Skip to main content
Erschienen in: Current Osteoporosis Reports 3/2023

27.04.2023

Fracture Toughness: Bridging the Gap Between Hip Fracture and Fracture Risk Assessment

verfasst von: Daniel Dapaah, Daniel R. Martel, Faezeh Iranmanesh, Corin Seelemann, Andrew C. Laing, Thomas Willett

Erschienen in: Current Osteoporosis Reports | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

This review surveys recent literature related to cortical bone fracture mechanics and its application towards understanding bone fragility and hip fractures.

Recent Findings

Current clinical tools for hip fracture risk assessment have been shown to be insensitive in some cases of elevated fracture risk leading to the question of what other factors account for fracture risk. The emergence of cortical bone fracture mechanics has thrown light on other factors at the tissue level that are important to bone fracture resistance and therefore assessment of fracture risk. Recent cortical bone fracture toughness studies have shown contributions from the microstructure and composition towards cortical bone fracture resistance. A key component currently overlooked in the clinical evaluation of fracture risk is the importance of the organic phase and water to irreversible deformation mechanisms that enhance the fracture resistance of cortical bone. Despite recent findings, there is an incomplete understanding of which mechanisms lead to the diminished contribution of the organic phase and water to the fracture toughness in aging and bone-degrading diseases. Notably, studies of the fracture resistance of cortical bone from the hip (specifically the femoral neck) are few, and those that exist are mostly consistent with studies of bone tissue from the femoral diaphysis.

Summary

Cortical bone fracture mechanics highlights that there are multiple determinants of bone quality and therefore fracture risk and its assessment. There is still much more to learn concerning the tissue-level mechanisms of bone fragility. An improved understanding of these mechanisms will allow for the development of better diagnostic tools and therapeutic measures for bone fragility and fracture.
Literatur
1.
Zurück zum Zitat Wiktorowicz ME, Goeree R, Papaioannou A, Adachi JD, Papadimitropoulos E. Economic implications of hip fracture: health service use, institutional care and cost in Canada. Osteoporos Int. 2001;12(4):271–8.PubMedCrossRef Wiktorowicz ME, Goeree R, Papaioannou A, Adachi JD, Papadimitropoulos E. Economic implications of hip fracture: health service use, institutional care and cost in Canada. Osteoporos Int. 2001;12(4):271–8.PubMedCrossRef
2.
Zurück zum Zitat Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33.PubMedCrossRef Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33.PubMedCrossRef
3.
Zurück zum Zitat Wu AM, Bisignano C, James SL, Abady GG, Abedi A, Abu-Gharbieh E, et al. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021;2(9):e580–92.CrossRef Wu AM, Bisignano C, James SL, Abady GG, Abedi A, Abu-Gharbieh E, et al. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021;2(9):e580–92.CrossRef
4.
Zurück zum Zitat Kanis JA on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health care level. Technical Report. World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK. 2007 Kanis JA on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health care level. Technical Report. World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK. 2007
5.
Zurück zum Zitat Vestergaard P, Rejnmark L, Mosekilde L. Increased mortality in patients with a hip fracture-effect of pre-morbid conditions and post-fracture complications. Osteoporos Int. 2007;18(12):1583–93.PubMedCrossRef Vestergaard P, Rejnmark L, Mosekilde L. Increased mortality in patients with a hip fracture-effect of pre-morbid conditions and post-fracture complications. Osteoporos Int. 2007;18(12):1583–93.PubMedCrossRef
6.
Zurück zum Zitat Schattner A. The burden of hip fractures-why aren’t we better at prevention? QJM. 2018;111(11):765–7.PubMedCrossRef Schattner A. The burden of hip fractures-why aren’t we better at prevention? QJM. 2018;111(11):765–7.PubMedCrossRef
7.
Zurück zum Zitat Nikitovic M, Wodchis WP, Krahn MD, Cadarette SM. Direct health-care costs attributed to hip fractures among seniors: a matched cohort study. Osteoporos Int. 2013;24(2):659–69.PubMedCrossRef Nikitovic M, Wodchis WP, Krahn MD, Cadarette SM. Direct health-care costs attributed to hip fractures among seniors: a matched cohort study. Osteoporos Int. 2013;24(2):659–69.PubMedCrossRef
9.
Zurück zum Zitat Ioannidis G, Papaioannou A, Hopman WM, Akhtar-Danesh N, Anastassiades T, Pickard L, et al. Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ 2009;181(5):265–71. Ioannidis G, Papaioannou A, Hopman WM, Akhtar-Danesh N, Anastassiades T, Pickard L, et al. Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ 2009;181(5):265–71.
10.
Zurück zum Zitat Jiang HX, Majumdar SR, Dick DA, Moreau M, Raso J, Otto DD, et al. Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J Bone Miner Res. 2005;20(3):494–500.PubMedCrossRef Jiang HX, Majumdar SR, Dick DA, Moreau M, Raso J, Otto DD, et al. Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J Bone Miner Res. 2005;20(3):494–500.PubMedCrossRef
11.
Zurück zum Zitat Cheng XG, Lowet G, Boonen S, Nicholson PHF, Brys P, Nijs J, et al. Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone. 1997;20(3):213–8.PubMedCrossRef Cheng XG, Lowet G, Boonen S, Nicholson PHF, Brys P, Nijs J, et al. Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone. 1997;20(3):213–8.PubMedCrossRef
12.
Zurück zum Zitat Micha K, Aspenberg P, Siev H. Osteoporosis : the emperor has no clothes. J Intern Med. 2015;277:662–73.CrossRef Micha K, Aspenberg P, Siev H. Osteoporosis : the emperor has no clothes. J Intern Med. 2015;277:662–73.CrossRef
13.
Zurück zum Zitat Schuit SCE, Van Der Klift M, Weel AEAM, De Laet CEDH, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34(1):195–202.PubMedCrossRef Schuit SCE, Van Der Klift M, Weel AEAM, De Laet CEDH, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34(1):195–202.PubMedCrossRef
14.
Zurück zum Zitat Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes - a meta-analysis. Osteoporos Int. 2007;18(4):427–44.PubMedCrossRef Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes - a meta-analysis. Osteoporos Int. 2007;18(4):427–44.PubMedCrossRef
15.
Zurück zum Zitat Holzer G, Von Skrbensky G, Holzer LA, Pichl W. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Mineral Res. 2009;24:468–74.CrossRef Holzer G, Von Skrbensky G, Holzer LA, Pichl W. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Mineral Res. 2009;24:468–74.CrossRef
16.
