Skip to main content
Erschienen in: Cardiovascular Ultrasound 1/2020

Open Access 01.12.2020 | Research

Fragmented QRS as an early predictor of left ventricular systolic dysfunction in healthy individuals: a nested case-control study in the era of speckle tracking echocardiography

verfasst von: Mohammad Hossein Nikoo, Zahra Jamali, Iman Razeghian-Jahromi, Mehrab Sayadi, Paolo Verdecchia, Firoozeh Abtahi

Erschienen in: Cardiovascular Ultrasound | Ausgabe 1/2020

Abstract

Background

Several studies addressed the association between fragmented QRS (fQRS) on 12-lead EKG and left ventricular (LV) dysfunction in patients with a variety of cardiovascular disorders. We tested such association in healthy individuals.

Methods

Out of 500 healthy participants without -overt cardiovascular disease from the Shiraz Heart Study cohort, we identified 20 subjects with fQRS (cases) and 20 peers without fQRS (controls). Global LV longitudinal strain (GLS) was measured by speckle tracking echocardiography in the two groups. Comparison was made between case and control groups by using chi-square or independent sample t-test or ANOVA.

Results

Age, gender, ejection fraction, LV volume and dimensions did not differ between the case and the control groups. Overall, 14 subjects out of 40 had reduced GLS (≤20%) and 10 of them (25%) had fQRS. GLS was significantly lower in the group with fQRS than in the control group (19.9 ± 1.8 vs 21.4 ± 1.6; p = 0.009).

Conclusions

Healthy subjects with fQRS present regional LV systolic dysfunction, assessed by GLS, in the presence of a normal ejection fraction. These data suggest that fQRS may be a promising tool to identify apparently healthy subjects with regional LV systolic dysfunction.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
LV
Left ventricular
STE
Speckle tracking echocardiography
GLS
Global longitudinal strain
LVEF
Left ventricular ejection fraction
fQRS
Fragmentation of QRS complex
CAD
Coronary artery disease
LS
Longitudinal strains
LVEDV
Left ventricular end-diastolic volume
LVESV
Left ventricular end-systolic volume

Background

Left ventricular (LV) systolic function is an important clinical finding in cardiology. It is applied in prevention, diagnosis, prognostication, and treatment ina variety of cardiovascular conditions. Speckle tracking echocardiography (STE) measures LV systolic function quantitatively through detecting subtle myocardial deformations. Using this technique, the most sensitive and reproducible parameter capable of early detection of malfunctions is the global longitudinal strain (GLS) [1]. The functionality of GLS is more pronounced in the case of left ventricular ejection fraction (LVEF) being normal [2].
Less than two decades ago, fragmentation of QRS complex (fQRS) was coined on 12-lead EKG [3]. Abnormal deflections in QRS morphology is simply known as fQRS which originates from conduction delay and disrupted ventricular depolarization due to myocardial scarring [4, 5]. fQRS is found in several cardiovascular and non-cardiovascular disorders including structural heart diseases [68]. Several studies suggested the potential clinical utility of Fqrs. For example, although pathologic Q-wave is known as the marker of myocardial infarction (MI) on a 12-lead EKG, its capacity in detecting myocardial scars is confined to only about one third of patients with documented MI [9, 10]. It has been suggested that fQRS is more sensitive than Q-wave for identifying myocardial scars [11]. Also, an association between fQRS and regional and global LV dysfunction has been reported in patients with coronary artery disease (CAD). Adverse major cardiac events have been predicted by fQRS in these patients in spite of a normal ejection fraction [12].
About 6–10% of apparent healthy individuals show fQRS [13]. In a general population free of clinical cardiac diseases, fQRS was a common finding [14]. Because the majority of studies fQRS was focused on diseased populations, the present study was designed to investigate the capacity of fQRS as an early predictor of LV systolic dysfunction in apparent healthy individuals.

