(4):2397-2408. 10.1152/jn.90614.2008CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Newell A, Rosenbloom P: Mechanisms of skill acqusition and the law of practice. In Cognitive skills and their acquisition. Edited by: Anderson JR. Hillsdale, NJ: Erlbaum; 1981:1-55. Newell A, Rosenbloom P: Mechanisms of skill acqusition and the law of practice. In Cognitive skills and their acquisition. Edited by: Anderson JR. Hillsdale, NJ: Erlbaum; 1981:1-55.
34.
Zurück zum Zitat Wise SP, Shadmehr R: Motor control. In Encyclopedia of the human brain. Volume 3. USA: Elsevier; 2002:1-21. Wise SP, Shadmehr R: Motor control. In Encyclopedia of the human brain. Volume 3. USA: Elsevier; 2002:1-21.
35.
Zurück zum Zitat Popa T, Velayudhan B, Hubsch C, Pradeep S, Roze E, Vidailhet M, Meunier S, Kishore A: Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex 2013,23(2):305-314. 10.1093/cercor/bhs016CrossRefPubMedPubMedCentral Popa T, Velayudhan B, Hubsch C, Pradeep S, Roze E, Vidailhet M, Meunier S, Kishore A: Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex 2013,23(2):305-314. 10.1093/cercor/bhs016CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Wolpert DM, Ghahramani Z, Jordan MI: An internal model for sensorimotor integration. Science 1995,269(5232):1880-1882. 10.1126/science.7569931CrossRefPubMed Wolpert DM, Ghahramani Z, Jordan MI: An internal model for sensorimotor integration. Science 1995,269(5232):1880-1882. 10.1126/science.7569931CrossRefPubMed
37.
Zurück zum Zitat Bhushan N, Shadmehr R: Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 1999,81(1):39-60. 10.1007/s004220050543CrossRefPubMed Bhushan N, Shadmehr R: Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 1999,81(1):39-60. 10.1007/s004220050543CrossRefPubMed
38.
Zurück zum Zitat Marko MK, Haith AM, Harran MD, Shadmehr R: Sensitivity to prediction error in reach adaptation. J Neurophysiol 2012,108(6):1752-1763. 10.1152/jn.00177.2012CrossRefPubMedPubMedCentral Marko MK, Haith AM, Harran MD, Shadmehr R: Sensitivity to prediction error in reach adaptation. J Neurophysiol 2012,108(6):1752-1763. 10.1152/jn.00177.2012CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Kassavetis P, Hoffland BS, Saifee TA, Bhatia KP, van de Warrenburg BP, Rothwell JC, Edwards MJ: cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. Exp Brain Res 2011,209(3):437-442. 10.1007/s00221-011-2575-5CrossRefPubMed Kassavetis P, Hoffland BS, Saifee TA, Bhatia KP, van de Warrenburg BP, Rothwell JC, Edwards MJ: cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. Exp Brain Res 2011,209(3):437-442. 10.1007/s00221-011-2575-5CrossRefPubMed
40.
Zurück zum Zitat Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, Galea JM, Groiss SJ, Hiraoka K, Kassavetis P, Lesage E, Manto M, Miall RC, Priori A, Sadnicka A, Ugawa Y, Ziemann U: Non-invasive cerebellar stimulation-a consensus paper. Cerebellum 2013. in press Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, Galea JM, Groiss SJ, Hiraoka K, Kassavetis P, Lesage E, Manto M, Miall RC, Priori A, Sadnicka A, Ugawa Y, Ziemann U: Non-invasive cerebellar stimulation-a consensus paper. Cerebellum 2013. in press
41.
Zurück zum Zitat Rabe K, Livne O, Gizewski ER, Aurich V, Beck A, Timmann D, Donchin O: Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. J Neurophysiol 2009,101(4):1961-1971. 10.1152/jn.91069.2008CrossRefPubMed Rabe K, Livne O, Gizewski ER, Aurich V, Beck A, Timmann D, Donchin O: Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. J Neurophysiol 2009,101(4):1961-1971. 10.1152/jn.91069.2008CrossRefPubMed
42.
Zurück zum Zitat Donchin O, Rabe K, Diedrichsen J, Lally N, Schoch B, Gizewski ER, Timmann D: cerebellar regions involved in adaptation to force field and visuomotor perturbation. J Neurophysiol 2012,107(1):134-147. 10.1152/jn.00007.2011CrossRefPubMed Donchin O, Rabe K, Diedrichsen J, Lally N, Schoch B, Gizewski ER, Timmann D: cerebellar regions involved in adaptation to force field and visuomotor perturbation. J Neurophysiol 2012,107(1):134-147. 10.1152/jn.00007.2011CrossRefPubMed
Metadaten
Titel
Facilitating myoelectric-control with transcranial direct current stimulation: a preliminary study in healthy humans
verfasst von
Anirban Dutta
Walter Paulus
Michael A Nitsche
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Journal of NeuroEngineering and Rehabilitation / Ausgabe 1/2014
Elektronische ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-11-13

Weitere Artikel der Ausgabe 1/2014

Journal of NeuroEngineering and Rehabilitation 1/2014 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.