Zurück zum Zitat Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017;17(3):114.PubMedPubMedCentral Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017;17(3):114.PubMedPubMedCentral
17.
Zurück zum Zitat Wolinsky FD, Bentler SE, Liu L, Obrizan M, Cook EA, Wright KB, et al. Recent hospitalization and the risk of hip fracture among older Americans. J Gerontol - Ser Biol Sci Med Sci. 2009;64(2):249–55.CrossRef Wolinsky FD, Bentler SE, Liu L, Obrizan M, Cook EA, Wright KB, et al. Recent hospitalization and the risk of hip fracture among older Americans. J Gerontol - Ser Biol Sci Med Sci. 2009;64(2):249–55.CrossRef
18.
Zurück zum Zitat Robinovitch SN, Hayes WC, McMahon TA. Prediction of femoral impact forces in falls on the hip. J Biomech Eng. 1991;113:366–74.PubMedCrossRef Robinovitch SN, Hayes WC, McMahon TA. Prediction of femoral impact forces in falls on the hip. J Biomech Eng. 1991;113:366–74.PubMedCrossRef
19.
Zurück zum Zitat Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC. Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int. 1996;58(4):231–5.PubMedCrossRef Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC. Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int. 1996;58(4):231–5.PubMedCrossRef
21.
Zurück zum Zitat Nevitt MC, Cummings SR. Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. J Am Geriatr Soc. 1993;41(11):1226–34.PubMedCrossRef Nevitt MC, Cummings SR. Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. J Am Geriatr Soc. 1993;41(11):1226–34.PubMedCrossRef
22.
Zurück zum Zitat Jean S, O’Donnell S, Lagacé C, Walsh P, Bancej C, Brown JP, et al. Trends in hip fracture rates in Canada: an age-period-cohort analysis. J Bone Mineral Res. 2013;28(6):1283–9.CrossRef Jean S, O’Donnell S, Lagacé C, Walsh P, Bancej C, Brown JP, et al. Trends in hip fracture rates in Canada: an age-period-cohort analysis. J Bone Mineral Res. 2013;28(6):1283–9.CrossRef
23.
Zurück zum Zitat Hendrickx G, Boudin E, Van Hul W. A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol 2015;11(8):462–74. Hendrickx G, Boudin E, Van Hul W. A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol 2015;11(8):462–74.
24.
Zurück zum Zitat Santos L, Elliott-Sale KJ, Sale C. Exercise and bone health across the lifespan. Biogerontol. 2017;18(6):931–46.CrossRef Santos L, Elliott-Sale KJ, Sale C. Exercise and bone health across the lifespan. Biogerontol. 2017;18(6):931–46.CrossRef
25.
Zurück zum Zitat Caillet P, Klemm S, Ducher M, Aussem A, Schott AM. Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks. PLoS ONE. 2015;10(3):1–12.CrossRef Caillet P, Klemm S, Ducher M, Aussem A, Schott AM. Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks. PLoS ONE. 2015;10(3):1–12.CrossRef
26.
Zurück zum Zitat Kanis JA, McCloskey E, Johansson H, Oden A, Leslie WD. FRAX® with and without bone mineral density. Calcif Tissue Int. 2012;90(1):1–13.PubMedCrossRef Kanis JA, McCloskey E, Johansson H, Oden A, Leslie WD. FRAX® with and without bone mineral density. Calcif Tissue Int. 2012;90(1):1–13.PubMedCrossRef
28.
Zurück zum Zitat Dagan N, Cohen-Stavi C, Leventer-Roberts M, Balicer RD. External validation and comparison of three prediction tools for risk of osteoporotic fractures using data from population based electronic health records: tetrospective cohort study. BMJ 2017;356. Dagan N, Cohen-Stavi C, Leventer-Roberts M, Balicer RD. External validation and comparison of three prediction tools for risk of osteoporotic fractures using data from population based electronic health records: tetrospective cohort study. BMJ 2017;356.
29.
Zurück zum Zitat Bolland MJ, Siu AT, Mason BH, Horne AM, Ames RW, Grey AB, et al. Evaluation of the FRAX and Garvan fracture risk calculators in older women. J Bone Miner Res. 2011;26(2):420–7.PubMedCrossRef Bolland MJ, Siu AT, Mason BH, Horne AM, Ames RW, Grey AB, et al. Evaluation of the FRAX and Garvan fracture risk calculators in older women. J Bone Miner Res. 2011;26(2):420–7.PubMedCrossRef
30.
Zurück zum Zitat Fraser LA, Langsetmo L, Berger C, Ioannidis G, Goltzman D, Adachi JD, et al. Fracture prediction and calibration of a Canadian FRAX® tool: a population-based report from CaMos. Osteoporos Int. 2011;22(3):829–37.PubMedCrossRef Fraser LA, Langsetmo L, Berger C, Ioannidis G, Goltzman D, Adachi JD, et al. Fracture prediction and calibration of a Canadian FRAX® tool: a population-based report from CaMos. Osteoporos Int. 2011;22(3):829–37.PubMedCrossRef
31.
Zurück zum Zitat Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res. 2012;27(2):301–8.PubMedCrossRef Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res. 2012;27(2):301–8.PubMedCrossRef
32.
33.
Zurück zum Zitat Courtney AC, Wachtel EF, Myers ER, Hayes WC. Effects of loading rate on strength of the proximal femur. Calcif Tissue Int. 1994;55(1):53–8.PubMedCrossRef Courtney AC, Wachtel EF, Myers ER, Hayes WC. Effects of loading rate on strength of the proximal femur. Calcif Tissue Int. 1994;55(1):53–8.PubMedCrossRef
34.
Zurück zum Zitat Roberts BJ, Thrall E, Muller JA, Bouxsein ML. Comparison of hip fracture risk prediction by femoral aBMD to experimentally measured factor of risk. Bone. 2010;46(3):742–6.PubMedCrossRef Roberts BJ, Thrall E, Muller JA, Bouxsein ML. Comparison of hip fracture risk prediction by femoral aBMD to experimentally measured factor of risk. Bone. 2010;46(3):742–6.PubMedCrossRef
35.