Methods

This nested case-control study was done in the setting of a prospective cohort, Shiraz Heart Study (SHS), which is conducted on general population of Shiraz city aiming to analyze cardiovascular risk factors [15]. The present study has been conducted in accordance with the declaration of Helsinki and has been approved by the Ethical Committee of Shiraz University of Medical Sciences. All the study subjects provided written informed consent.
Inclusion criteria were negative past medical history, normal lipid profile, normal blood pressure, normal anthropometric indices as well as non-smokers and non-diabetics. Exclusion criteria were history of CAD, history of major risk factors for CAD (hypertension, diabetes mellitus, and hyperlipidemia), angina pectoris, acute coronary syndrome, cardiomyopathies, receiving any cardiovascular-related medications, implantation of pacemaker, heart valve disease, atrial fibrillation and flutter, rheumatism, renal disease, malignancy, pulmonary hypertension, and chronic obstructive pulmonary disease. Among those who met inclusion and exclusion criteria, random sampling was utilized in order to select 500 subjects.
A resting 12-lead EKG has obtained previously from the all the participants as the cohort scheduled procedure (filter settings: 0.5–150 Hz, 25 mm/s, 10 mm/mV). The EKGs of 500 subjects were thoroughly evaluated by two independent cardiologists seeking for QRS fragmentation. Notching in the R or S wave in the absence of a branch block, or an RSR’ pattern additional to the original QRS wave (< 120 ms) were defined as fQRS [16]. Upon disagreement on interpretation of an EKG, it was referred to a third cardiologist. Existence of fQRS was confirmed in conference in twenty subjects (case group). Similarly, out of remaining480, twenty age-matched subjects without fQRS were assigned as control group. Fragmentation was classified based on its location to anterior (V1 to V5), inferior (DII, DIII, aVF), or lateral (DI, aVL, V5, V6) leads.
Subjects in the two groups were asked to attend in the clinic. EKGs were repeated in order to find any possible new changes or arrhythmias by an expert who was blinded to grouping. Then, STE was performed with a commercially available ultrasound scanner (Vivid E9, General Electric Medical Systems, Horten, Norway) with a 2.5-MHz transducer by a single blinded echoman cardiologist. Echocardiograms were obtained in three-, two- and four-chamber apical views at a rate of 50 to 70 frames/s with the patient holding their breath during at least three cardiac cycles. Endocardial borders were automatically marked and tracking was applied to each image. In satisfactory tracking, the entire cardiac wall (endocardium through myoepicardial border) was covered. The LV was divided into four segments in 3-chamber view, and six segments in 2- and 4-chamber view, totally 16 segments were assessed. If the segments were marked by the software automatically, the obtained data were recorded. Otherwise, they were corrected manually. Image analysis was done by AFI system.
Peak systolic longitudinal strains (LS) of different segments were calculated and then, average LS for each view was produced. GLS was the arithmetic mean of LSs in three apical views. GLS of > 20% was assumed to be normal [17]. Dimensions and volumes of the left ventricle were measured according to the guidelines of the American Society of Echocardiography. Also, LVEF was calculated by Simpson rule [18]. Preserved EF was considered as EF ≥50% [19].
The statistical analysis was done in SPSS for Windows (release 14.0, SPSS Inc., Chicago, Illinois). Categorical variables are expressed as number (percentages) and continuous variables as mean ± standard deviation (SD). Comparison between variables were done using chi square, independent samples t test or ANOVA when appropriate. P value of less than 0.05 was considered statistically significant.

Results

The age range of the participants was 40 to 60 years old (mean of 50.3 ± 6.5) and higher prevalence of male subjects (75%). (Table 1). Mean LVEF was 59.3 ± 2.9% and the mean GLS was 20.7 ± 1.8 which were within the normal range [17, 19]. Participants were grouped into those with (cases) and without (controls) fQRS (20 subjects in each group). According to the Table 2, there were no significant differences in age, gender, EF, left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), and LV size between case and control groups.
Table 1
Baseline characteristics of the participants
Variables
Total
Age
50.35 ± 6.54
Gender (male %)
30 (75.0)
LVEDV (ml)
81.25 ± 22.45
LVESV (ml)
34.02 ± 9.12
 (D-LV diameter) (cm)
4.66 ± 0.52
(S-LV diameter)(cm)
3.04 ± 0.42
EF (%)
59.30 ± 2.89
Data were presented as mean ± sd or n (%) or (%). LVEDV left ventricular end-diastolic volume, LVESV left ventricular end-systolic volume, D-LV diameter left ventricular diameter in diastole, S-LV diameter left ventricular diameter in systole, EF ejection fraction
Table 2
Baseline characteristics of the participants based on fQRS and GLS status
 
fQRS
GLS
-
(n = 20)
+
(n = 20)
P value
Normal (n = 26)
reduced (n = 14)
p value
Age (yrs.)
49.55 ± 6.51
51.15 ± 6.64
0.446
49.65 ± 7.25
51.64 ± 4.93
0.366
Gender (male, %)
16 (80)
14 (70)
0.465
18 (69.2)
12 (85.7)
0.251
LVEDV (ml)
83.15 ± 24.85
79.35 ± 20.25
0.599
82.80 ± 23.79
78.35 ± 20.25
0.557
LVESV (ml)
35.20 ± 9.87
32.85 ± 8.41
0.423
34.38 ± 9.88
33.35 ± 7.82
0.739
D-LV diameter(cm)
4.69 ± 0.48
4.65 ± 0.59
0.792
4.65 ± 0.58
4.70 ± 0.43
0.780
S-LV diameter (cm)
3.08 ± 0.41
3.01 ± 0.45
0.612
3.06 ± 0.46
3.01 ± 0.37
0.744
EF (%)
59.20 ± 2.53
59.40 ± 3.2
0.830
59.23 ± 2.80
59.42 ± 3.15
0.840
Data were presented as mean ± sd or n (%) or (%). Normal GLS: > 20%. Reduced GLS: ≤20%. LVEDV left ventricular end-diastolic volume, LVESV left ventricular end-systolic volume, D-LV diameter left ventricular diameter in diastole, S-LV diameter left ventricular diameter in systole, EF ejection fraction
GLS was below the normal range (≤20%) in 14 subjects and 10 of these subjects had fQRS. EF and other variables did not differ significantly between those with reduced GLS and peers with normal GLS.
In the group with fQRS, this was localized in the inferior leads in 50% of subjects, equally distributed in anterior and lateral leads in the remaining subjects. The position of fragmentation was not significantly associateed with abnormal changes in GLS or EF (Table 3).
Table 3
EF and GLS of the case group based on fQRS position
Fragmentation
P valuea
 