Zurück zum Zitat Bachmann KN, Fazeli PK, Lawson EA, Russell BM, Riccio AD, Meenaghan E, et al. Comparison of hip geometry, strength, and estimated fracture risk in women with anorexia nervosa and overweight/obese women. J Clin Endocrinol Metab. 2014;99(12):4664–73.PubMedPubMedCentralCrossRef Bachmann KN, Fazeli PK, Lawson EA, Russell BM, Riccio AD, Meenaghan E, et al. Comparison of hip geometry, strength, and estimated fracture risk in women with anorexia nervosa and overweight/obese women. J Clin Endocrinol Metab. 2014;99(12):4664–73.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Hansen S, Jensen JEB, Ahrberg F, Hauge EM, Brixen K. The combination of structural parameters and areal bone mineral density improves relation to proximal femur strength: an in vitro study with high-resolution peripheral quantitative computed tomography. Calcif Tissue Int. 2011;89(4):335–46.PubMedCrossRef Hansen S, Jensen JEB, Ahrberg F, Hauge EM, Brixen K. The combination of structural parameters and areal bone mineral density improves relation to proximal femur strength: an in vitro study with high-resolution peripheral quantitative computed tomography. Calcif Tissue Int. 2011;89(4):335–46.PubMedCrossRef
38.
Zurück zum Zitat Dinçel VE, Şengelen M, Sepici V, Çavuşoǧlu T, Sepici B. The association of proximal femur geometry with hip fracture risk. Clin Anat. 2008;21(6):575–80.PubMedCrossRef Dinçel VE, Şengelen M, Sepici V, Çavuşoǧlu T, Sepici B. The association of proximal femur geometry with hip fracture risk. Clin Anat. 2008;21(6):575–80.PubMedCrossRef
39.
Zurück zum Zitat Chappard C, Bousson V, Bergot C, Mitton D, Marchadier A, Moser T, et al. Prediction of femoral fracture load: cross-sectional study of texture analysis and geometric measurements on plain radiographs versus bone mineral density. Radiol. 2010;255(2):536–43.CrossRef Chappard C, Bousson V, Bergot C, Mitton D, Marchadier A, Moser T, et al. Prediction of femoral fracture load: cross-sectional study of texture analysis and geometric measurements on plain radiographs versus bone mineral density. Radiol. 2010;255(2):536–43.CrossRef
40.
Zurück zum Zitat Elbuken F, Baykara M, Ozturk C. Standardisation of the neck-shaft angle and measurement of age-, gender- and BMI-related changes in the femoral neck using DXA. Singapore Med J. 2012;53(9):587–90.PubMed Elbuken F, Baykara M, Ozturk C. Standardisation of the neck-shaft angle and measurement of age-, gender- and BMI-related changes in the femoral neck using DXA. Singapore Med J. 2012;53(9):587–90.PubMed
41.
Zurück zum Zitat Maeda Y, Sugano N, Saito M, Yonenobu K. Comparison of femoral morphology and bone mineral density between femoral neck fractures and trochanteric fractures. Clin Orthop Relat Res. 2011;469(3):884–9.PubMedCrossRef Maeda Y, Sugano N, Saito M, Yonenobu K. Comparison of femoral morphology and bone mineral density between femoral neck fractures and trochanteric fractures. Clin Orthop Relat Res. 2011;469(3):884–9.PubMedCrossRef
42.
Zurück zum Zitat Partanen J, Jämsä T, Jalovaara P. Influence of the upper femur and pelvic geometry on the risk and type of hip fractures. J Bone Miner Res. 2001;16(8):1540–6.PubMedCrossRef Partanen J, Jämsä T, Jalovaara P. Influence of the upper femur and pelvic geometry on the risk and type of hip fractures. J Bone Miner Res. 2001;16(8):1540–6.PubMedCrossRef
43.
Zurück zum Zitat Dufour AB, Roberts B, Broe KE, Kiel DP, Bouxsein ML, Hannan MT. The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham study. Osteoporos Int. 2012;23(2):513–20.PubMedCrossRef Dufour AB, Roberts B, Broe KE, Kiel DP, Bouxsein ML, Hannan MT. The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham study. Osteoporos Int. 2012;23(2):513–20.PubMedCrossRef
44.
Zurück zum Zitat • Martel DR, Lysy M, Laing AC. Predicting population level hip fracture risk: a novel hierarchical model incorporating probabilistic approaches and factor of risk principles. Comput Methods Biomech Biomed Engin. 2020;23(15):1201–14. https://doi.org/10.1080/10255842.2020.1793331. (A recent study that used a hierarchical probabilistic model to predict population-level hip fracture risk based on factor of risk (FOR) principles.•)CrossRefPubMed • Martel DR, Lysy M, Laing AC. Predicting population level hip fracture risk: a novel hierarchical model incorporating probabilistic approaches and factor of risk principles. Comput Methods Biomech Biomed Engin. 2020;23(15):1201–14. https://​doi.​org/​10.​1080/​10255842.​2020.​1793331. (A recent study that used a hierarchical probabilistic model to predict population-level hip fracture risk based on factor of risk (FOR) principles.•)CrossRefPubMed
45.
Zurück zum Zitat Le Corroller T, Halgrin J, Pithioux M, Guenoun D, Chabrand P, Champsaur P. Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs. Osteoporos Int. 2012;23(1):163–9.PubMedCrossRef Le Corroller T, Halgrin J, Pithioux M, Guenoun D, Chabrand P, Champsaur P. Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs. Osteoporos Int. 2012;23(1):163–9.PubMedCrossRef
47.
Zurück zum Zitat • Luo Y. On challenges in clinical assessment of hip fracture risk using image-based biomechanical modelling: a critical review. J Bone Miner Metab. 2021;39(4):523–33. https://doi.org/10.1007/s00774-020-01198-8. (A critical review of image-based biomechanical modeling to assess hip fracture risk that points to the importance of bone quality assessment.•)CrossRefPubMed • Luo Y. On challenges in clinical assessment of hip fracture risk using image-based biomechanical modelling: a critical review. J Bone Miner Metab. 2021;39(4):523–33. https://​doi.​org/​10.​1007/​s00774-020-01198-8. (A critical review of image-based biomechanical modeling to assess hip fracture risk that points to the importance of bone quality assessment.•)CrossRefPubMed
48.
Zurück zum Zitat C. Cowin, JJ Telega. Bone mechanics handbook, 2nd edition. Applied Mechanics Reviews. 2003;56:61–63 C. Cowin, JJ Telega. Bone mechanics handbook, 2nd edition. Applied Mechanics Reviews. 2003;56:61–63
51.
Zurück zum Zitat Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. 1998;22(1):57–66. Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. 1998;22(1):57–66.
52.
Zurück zum Zitat Vinz H. Change in the mechanical properties of human compact bone tissue upon aging. Polymer Mechanics. 1975;11(4):568–71.CrossRef Vinz H. Change in the mechanical properties of human compact bone tissue upon aging. Polymer Mechanics. 1975;11(4):568–71.CrossRef
53.
Zurück zum Zitat Evans GP, Behiri JC, Vaughan LC, Bonfield W. The response of equine cortical bone to loading at strain rates experienced in vivo by the galloping horse. Equine Vet J. 1992;24(2):125–8.PubMedCrossRef Evans GP, Behiri JC, Vaughan LC, Bonfield W. The response of equine cortical bone to loading at strain rates experienced in vivo by the galloping horse. Equine Vet J. 1992;24(2):125–8.PubMedCrossRef
54.
Zurück zum Zitat • Zioupos P, Kirchner HOK, Peterlik H. Ageing bone fractures: The case of a ductile to brittle transition that shifts with age. Bone. 2020;131:115176. https://doi.org/10.1016/j.bone.2019.115176. ( An interesting study which shows how older bone’s ductile to brittle transition occurs at physiological relevant rates as opposed to the younger bone which is most fracture resistant at these rates. Combined with the reduced capacity of older bone to plastically deformed this might further explain why older bone is brittle.)CrossRefPubMed • Zioupos P, Kirchner HOK, Peterlik H. Ageing bone fractures: The case of a ductile to brittle transition that shifts with age. Bone. 2020;131:115176. https://​doi.​org/​10.​1016/​j.​bone.​2019.​115176. ( An interesting study which shows how older bone’s ductile to brittle transition occurs at physiological relevant rates as opposed to the younger bone which is most fracture resistant at these rates. Combined with the reduced capacity of older bone to plastically deformed this might further explain why older bone is brittle.)CrossRefPubMed
55.
Zurück zum Zitat Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D. The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng. 2008;130(1):1–8.CrossRef Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D. The effect of strain rate on the mechanical properties of human cortical bone. J Biomech Eng. 2008;130(1):1–8.CrossRef
56.
Zurück zum Zitat Katzenberger MJ, Albert DL, Agnew AM, Kemper AR. Effects of sex, age, and two loading rates on the tensile material properties of human rib cortical bone. J Mech Behav Biomed Mater. 2020;102:103410.PubMedCrossRef Katzenberger MJ, Albert DL, Agnew AM, Kemper AR. Effects of sex, age, and two loading rates on the tensile material properties of human rib cortical bone. J Mech Behav Biomed Mater. 2020;102:103410.PubMedCrossRef
57.
Zurück zum Zitat McCalden RW, McGeough JA, Barker MB. Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity mineralization and microstructure. J Bone Joint Surg Am. 1993;75(8):1193–205.PubMedCrossRef McCalden RW, McGeough JA, Barker MB. Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity mineralization and microstructure. J Bone Joint Surg Am. 1993;75(8):1193–205.PubMedCrossRef
58.
Zurück zum Zitat Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am. 1976;58(1):82–6.PubMedCrossRef Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am. 1976;58(1):82–6.PubMedCrossRef
59.
Zurück zum Zitat Ritchie RO. Toughening materials: Enhancing resistance to fracture. Phil Trans Royal Soc A. 2021;379(2203). Ritchie RO. Toughening materials: Enhancing resistance to fracture. Phil Trans Royal Soc A. 2021;379(2203).
60.
Zurück zum Zitat Hernandez CJ, van der Meulen MCH. Understanding bone strength is not enough. J Bone Miner Res. 2017;32(6):1157–62.PubMedCrossRef Hernandez CJ, van der Meulen MCH. Understanding bone strength is not enough. J Bone Miner Res. 2017;32(6):1157–62.PubMedCrossRef
61.
Zurück zum Zitat Anderson TL. Fracture mechanics: fundamentals and applications. Boca Raton: CRC Press LLC; 2005.CrossRef Anderson TL. Fracture mechanics: fundamentals and applications. Boca Raton: CRC Press LLC; 2005.CrossRef
62.
Zurück zum Zitat Pruitt LA, Chakravartula AM. Mechanics of biomaterials: fundamental principles for implant design. New York: Cambridg University Press; 2011.CrossRef Pruitt LA, Chakravartula AM. Mechanics of biomaterials: fundamental principles for implant design. New York: Cambridg University Press; 2011.CrossRef
63.
Zurück zum Zitat Bonfield W, Datta PK. Fracture toughness of compact bone. J Biomech. 1976;9(3):131–132. Bonfield W, Datta PK. Fracture toughness of compact bone. J Biomech. 1976;9(3):131–132.
64.
Zurück zum Zitat Behiri JC, Bonfield W. Orientation dependence of the fracture mechanics of cortical bone. J Biomech 1989;22(8/9):863–72. Behiri JC, Bonfield W. Orientation dependence of the fracture mechanics of cortical bone. J Biomech 1989;22(8/9):863–72.
65.
Zurück zum Zitat Yeni YN, Brown CU, Wang Z, Norman TL. The influence of bone morphology on fracture toughness of the human femur and tibia. Bone. 1997;21(5):453–9.PubMedCrossRef Yeni YN, Brown CU, Wang Z, Norman TL. The influence of bone morphology on fracture toughness of the human femur and tibia. Bone. 1997;21(5):453–9.PubMedCrossRef
66.
Zurück zum Zitat Yeni YN, Norman TL. Fracture toughness of human femoral neck: effect of microstructure, composition, and age. Bone. 2000;26(5):499–504.PubMedCrossRef Yeni YN, Norman TL. Fracture toughness of human femoral neck: effect of microstructure, composition, and age. Bone. 2000;26(5):499–504.PubMedCrossRef
67.
Zurück zum Zitat Feng Z, Rho J, Han S, Ziv I. Orientation and loading condition dependence of fracture toughness in cortical bone. Mater Sci Eng, C. 2000;11:41–6.CrossRef Feng Z, Rho J, Han S, Ziv I. Orientation and loading condition dependence of fracture toughness in cortical bone. Mater Sci Eng, C. 2000;11:41–6.CrossRef
68.