Anterior (25%)
Lateral (25%)
Inferior (50%)
GLS (%)
20.30 ± 0.51
19.60 ± 1.88
19.94 ± 2.21
0.841
EF (%)
61.40 ± 3.50
56.80 ± 1.78
59.70 ± 3.12
0.071
Data were presented as mean ± sd, aExtracted from ANOVA. GLS global longitudinal strain, EF ejection fraction
When analyzing the LS in different segments, the group with fQRS showed a lower LS than the control group in five segments which included base-, mid-, and apex- of septal, base of anteroseptal and base of inferior. Also, there was significant reduction of LS in apical 4-chamber view, while LS in apical three- and two-chamber views did not differ significantly between case and control groups. Overall, GLS was significantly lower in the group with fQRS than the control group (Table 4). Moreover, longitudinal strains in different locations of QRS fragmentation (anterior, inferior, and lateral) was compared in Table 5.
Table 4
Comparison of echocardiographic parameters between case and control groups
 
fQRS
P value
+
ANTSEPT (%)
Base
17.20 ± 2.69
14.85 ± 3.90
0.032
Mid
20.25 ± 3.54
18.15 ± 3.96
0.085
POST (%)
Base
19.45 ± 2.28
18.90 ± 2.61
0.483
Mid
20.80 ± 2.31
20.20 ± 2.59
0.444
ANT (%)
Base
17.10 ± 2.65
17.40 ± 3.07
0.743
Mid
20.35 ± 2.96
20.25 ± 3.82
0.927
Apex
25.60 ± 3.55
23.90 ± 4.27
0.179
INF (%)
Base
19.00 ± 1.78
17.25 ± 2.02
0.006
Mid
21.15 ± 2.08
20.00 ± 2.60
0.131
Apex
25.85 ± 2.70
24.35 ± 4.13
0.182
LAT (%)
Base
18.95 ± 2.67
17.35 ± 3.54
0.115
Mid
20.20 ± 2.61
19.55 ± 3.89
0.538
Apex
24.60 ± 3.91
23.55 ± 4.26
0.422
SEPT (%)
Base
17.15 ± 1.93
15.35 ± 2.06
0.007
Mid
20.80 ± 1.77
18.65 ± 2.37
0.002
Apex
25.90 ± 3.13
23.25 ± 3.46
0.015
A3C_GLS (%)
21.07 ± 2.28
19.44 ± 2.92
0.057
A2C_GLS (%)
21.67 ± 1.95
20.74 ± 1.96
0.143
A4C_GLS (%)
21.44 ± 1.81
19.86 ± 2.58
0.031
GLS (%)
19.94 ± 1.78
21.41 ± 1.59
0.009
ANTSEPT: anteroseptal; POST: posterior; ANT: anterior; INF: inferior; LAT: lateral; SEPT: septal; A3C_GLS: GLS in apical three-chamber view; A2C_GLS: GLS in apical two-chamber view; A4C_GLS: GLS in apical four-chamber view. Bold values imply statistical significance
Table 5
Comparison of longitudinal strain in different locations of QRS fragmentation
Variables
fQRS location
P value
Anterior
Inferior
Lateral
ANTSEPT (%)
Base
16.40 ± 3.84
14.40 ± 3.20
14.20 ± 5.49
0.613
Mid
19.40 ± 3.04
17.1 ± 4.58
19.00 ± 3.53
0.515
POST (%)
Base
20.0 ± 2.0
18.40 ± 3.06
18.8 ± 2.28
0.558
Mid
21.6 ± 2.7
19.4 ± 2.22
20.4 ± 3.04
0.309
ANT (%)
Base
16.6 ± 1.14
17.60 ± 3.13
17.80 ± 4.49
0.809
Mid
22.20 ± 2.16
20.10 ± 4.01
18.60 ± 4.50
0.343
Apex
26.40 ± 2.88
23.30 ± 3.97
22.60 ± 5.63
0.321
INF (%)
Base
18.40 ± 1.94
16.50 ± 2.12
17.60 ± 1.51
0.215
Mid
21.80 ± 1.30
19.20 ± 2.78
19.80 ± 2.68
0.189
Apex
24.80 ± 3.7
24.20 ± 2.89
24.20 ± 6.94
0.965
LAT (%)
Base
16.40 ± 3.91
19.90 ± 3.81
17.20 ± 3.11
0.758
Mid
17.60 ± 3.78
21.00 ± 3.52
18.60 ± 4.27
0.238
Apex
21.80 ± 4.65
24.80 ± 4.04
22.80 ± 4.38
0.417
SEPT (%)
Base
16.40
15.20 ± 2.34
14.60 ± 1.81
0.385
Mid
19.80 ± 2.58
18.40 ± 2.50
18.0 ± 1.87
0.458
Apex
23.20 ± 2.28
23.60 ± 4.03
22.60 ± 3.78
0.127
A3C_GLS (%)
20.68 ± 1.39
18.67 ± 3.35
19.74 ± 3.11
0.462
A2C_GLS (%)
21.84 ± 0.88
20.43 ± 2.42
20.26 ± 1.49
0.366
A4C_GLS (%)
19.20 ± 2.22
20.69 ± 2.74
18.84 ± 2.46
0.360
GLS (%)
20.30 ± 0.51
19.94 ± 2.21
19.60 ± 1.88
0.841
ANTSEPT: anteroseptal; POST: posterior; ANT: anterior; INF: inferior; LAT: lateral; SEPT: septal; A3C_GLS: GLS in apical three-chamber view; A2C_GLS: GLS in apical two-chamber view; A4C_GLS: GLS in apical four-chamber view