Zurück zum Zitat Lucksanasombool P, Higgs WAJ, Higgs RJED, Swain MV. Fracture toughness of bovine bone: Influence of orientation and storage media. Biomater. 2001;22(23):3127–32.CrossRef Lucksanasombool P, Higgs WAJ, Higgs RJED, Swain MV. Fracture toughness of bovine bone: Influence of orientation and storage media. Biomater. 2001;22(23):3127–32.CrossRef
69.
Zurück zum Zitat Yang QD, Cox BN, Nalla RK, Ritchie RO. Re-evaluating the toughness of human cortical bone. Bone. 2006;38(6):878–87.PubMedCrossRef Yang QD, Cox BN, Nalla RK, Ritchie RO. Re-evaluating the toughness of human cortical bone. Bone. 2006;38(6):878–87.PubMedCrossRef
71.
Zurück zum Zitat ASTM Standard E1820-18. Standard test method for measurement of fracture toughness. ASTM Book of Standards. 2013;1–54 ASTM Standard E1820-18. Standard test method for measurement of fracture toughness. ASTM Book of Standards. 2013;1–54
72.
Zurück zum Zitat Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS. Identifying novel clinical surrogates to assess human bone fracture toughness. journal of bone and mineral research. 2015;30(7):1290–300. Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS. Identifying novel clinical surrogates to assess human bone fracture toughness. journal of bone and mineral research. 2015;30(7):1290–300.
73.
Zurück zum Zitat • Willett TL, Dapaah DY, Uppuganti S, Granke M, Nyman JS. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone. 2019;1(120):187–93. (This study demonstrates that collagen network connectivity degradation is an important determinant in reduced cortical bone fracture toughness, highlighting the need to better understand mechanisms of collagen network connectivity degradation for better fragility assessment.)CrossRef • Willett TL, Dapaah DY, Uppuganti S, Granke M, Nyman JS. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone. 2019;1(120):187–93. (This study demonstrates that collagen network connectivity degradation is an important determinant in reduced cortical bone fracture toughness, highlighting the need to better understand mechanisms of collagen network connectivity degradation for better fragility assessment.)CrossRef
74.
Zurück zum Zitat • Gauthier R, Follet H, Langer M, Meille S, Chevalier J, Rongiéras F, et al. Strain rate influence on human cortical bone toughness: a comparative study of four paired anatomical sites. J Mech Behav Biomed Mater. 2017;71:223–30. (One of the few studies to measure the fracture toughness of cortical bone tissue from the femoral neck at quasi-static and fall-related loading rates.) • Gauthier R, Follet H, Langer M, Meille S, Chevalier J, Rongiéras F, et al. Strain rate influence on human cortical bone toughness: a comparative study of four paired anatomical sites. J Mech Behav Biomed Mater. 2017;71:223–30. (One of the few studies to measure the fracture toughness of cortical bone tissue from the femoral neck at quasi-static and fall-related loading rates.)
75.
Zurück zum Zitat • Dapaah D, Martel DR, Laing AC, Willett TL. The impact of fall-related loading rate on the formation of micro-damage in human cortical bone fracture. J Biomech. 2022;1:142. (A recent study of the effects of loading rate on the formation of the microdamage process zone during cortical bone fracture.) • Dapaah D, Martel DR, Laing AC, Willett TL. The impact of fall-related loading rate on the formation of micro-damage in human cortical bone fracture. J Biomech. 2022;1:142. (A recent study of the effects of loading rate on the formation of the microdamage process zone during cortical bone fracture.)
76.
Zurück zum Zitat • Dapaah D, Willett T. A critical evaluation of cortical bone fracture toughness testing methods. J Mech Behav Biomed Mater. 2022;1:134. (A recent methodology study that examined the effects of how the crack extension is measured during SENB fracture toughness tests of cortical bone.) • Dapaah D, Willett T. A critical evaluation of cortical bone fracture toughness testing methods. J Mech Behav Biomed Mater. 2022;1:134. (A recent methodology study that examined the effects of how the crack extension is measured during SENB fracture toughness tests of cortical bone.)
77.
Zurück zum Zitat Yan J, Mecholsky JJ, Clifton KB. How tough is bone ? Application of elastic – plastic fracture mechanics to bone. Bone. 2007;40:479–84.PubMedCrossRef Yan J, Mecholsky JJ, Clifton KB. How tough is bone ? Application of elastic – plastic fracture mechanics to bone. Bone. 2007;40:479–84.PubMedCrossRef
80.
Zurück zum Zitat Woodside M, Willett TL. Elastic – plastic fracture toughness and rising J R -curve behavior of cortical bone is partially protected from irradiation – sterilization-induced degradation by ribose protectant. J Mech Behav Biomed Mater. 2016;64:53–64.PubMedCrossRef Woodside M, Willett TL. Elastic – plastic fracture toughness and rising J R -curve behavior of cortical bone is partially protected from irradiation – sterilization-induced degradation by ribose protectant. J Mech Behav Biomed Mater. 2016;64:53–64.PubMedCrossRef
81.
Zurück zum Zitat Singh J, Sharma NK, Sarker MD, Naghieh S, Sehgal SS, Chen DXB. Assessment of elastic-plastic fracture behavior of cortical bone using a small punch testing technique. J Biomech Eng. 2020;142(1):1–9.CrossRef Singh J, Sharma NK, Sarker MD, Naghieh S, Sehgal SS, Chen DXB. Assessment of elastic-plastic fracture behavior of cortical bone using a small punch testing technique. J Biomech Eng. 2020;142(1):1–9.CrossRef
83.
Zurück zum Zitat Li JZ, Wang X, He LT, Yan FX, Zhang N, Ren CX, et al. Strength–fracture toughness synergy strategy in ostrich tibia’s compact bone: hierarchical and gradient. J Mech Behav Biomed Mater. 2022;131:105262 Li JZ, Wang X, He LT, Yan FX, Zhang N, Ren CX, et al. Strength–fracture toughness synergy strategy in ostrich tibia’s compact bone: hierarchical and gradient. J Mech Behav Biomed Mater. 2022;131:105262
84.
Zurück zum Zitat Koester KJ, Ager JW, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008;7(8):672–7.PubMedCrossRef Koester KJ, Ager JW, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008;7(8):672–7.PubMedCrossRef
86.
Zurück zum Zitat Shin M, Zhang M, vom Scheidt A, Pelletier MH, Walsh WR, Martens PJ, et al. Impact of test environment on the fracture resistance of cortical bone. J Mech Behav Biomed Mater. 2022;129:105155. Shin M, Zhang M, vom Scheidt A, Pelletier MH, Walsh WR, Martens PJ, et al. Impact of test environment on the fracture resistance of cortical bone. J Mech Behav Biomed Mater. 2022;129:105155.
87.
Zurück zum Zitat Maghsoudi-Ganjeh M, Wang X, Zeng X. Computational investigation of the effect of water on the nanomechanical behavior of bone. J Mech Behav Biomed Mater. 2020;1:101. Maghsoudi-Ganjeh M, Wang X, Zeng X. Computational investigation of the effect of water on the nanomechanical behavior of bone. J Mech Behav Biomed Mater. 2020;1:101.
89.
Zurück zum Zitat Wasserman N, Brydges B, Searles S, Akkus O. In vivo linear microcracks of human femoral cortical bone remain parallel to osteons during aging. Bone. 2008;43(5):856–61.PubMedCrossRef Wasserman N, Brydges B, Searles S, Akkus O. In vivo linear microcracks of human femoral cortical bone remain parallel to osteons during aging. Bone. 2008;43(5):856–61.PubMedCrossRef
90.
Zurück zum Zitat Diab T, Vashishth D. Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone. 2007;40(3):612–8.PubMedCrossRef Diab T, Vashishth D. Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone. 2007;40(3):612–8.PubMedCrossRef
91.
Zurück zum Zitat • Gauthier R, Langer M, Follet H, Olivier C, Gouttenoire PJ, Helfen L, et al. Influence of loading condition and anatomical location on human cortical bone linear micro-cracks. J Biomech. 2019;6(85):59–66. (Another study by Gauthier et al. that examined the fracture behavior of bone tissue from the human femoral neck. They showed that fall-like loading rates resulted in reduced accumulation of linear micro-cracks as compared to quasi-static loading rates for the femoral neck.)CrossRef • Gauthier R, Langer M, Follet H, Olivier C, Gouttenoire PJ, Helfen L, et al. Influence of loading condition and anatomical location on human cortical bone linear micro-cracks. J Biomech. 2019;6(85):59–66. (Another study by Gauthier et al. that examined the fracture behavior of bone tissue from the human femoral neck. They showed that fall-like loading rates resulted in reduced accumulation of linear micro-cracks as compared to quasi-static loading rates for the femoral neck.)CrossRef
92.
Zurück zum Zitat Diab T, Condon KW, Burr DB, Vashishth D. Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone. 2006;38(3):427–31.PubMedCrossRef Diab T, Condon KW, Burr DB, Vashishth D. Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone. 2006;38(3):427–31.PubMedCrossRef
94.
Zurück zum Zitat Dapaah D, Badaoui R, Bahmani A, Montesano J, Willett T. Modelling the micro-damage process zone during cortical bone fracture. Eng Fract Mech. 2019;2020(224):106811. Dapaah D, Badaoui R, Bahmani A, Montesano J, Willett T. Modelling the micro-damage process zone during cortical bone fracture. Eng Fract Mech. 2019;2020(224):106811.
97.
Zurück zum Zitat Currey JD, Brear K, Zioupos P. Strain rate dependence of work of fracture tests on bone and similar tissues: Reflections on testing methods and mineral content effects. Bone. 2019;128:115038.PubMedCrossRef Currey JD, Brear K, Zioupos P. Strain rate dependence of work of fracture tests on bone and similar tissues: Reflections on testing methods and mineral content effects. Bone. 2019;128:115038.PubMedCrossRef
98.
Zurück zum Zitat Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater. 2003;2:164–8. Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater. 2003;2:164–8.
99.
Zurück zum Zitat Nalla RK, Kruzic JJ, Ritchie RO. On the origin of the toughness of mineralized tissue : microcracking or crack bridging ? Bone. 2004;34:790–8.PubMedCrossRef Nalla RK, Kruzic JJ, Ritchie RO. On the origin of the toughness of mineralized tissue : microcracking or crack bridging ? Bone. 2004;34:790–8.PubMedCrossRef
100.
Zurück zum Zitat Vashishth D. Rising crack-growth-resistance behavior in cortical bone: Implications for toughness measurements. J Biomech. 2004;37(6):943–6.PubMedCrossRef Vashishth D. Rising crack-growth-resistance behavior in cortical bone: Implications for toughness measurements. J Biomech. 2004;37(6):943–6.PubMedCrossRef
101.
Zurück zum Zitat • Seelemann CA, Willett TL. Empirical evidence that bone collagen molecules denature as a result of bone fracture. J Mech Behav Biomed Mater. 2022;131:105220. https://doi.org/10.1016/j.jmbbm.2022.105220. (This study presents the first empirical evidence that bone collage molecules unravel or denature as a result of bone fracture and suggests a potentially important toughening mechanism that may be degraded in aging and disease. Certainly, a hypothesis requiring more investigation.•)CrossRefPubMed • Seelemann CA, Willett TL. Empirical evidence that bone collagen molecules denature as a result of bone fracture. J Mech Behav Biomed Mater. 2022;131:105220. https://​doi.​org/​10.​1016/​j.​jmbbm.​2022.​105220. (This study presents the first empirical evidence that bone collage molecules unravel or denature as a result of bone fracture and suggests a potentially important toughening mechanism that may be degraded in aging and disease. Certainly, a hypothesis requiring more investigation.•)CrossRefPubMed
104.
Zurück zum Zitat Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21(2):195–214.PubMedCrossRef Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21(2):195–214.PubMedCrossRef
105.
Zurück zum Zitat Poundarik AA, Wu PC, Evis Z, Sroga GE, Ural A, Rubin M, et al. A direct role of collagen glycation in bone fracture. J Mech Behav Biomed Mater. 2015;52:120–30.PubMedPubMedCentralCrossRef Poundarik AA, Wu PC, Evis Z, Sroga GE, Ural A, Rubin M, et al. A direct role of collagen glycation in bone fracture. J Mech Behav Biomed Mater. 2015;52:120–30.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28(2):195–201.PubMedCrossRef Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28(2):195–201.PubMedCrossRef
108.
Zurück zum Zitat Zioupos P, Currey JD, Hamer AJ. The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res. 1999;45(2):108–16.PubMedCrossRef Zioupos P, Currey JD, Hamer AJ. The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res. 1999;45(2):108–16.PubMedCrossRef
109.
Zurück zum Zitat Wang X, Bank RA, TeKoppele JM, Mauli AC. The role of collagen in determining bone mechanical properties. J Orthop Res. 2001;19(6):1021–6.PubMedCrossRef Wang X, Bank RA, TeKoppele JM, Mauli AC. The role of collagen in determining bone mechanical properties. J Orthop Res. 2001;19(6):1021–6.PubMedCrossRef
110.