Discussion

This nested case-control study was designed in order to investigate the association, if any, between fQRS and left ventricular dysfunction in apparently healthy people. Although the correlation between fQRS and cardiac disorders has been demonstrated in several diseased status [6, 20], but the importance of this QRS alteration has never been tested in a general population sample. The main finding of the present study is that in apparent healthy subjects with normal EF, those with fQRS had lower GLS than those without fQRS.
Scarring of the myocardium following by zigzag pattern of electrical conduction produces fQRS spikes [21]. fQRS is known as an indicator of previous myocardial injury and warns possible future adverse cardiac events [21]. It was reported that fQRS possibly is the only evidence of silent MI in high risk individuals [3]. Moreover, fQRS was known as a sign of premature ventricular contractions in individuals without obvious structural heart diseases [22]. It was shown to be superior than Q wave for detecting myocardial scar in terms of sensitivity and negative predictive value, but not of specificity [23]. However, in a more recent study, higher sensitivity and specificity of fQRS than Q wave was declared [24]. Also, in case of disappearance of MI-related Q wave due to revascularization therapies, fQRS would be a validated replacement [20].
Existence of fQRS in different EKG leads simply translates into tissue scarring in different segments of the heart and is associated to the higher incidence of cardiac death and hospitalization [21]. Severity and complexity of CAD was reported to be in relation with the number of EKG leads with fQRS [25]. Accordingly, fQRS could be a guiding tool to identify regions of interest for ablation, being potentially more prone to ventricular arrhythmias [20]. The potential of fQRS in predicting arrhythmic events, need for revascularization, MI, cardiac death, and all-cause mortality was shown in subjects with different cardiac disorders [23, 26, 27]. However, there are reports which questioned the capability of fQRS to localize myocardial scar and predict arrhythmic events, and mortality [4, 2833].
EF, which is a popular tool to estimate LV function, is able to reflect moderate to severe impairment in the ventricles. Also, this parameter suffers several limitations. Of note, EF mostly contributes to the myocardial changes in radial axis while longitudinal deformations are being neglected [34]. Strain is the more developed and accurate measurement than volumetric parameter of EF. It demonstrates fine myocardial deformations in longitudinal, circumferential, and radial axis and also, changes in torsion [34]. Among strains, GLS is of particular importance due to its sensitivity and robustness [35, 36]. The association of mortality with GLS was stronger than LVEF [37]. GLS, which is obtained by STE, measures myocardial deformations via tracing of speckles’ displacement [5, 16, 38]. Reduction in absolute GLS value is an indicator of a myocardial disease in most cases and portends future adverse events [35].
In an investigation on patients with systemic sclerosis, fQRS was present while LVEF and LV dimensions were normal. Importantly, GLS was significantly lower in these patients than in the control group [39]. In a comparison within apparent healthy individuals, GLS was significantly lower in those with fQRS than those without fQRS despite normal similar EF [40].. Although GLS reduction is a sign of LV malfunction, but GLS is also affected by other factors such as age, gender, and ethnicity [4144]. Also, changes in physiological parameters like heart rate affects GLS in healthy individuals [45]. Hypertension, obesity, dyslipidemia, diabetes and medications were also considered as factors that modifiy GLS value. Vendor-specific disparities and timing of measurements should also be considered in GLS evaluation [35].
fQRS in individuals with normal EF may be due to the existence of myocardial fibrosis of subclinical scale which in turn boasts fQRS sensitivity [22, 24]. EKG remains a convenient, cost-effective, and informative tool. EKG-born fQRS could play a valuable role in identifying individuals among general population who are prone to LV systolic dysfunction and consequent heart failure. A simple EKG has the potential to draw cardiologists’ attention for further assessment of the heart function with more sophisticated tools and parameters such as STE and GLS to find minor, but life-threatening events.

Conclusions

Because of the rising interest for fQRS in several pathological conditions, we investigated its importance in apparently healthy subjects. In these subjects, fQRS was associated with regional LV systolic dysfunction, assessed by GLS, in the presence of a normal ejection fraction. These data suggest that fQRS should not be considered as an innocent finding in healthy individuals.