Zurück zum Zitat Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. 2002;31(1):1–7.PubMed Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. 2002;31(1):1–7.PubMed
111.
Zurück zum Zitat • Thomas CJ, Cleland TP, Sroga GE, Vashishth D. Accumulation of carboxymethyl-lysine (CML) in human cortical bone. Bone. 2018;110:128–33. (The first study demonstrating a negative relationship between AGE adduct content and fracture toughness of human cortical bone.)PubMedPubMedCentralCrossRef • Thomas CJ, Cleland TP, Sroga GE, Vashishth D. Accumulation of carboxymethyl-lysine (CML) in human cortical bone. Bone. 2018;110:128–33. (The first study demonstrating a negative relationship between AGE adduct content and fracture toughness of human cortical bone.)PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat •• Arakawa S, Suzuki R, Kurosaka D, Ikeda R, Hayashi H, Kayama T, et al. Mass spectrometric quantitation of AGEs and enzymatic crosslinks in human cancellous bone. Sci Rep. 2020;10(1):18774. https://doi.org/10.1038/s41598-020-75923-8. (This study highlights the abundance of non-crosslinking AGEs (AGE adducts) as compared to crosslinking AGEs albeit for cancellous bone. This raises the concern for a better understanding of the impact of AGE adducts on the structure and function of the collagen network specifically in relation to skeletal fragility.••)CrossRefPubMedPubMedCentral •• Arakawa S, Suzuki R, Kurosaka D, Ikeda R, Hayashi H, Kayama T, et al. Mass spectrometric quantitation of AGEs and enzymatic crosslinks in human cancellous bone. Sci Rep. 2020;10(1):18774. https://​doi.​org/​10.​1038/​s41598-020-75923-8. (This study highlights the abundance of non-crosslinking AGEs (AGE adducts) as compared to crosslinking AGEs albeit for cancellous bone. This raises the concern for a better understanding of the impact of AGE adducts on the structure and function of the collagen network specifically in relation to skeletal fragility.••)CrossRefPubMedPubMedCentral
113.
Zurück zum Zitat • Willett TL, Dapaah DY, Tupy J, Uppuganti S, Nyman JS. N-ε-(carboxymethyl)lysine correlates with the degradation of human cortical bone fracture resistance. Proceedings from the Annual Meeting of the Orthopaedic Research Society 2022: Paper no. 435. (A second study demonstrating a negative relationship between CML, an AGE adduct, and cortical bone fracture toughness.) • Willett TL, Dapaah DY, Tupy J, Uppuganti S, Nyman JS. N-ε-(carboxymethyl)lysine correlates with the degradation of human cortical bone fracture resistance. Proceedings from the Annual Meeting of the Orthopaedic Research Society 2022: Paper no. 435. (A second study demonstrating a negative relationship between CML, an AGE adduct, and cortical bone fracture toughness.)
114.
Zurück zum Zitat •• Willett TL, Voziyan P, Nyman JS. Causative or associative: a critical review of the role of advanced glycation end-products in bone fragility. Bone. 2022;163:116485. (A timely critical review of the evidence for and against a role for AGEs in bone fragility that highlights the many gaps and unanswered questions and concerns.) •• Willett TL, Voziyan P, Nyman JS. Causative or associative: a critical review of the role of advanced glycation end-products in bone fragility. Bone. 2022;163:116485. (A timely critical review of the evidence for and against a role for AGEs in bone fragility that highlights the many gaps and unanswered questions and concerns.)
115.
Zurück zum Zitat Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018;1(59):17–24.CrossRef Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018;1(59):17–24.CrossRef
120.
Zurück zum Zitat Nikel O, Poundarik AA, Bailey S, Vashishth D. Structural role of osteocalcin and osteopontin in energy dissipation in bone. J Biomech. 2018;80:45–52. Nikel O, Poundarik AA, Bailey S, Vashishth D. Structural role of osteocalcin and osteopontin in energy dissipation in bone. J Biomech. 2018;80:45–52.
121.
Zurück zum Zitat Karim L, Kwaczala A, Vashishth D, Judex S. Dose-dependent effects of pharmaceutical treatments on bone matrix properties in ovariectomized rats. Bone Rep 2021;15:101137 Karim L, Kwaczala A, Vashishth D, Judex S. Dose-dependent effects of pharmaceutical treatments on bone matrix properties in ovariectomized rats. Bone Rep 2021;15:101137
123.
Zurück zum Zitat Tavakol M, Vaughan TJ. Energy dissipation of osteopontin at a HAp mineral interface: Implications for bone biomechanics. Biophys J. 2022;121(2):228–36.PubMedCrossRef Tavakol M, Vaughan TJ. Energy dissipation of osteopontin at a HAp mineral interface: Implications for bone biomechanics. Biophys J. 2022;121(2):228–36.PubMedCrossRef
124.
Zurück zum Zitat • Thomas CJ, Cleland TP, Zhang S, Gundberg CM, Vashishth D. Identification and characterization of glycation adducts on osteocalcin. Anal Biochem. 2017;15(525):46–53. (A fascinating in vitro study that suggests how non-collagenous proteins may be modified by glycation. This could alter the fracture resistance of bone.)CrossRef • Thomas CJ, Cleland TP, Zhang S, Gundberg CM, Vashishth D. Identification and characterization of glycation adducts on osteocalcin. Anal Biochem. 2017;15(525):46–53. (A fascinating in vitro study that suggests how non-collagenous proteins may be modified by glycation. This could alter the fracture resistance of bone.)CrossRef
125.
Zurück zum Zitat • Du JY, Flanagan CD, Bensusan JS, Knusel KD, Akkus O, Rimnac CM. Raman biomarkers are associated with cyclic fatigue life of human allograft cortical bone. J Bone Joint Surg. 2019;101(17):e85. (One of a series of papers that demonstrate how Raman methods can detect changes in the organic phase of bone that correlate with fracture resistance.)PubMedCrossRef • Du JY, Flanagan CD, Bensusan JS, Knusel KD, Akkus O, Rimnac CM. Raman biomarkers are associated with cyclic fatigue life of human allograft cortical bone. J Bone Joint Surg. 2019;101(17):e85. (One of a series of papers that demonstrate how Raman methods can detect changes in the organic phase of bone that correlate with fracture resistance.)PubMedCrossRef
126.
Zurück zum Zitat • Unal M, Jung H, Akkus O. Novel raman spectroscopic biomarkers indicate that postyield damage denatures bone’s collagen. J Bone Miner Res. 2016;31(5):1015–25. (One of a series of papers that demonstrate how Raman methods can detect changes in the organic phase of bone that correlate with fracture resistance.)PubMedCrossRef • Unal M, Jung H, Akkus O. Novel raman spectroscopic biomarkers indicate that postyield damage denatures bone’s collagen. J Bone Miner Res. 2016;31(5):1015–25. (One of a series of papers that demonstrate how Raman methods can detect changes in the organic phase of bone that correlate with fracture resistance.)PubMedCrossRef
128.
Zurück zum Zitat • Unal M. Raman spectroscopic determination of bone matrix quantity and quality augments prediction of human cortical bone mechanical properties. J Biomech. 2021;15(119):110342. (One of a series of papers that demonstrate how Raman methods can detect changes in the organic phase of bone that correlate with fracture resistance.)CrossRef • Unal M. Raman spectroscopic determination of bone matrix quantity and quality augments prediction of human cortical bone mechanical properties. J Biomech. 2021;15(119):110342. (One of a series of papers that demonstrate how Raman methods can detect changes in the organic phase of bone that correlate with fracture resistance.)CrossRef
129.
Zurück zum Zitat • Makowski AJ, Granke M, Ayala OD, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Applying full spectrum analysis to a raman spectroscopic assessment of fracture toughness of human cortical bone. Appl Spectrosc. 2017;71(10):2385–94. (One of a series of papers that demonstrate how Raman methods can detect changes in the organic phase of bone that correlate with fracture resistance.)PubMedPubMedCentralCrossRef • Makowski AJ, Granke M, Ayala OD, Uppuganti S, Mahadevan-Jansen A, Nyman JS. Applying full spectrum analysis to a raman spectroscopic assessment of fracture toughness of human cortical bone. Appl Spectrosc. 2017;71(10):2385–94. (One of a series of papers that demonstrate how Raman methods can detect changes in the organic phase of bone that correlate with fracture resistance.)PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75.PubMedCrossRef Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75.PubMedCrossRef
132.
Zurück zum Zitat Brown CU, Yeni YN, Norman TL. Fracture toughness is dependent on bone location--a study of the femoral neck, femoral shaft, and the tibial shaft. J Biomed Mater Res. 2000;49(3):380–9. Brown CU, Yeni YN, Norman TL. Fracture toughness is dependent on bone location--a study of the femoral neck, femoral shaft, and the tibial shaft. J Biomed Mater Res. 2000;49(3):380–9.
133.
Zurück zum Zitat Yeni TL, Norman YN. Fracture toughness of human femoral neck cortical bone is reduced with age and with increased osteon eccentricity. Eng Comp Sci Facult Present. 104 Yeni TL, Norman YN. Fracture toughness of human femoral neck cortical bone is reduced with age and with increased osteon eccentricity. Eng Comp Sci Facult Present. 104
134.
Zurück zum Zitat Gauthier R, Langer M, Follet H, Olivier C, Gouttenoire PJ, Helfen L, et al. 3D micro structural analysis of human cortical bone in paired femoral diaphysis, femoral neck and radial diaphysis. J Struct Biol. 2018;204(2):182–90.PubMedCrossRef Gauthier R, Langer M, Follet H, Olivier C, Gouttenoire PJ, Helfen L, et al. 3D micro structural analysis of human cortical bone in paired femoral diaphysis, femoral neck and radial diaphysis. J Struct Biol. 2018;204(2):182–90.PubMedCrossRef
135.
Zurück zum Zitat Jenkins T, Katsamenis OL, Andriotis OG, Coutts LV, Carter B, Dunlop DG, et al. The inferomedial femoral neck is compromised by age but not disease: fracture toughness and the multifactorial mechanisms comprising reference point microindentation. J Mech Behav Biomed Mater. 2017;1(75):399–412.CrossRef Jenkins T, Katsamenis OL, Andriotis OG, Coutts LV, Carter B, Dunlop DG, et al. The inferomedial femoral neck is compromised by age but not disease: fracture toughness and the multifactorial mechanisms comprising reference point microindentation. J Mech Behav Biomed Mater. 2017;1(75):399–412.CrossRef
136.
Zurück zum Zitat Osima M, Kral R, Borgen TT, Høgestøl IK, Joakimsen RM, Eriksen EF, et al. Women with type 2 diabetes mellitus have lower cortical porosity of the proximal femoral shaft using low-resolution CT than nondiabetic women, and increasing glucose is associated with reduced cortical porosity. Bone. 2017;1(97):252–60.CrossRef Osima M, Kral R, Borgen TT, Høgestøl IK, Joakimsen RM, Eriksen EF, et al. Women with type 2 diabetes mellitus have lower cortical porosity of the proximal femoral shaft using low-resolution CT than nondiabetic women, and increasing glucose is associated with reduced cortical porosity. Bone. 2017;1(97):252–60.CrossRef
137.
Zurück zum Zitat • Acevedo C, Stadelmann VA, Pioletti DP, Alliston T, Ritchie RO. Fatigue as the missing link between bone fragility and fracture. Nat Biomed Eng. 2018;2(2):62–71. https://doi.org/10.1038/s41551-017-0183-9. (This article makes a strong case for why fatigue resistance is relevant to understanding bone fragility and assessing fracture risk as a whole.•)CrossRefPubMed • Acevedo C, Stadelmann VA, Pioletti DP, Alliston T, Ritchie RO. Fatigue as the missing link between bone fragility and fracture. Nat Biomed Eng. 2018;2(2):62–71. https://​doi.​org/​10.​1038/​s41551-017-0183-9. (This article makes a strong case for why fatigue resistance is relevant to understanding bone fragility and assessing fracture risk as a whole.•)CrossRefPubMed
Metadaten
Titel
Fracture Toughness: Bridging the Gap Between Hip Fracture and Fracture Risk Assessment
verfasst von
Daniel Dapaah
Daniel R. Martel
Faezeh Iranmanesh
Corin Seelemann
Andrew C. Laing
Thomas Willett
Publikationsdatum
27.04.2023
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 3/2023
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-023-00789-4

Weitere Artikel der Ausgabe 3/2023

Current Osteoporosis Reports 3/2023 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.