Acknowledgements

Not applicable.
The present study is in accordance to the declaration of Helsinki and has approved by the Ethical Committee of Shiraz University of Medical Sciences. All the study subjects signed an informed written consent.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
2.
Zurück zum Zitat Marwick TH. Methods used for the assessment of LV systolic function: common currency or tower of babel? Heart. 2013;99(15):1078–86.PubMed Marwick TH. Methods used for the assessment of LV systolic function: common currency or tower of babel? Heart. 2013;99(15):1078–86.PubMed
3.
Zurück zum Zitat Das MK, Khan B, Jacob S, Kumar A, Mahenthiran J. Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation. 2006;113(21):2495–501.PubMed Das MK, Khan B, Jacob S, Kumar A, Mahenthiran J. Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation. 2006;113(21):2495–501.PubMed
4.
Zurück zum Zitat Hayashi T, Fukamizu S, Hojo R, Komiyama K, Tanabe Y, Tejima T, et al. Fragmented QRS predicts cardiovascular death of patients with structural heart disease and inducible ventricular tachyarrhythmia. Circ J. 2013;77(12):2889-97. CJ-13-0335. Hayashi T, Fukamizu S, Hojo R, Komiyama K, Tanabe Y, Tejima T, et al. Fragmented QRS predicts cardiovascular death of patients with structural heart disease and inducible ventricular tachyarrhythmia. Circ J. 2013;77(12):2889-97. CJ-13-0335.
5.
Zurück zum Zitat Bayramoğlu A, Taşolar H, Bektaş O, Kaya A, Günaydın ZY. Association between fragmented QRS complexes and left ventricular dysfunction in healthy smokers. Echocardiography. 2019;36(2):292–6.PubMed Bayramoğlu A, Taşolar H, Bektaş O, Kaya A, Günaydın ZY. Association between fragmented QRS complexes and left ventricular dysfunction in healthy smokers. Echocardiography. 2019;36(2):292–6.PubMed
6.
Zurück zum Zitat Das MK, Zipes DP. Fragmented QRS: a predictor of mortality and sudden cardiac death. Heart Rhythm. 2009;6(3):S8–S14.PubMed Das MK, Zipes DP. Fragmented QRS: a predictor of mortality and sudden cardiac death. Heart Rhythm. 2009;6(3):S8–S14.PubMed
7.
Zurück zum Zitat Balta S, Demirkol S, Kucuk U, Arslan Z, Unlu M, Demir M. Fragmented QRS in patients with acute myocardial infarction. Heart Lung. 2013;42(6):448.PubMed Balta S, Demirkol S, Kucuk U, Arslan Z, Unlu M, Demir M. Fragmented QRS in patients with acute myocardial infarction. Heart Lung. 2013;42(6):448.PubMed
8.
Zurück zum Zitat Chatterjee S, Changawala N. Fragmented QRS complex: a novel marker of cardiovascular disease. Clin Cardiol. 2010;33(2):68–71.PubMedPubMedCentral Chatterjee S, Changawala N. Fragmented QRS complex: a novel marker of cardiovascular disease. Clin Cardiol. 2010;33(2):68–71.PubMedPubMedCentral
9.
Zurück zum Zitat Abdulla J, Brendorp B, Torp-Pedersen C. Køber on behalf of the TRACE study group L. does the electrocardiographic presence of Q waves influence the survival of patients with acute myocardial infarction? Eur Heart J. 2001;22(12):1008–14.PubMed Abdulla J, Brendorp B, Torp-Pedersen C. Køber on behalf of the TRACE study group L. does the electrocardiographic presence of Q waves influence the survival of patients with acute myocardial infarction? Eur Heart J. 2001;22(12):1008–14.PubMed
10.
Zurück zum Zitat Voon W-C, Chen Y-W, Hsu C-C, Lai W-T, Sheu S-H. Q-wave regression after acute myocardial infarction assessed by Tl-201 myocardial perfusion SPECT. J Nucl Cardiol. 2004;11(2):165.PubMed Voon W-C, Chen Y-W, Hsu C-C, Lai W-T, Sheu S-H. Q-wave regression after acute myocardial infarction assessed by Tl-201 myocardial perfusion SPECT. J Nucl Cardiol. 2004;11(2):165.PubMed
11.
Zurück zum Zitat Sadeghi R, Dabbagh V-R, Tayyebi M, Zakavi SR, Ayati N. Diagnostic value of fragmented QRS complex in myocardial scar detection: systematic review and meta-analysis of the literature. Kardiologia Polska (Polish Heart Journal). 2016;74(4):331–7. Sadeghi R, Dabbagh V-R, Tayyebi M, Zakavi SR, Ayati N. Diagnostic value of fragmented QRS complex in myocardial scar detection: systematic review and meta-analysis of the literature. Kardiologia Polska (Polish Heart Journal). 2016;74(4):331–7.
12.
Zurück zum Zitat Yan G-H, Wang M, Yiu K-H, Lau C-P, Zhi G, Lee SW, et al. Subclinical left ventricular dysfunction revealed by circumferential 2D strain imaging in patients with coronary artery disease and fragmented QRS complex. Heart Rhythm. 2012;9(6):928–35.PubMed Yan G-H, Wang M, Yiu K-H, Lau C-P, Zhi G, Lee SW, et al. Subclinical left ventricular dysfunction revealed by circumferential 2D strain imaging in patients with coronary artery disease and fragmented QRS complex. Heart Rhythm. 2012;9(6):928–35.PubMed
13.
Zurück zum Zitat ÁDB B. From the boundaries of normality to the acknowledgement of a new nosological entity. Rev Port Cardiol. 2018;37(6):477. ÁDB B. From the boundaries of normality to the acknowledgement of a new nosological entity. Rev Port Cardiol. 2018;37(6):477.
14.
Zurück zum Zitat Tangcharoen T, Wiwatworapan W, Praserkulchai W, Apiyasawat S, Yamwong S, Sritara P. Fragmented QRS on 12-lead EKG is an independent predictor for myocardial scar: a cardiovascular magnetic resonance imaging study. J Cardiovasc Magn Reson. 2013;15(S1):P192.PubMedCentral Tangcharoen T, Wiwatworapan W, Praserkulchai W, Apiyasawat S, Yamwong S, Sritara P. Fragmented QRS on 12-lead EKG is an independent predictor for myocardial scar: a cardiovascular magnetic resonance imaging study. J Cardiovasc Magn Reson. 2013;15(S1):P192.PubMedCentral
15.
Zurück zum Zitat Zibaeenezhad MJ, Ghaem H, Parsa N, Sayadi M, Askarian M, Kasaei M, et al. Analysing cardiovascular risk factors and related outcomes in a middle-aged to older adults population in Iran: a cohort protocol of the shiraz heart study (SHS). BMJ Open. 2019;9(4):e026317.PubMedPubMedCentral Zibaeenezhad MJ, Ghaem H, Parsa N, Sayadi M, Askarian M, Kasaei M, et al. Analysing cardiovascular risk factors and related outcomes in a middle-aged to older adults population in Iran: a cohort protocol of the shiraz heart study (SHS). BMJ Open. 2019;9(4):e026317.PubMedPubMedCentral
16.
Zurück zum Zitat Bayramoğlu A, Taşolar H, Bektaş O, Yaman M, Kaya Y, Özbilen M, et al. Association between metabolic syndrome and fragmented QRS complexes: speckle tracking echocardiography study. J Electrocardiol. 2017;50(6):889–93.PubMed Bayramoğlu A, Taşolar H, Bektaş O, Yaman M, Kaya Y, Özbilen M, et al. Association between metabolic syndrome and fragmented QRS complexes: speckle tracking echocardiography study. J Electrocardiol. 2017;50(6):889–93.PubMed
17.
Zurück zum Zitat Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013;26(2):185–91.PubMed Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013;26(2):185–91.PubMed
18.
Zurück zum Zitat Cheitlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davis JL, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (ACC/AHA/ASE Committee to update the 1997 guidelines for the clinical application of echocardiography). J Am Coll Cardiol. 2003;42(5):954–70.PubMed Cheitlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davis JL, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (ACC/AHA/ASE Committee to update the 1997 guidelines for the clinical application of echocardiography). J Am Coll Cardiol. 2003;42(5):954–70.PubMed
19.
Zurück zum Zitat Ponikowski P, Voors A, Anker S, Bueno H, Cleland J, Coats A, et al. Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975. Ponikowski P, Voors A, Anker S, Bueno H, Cleland J, Coats A, et al. Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975.
20.
Zurück zum Zitat Fares H, Heist K, Lavie CJ, Kumbala D, Ventura H, Meadows R, et al. Fragmented QRS complexes—a novel but underutilized electrocardiograhic marker of heart disease. Critical Pathways Cardiol. 2013;12(4):181–3. Fares H, Heist K, Lavie CJ, Kumbala D, Ventura H, Meadows R, et al. Fragmented QRS complexes—a novel but underutilized electrocardiograhic marker of heart disease. Critical Pathways Cardiol. 2013;12(4):181–3.
21.
22.
Zurück zum Zitat Temiz A, Gazi E, Altun B, Güngör Ö, Barutçu A, Bekler A, et al. Fragmented QRS is associated with frequency of premature ventricular contractions in patients without overt cardiac disease. Anatolian J Cardiol. 2015;15(6):456. Temiz A, Gazi E, Altun B, Güngör Ö, Barutçu A, Bekler A, et al. Fragmented QRS is associated with frequency of premature ventricular contractions in patients without overt cardiac disease. Anatolian J Cardiol. 2015;15(6):456.
23.
Zurück zum Zitat Das MK, Saha C, El Masry H, Peng J, Dandamudi G, Mahenthiran J, et al. Fragmented QRS on a 12-lead ECG: a predictor of mortality and cardiac events in patients with coronary artery disease. Heart Rhythm. 2007;4(11):1385–92.PubMed Das MK, Saha C, El Masry H, Peng J, Dandamudi G, Mahenthiran J, et al. Fragmented QRS on a 12-lead ECG: a predictor of mortality and cardiac events in patients with coronary artery disease. Heart Rhythm. 2007;4(11):1385–92.PubMed
24.
Zurück zum Zitat MacAlpin RN. The fragmented QRS: does it really indicate a ventricular abnormality? J Cardiovasc Med. 2010;11(11):801–9. MacAlpin RN. The fragmented QRS: does it really indicate a ventricular abnormality? J Cardiovasc Med. 2010;11(11):801–9.
25.
Zurück zum Zitat Bekler A, Barutçu A, Tenekecioglu E, Altun B, Gazi E, Temiz A, et al. The relationship between fragmented QRS complexes and SYNTAX and Gensini scores in patients with acute coronary syndrome. Kardiologia Polska (Polish Heart Journal). 2015;73(4):246–54. Bekler A, Barutçu A, Tenekecioglu E, Altun B, Gazi E, Temiz A, et al. The relationship between fragmented QRS complexes and SYNTAX and Gensini scores in patients with acute coronary syndrome. Kardiologia Polska (Polish Heart Journal). 2015;73(4):246–54.
26.
Zurück zum Zitat Maskoun W, Suradi H, Mahenthiran J, Bhakta D, Das M. Fragmented QRS complexes on a 12-lead ECG predict arrhythmic events in patients with ischemic cardiomyopathy who receive an ICD for primary prophylaxis. Heart Rhythm. 2007;4:S211–S2. Maskoun W, Suradi H, Mahenthiran J, Bhakta D, Das M. Fragmented QRS complexes on a 12-lead ECG predict arrhythmic events in patients with ischemic cardiomyopathy who receive an ICD for primary prophylaxis. Heart Rhythm. 2007;4:S211–S2.
27.
Zurück zum Zitat Pietrasik G, Goldenberg I, Zdzienicka J, Moss AJ, Zareba W. Prognostic significance of fragmented QRS complex for predicting the risk of recurrent cardiac events in patients with Q-wave myocardial infarction. Am J Cardiol. 2007;100(4):583–6.PubMed Pietrasik G, Goldenberg I, Zdzienicka J, Moss AJ, Zareba W. Prognostic significance of fragmented QRS complex for predicting the risk of recurrent cardiac events in patients with Q-wave myocardial infarction. Am J Cardiol. 2007;100(4):583–6.PubMed
28.
Zurück zum Zitat Cheema A, Khalid A, Wimmer A, Bartone C, Chow T, Spertus JA, et al. Fragmented QRS and mortality risk in patients with left ventricular dysfunction. Circ Arrhythm Electrophysiol. 2010;3(4):339–44.PubMed Cheema A, Khalid A, Wimmer A, Bartone C, Chow T, Spertus JA, et al. Fragmented QRS and mortality risk in patients with left ventricular dysfunction. Circ Arrhythm Electrophysiol. 2010;3(4):339–44.PubMed
29.
Zurück zum Zitat Forleo GB, Della Rocca DG, Papavasileiou LP, Panattoni G, Sergi D, Duro L, et al. Predictive value of fragmented QRS in primary prevention implantable cardioverter defibrillator recipients with left ventricular dysfunction. J Cardiovasc Med. 2011;12(11):779–84. Forleo GB, Della Rocca DG, Papavasileiou LP, Panattoni G, Sergi D, Duro L, et al. Predictive value of fragmented QRS in primary prevention implantable cardioverter defibrillator recipients with left ventricular dysfunction. J Cardiovasc Med. 2011;12(11):779–84.
30.
Zurück zum Zitat Pietrasik GM, Polonsky S, Moss AJ, Zareba W. Presence of fragmented wide-qrs complex and the risk of death and sudden cardiac death among madit-ii patients with left bundle branch block. J Am Coll Cardiol. 2010;55(10 Supplement):A13 E126. Pietrasik GM, Polonsky S, Moss AJ, Zareba W. Presence of fragmented wide-qrs complex and the risk of death and sudden cardiac death among madit-ii patients with left bundle branch block. J Am Coll Cardiol. 2010;55(10 Supplement):A13 E126.
31.
Zurück zum Zitat Carey MG, Luisi AJ Jr, Baldwa S, Al-Zaiti S, Veneziano MJ. deKemp RA, et al. the Selvester QRS score is more accurate than Q waves and fragmented QRS complexes using the Mason-Likar configuration in estimating infarct volume in patients with ischemic cardiomyopathy. J Electrocardiol. 2010;43(4):318–25.PubMedPubMedCentral Carey MG, Luisi AJ Jr, Baldwa S, Al-Zaiti S, Veneziano MJ. deKemp RA, et al. the Selvester QRS score is more accurate than Q waves and fragmented QRS complexes using the Mason-Likar configuration in estimating infarct volume in patients with ischemic cardiomyopathy. J Electrocardiol. 2010;43(4):318–25.PubMedPubMedCentral
32.
Zurück zum Zitat Wang DD, Buerkel DM, Corbett JR, Gurm HS. Fragmented QRS complex has poor sensitivity in detecting myocardial scar. Ann Noninvasive Electrocardiol. 2010;15(4):308–14.PubMedPubMedCentral Wang DD, Buerkel DM, Corbett JR, Gurm HS. Fragmented QRS complex has poor sensitivity in detecting myocardial scar. Ann Noninvasive Electrocardiol. 2010;15(4):308–14.PubMedPubMedCentral
33.
Zurück zum Zitat Ahn M-S, Kim J-B, Yoo B-S, Lee J-W, Lee JH, Youn YJ, et al. Fragmented QRS complexes are not hallmarks of myocardial injury as detected by cardiac magnetic resonance imaging in patients with acute myocardial infarction. Int J Cardiol. 2013;168(3):2008–13.PubMed Ahn M-S, Kim J-B, Yoo B-S, Lee J-W, Lee JH, Youn YJ, et al. Fragmented QRS complexes are not hallmarks of myocardial injury as detected by cardiac magnetic resonance imaging in patients with acute myocardial infarction. Int J Cardiol. 2013;168(3):2008–13.PubMed
34.
Zurück zum Zitat Nesbitt GC, Mankad S, Oh JK. Strain imaging in echocardiography: methods and clinical applications. Int J Card Imaging. 2009;25(1):9–22. Nesbitt GC, Mankad S, Oh JK. Strain imaging in echocardiography: methods and clinical applications. Int J Card Imaging. 2009;25(1):9–22.
35.
Zurück zum Zitat Collier P, Phelan D, Klein A. A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol. 2017;69(8):1043–56.PubMed Collier P, Phelan D, Klein A. A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol. 2017;69(8):1043–56.PubMed
36.
Zurück zum Zitat Negishi K, Negishi T, Kurosawa K, Hristova K, Popescu BA, Vinereanu D, et al. Practical guidance in echocardiographic assessment of global longitudinal strain. JACC Cardiovasc Imaging. 2015;8(4):489–92.PubMed Negishi K, Negishi T, Kurosawa K, Hristova K, Popescu BA, Vinereanu D, et al. Practical guidance in echocardiographic assessment of global longitudinal strain. JACC Cardiovasc Imaging. 2015;8(4):489–92.PubMed
37.
Zurück zum Zitat Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014;100(21):1673–80.PubMed Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014;100(21):1673–80.PubMed
38.
Zurück zum Zitat Sengeløv M, Jørgensen PG, Jensen JS, Bruun NE, Olsen FJ, Fritz-Hansen T, et al. Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc Imaging. 2015;8(12):1351–9.PubMed Sengeløv M, Jørgensen PG, Jensen JS, Bruun NE, Olsen FJ, Fritz-Hansen T, et al. Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc Imaging. 2015;8(12):1351–9.PubMed
39.
Zurück zum Zitat Tigen K, Sunbul M, Ozen G, Durmus E, Kivrak T, Cincin A, et al. Regional myocardial dysfunction assessed by two-dimensional speckle tracking echocardiography in systemic sclerosis patients with fragmented QRS complexes. J Electrocardiol. 2014;47(5):677–83.PubMed Tigen K, Sunbul M, Ozen G, Durmus E, Kivrak T, Cincin A, et al. Regional myocardial dysfunction assessed by two-dimensional speckle tracking echocardiography in systemic sclerosis patients with fragmented QRS complexes. J Electrocardiol. 2014;47(5):677–83.PubMed
40.
Zurück zum Zitat Yaman M, Arslan U, Bayramoglu A, Bektas O, Gunaydin ZY, Kaya A. The presence of fragmented QRS is associated with increased epicardial adipose tissue and subclinical myocardial dysfunction in healthy individuals. Rev Port Cardiol. 2018;37(6):469–75.PubMed Yaman M, Arslan U, Bayramoglu A, Bektas O, Gunaydin ZY, Kaya A. The presence of fragmented QRS is associated with increased epicardial adipose tissue and subclinical myocardial dysfunction in healthy individuals. Rev Port Cardiol. 2018;37(6):469–75.PubMed
41.
Zurück zum Zitat Kocabay G, Muraru D, Peluso D, Cucchini U, Mihaila S, Padayattil-Jose S, et al. Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Revista Española de Cardiología (English Edition). 2014;67(8):651–8. Kocabay G, Muraru D, Peluso D, Cucchini U, Mihaila S, Padayattil-Jose S, et al. Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Revista Española de Cardiología (English Edition). 2014;67(8):651–8.
42.
Zurück zum Zitat Marwick TH, Leano RL, Brown J, Sun J-P, Hoffmann R, Lysyansky P, et al. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging. 2009;2(1):80–4.PubMed Marwick TH, Leano RL, Brown J, Sun J-P, Hoffmann R, Lysyansky P, et al. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging. 2009;2(1):80–4.PubMed
43.
Zurück zum Zitat Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, et al. Normal range of left ventricular 2-dimensional strain. Circ J. 2012;76(11):2623–32.PubMed Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, et al. Normal range of left ventricular 2-dimensional strain. Circ J. 2012;76(11):2623–32.PubMed
44.
Zurück zum Zitat Zghal F, Bougteb H, Réant P, Lafitte S, Roudaut R. Assessing global and regional left ventricular myocardial function in elderly patients using the bidimensional strain method. Echocardiography. 2011;28(9):978–82.PubMed Zghal F, Bougteb H, Réant P, Lafitte S, Roudaut R. Assessing global and regional left ventricular myocardial function in elderly patients using the bidimensional strain method. Echocardiography. 2011;28(9):978–82.PubMed
45.
Zurück zum Zitat Cifra B, Mertens L, Mirkhani M, Slorach C, Hui W, Manlhiot C, et al. Systolic and diastolic myocardial response to exercise in a healthy pediatric cohort. J Am Soc Echocardiogr. 2016;29(7):648–54.PubMed Cifra B, Mertens L, Mirkhani M, Slorach C, Hui W, Manlhiot C, et al. Systolic and diastolic myocardial response to exercise in a healthy pediatric cohort. J Am Soc Echocardiogr. 2016;29(7):648–54.PubMed
Metadaten
Titel
Fragmented QRS as an early predictor of left ventricular systolic dysfunction in healthy individuals: a nested case-control study in the era of speckle tracking echocardiography
verfasst von
Mohammad Hossein Nikoo
Zahra Jamali
Iman Razeghian-Jahromi
Mehrab Sayadi
Paolo Verdecchia
Firoozeh Abtahi
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Cardiovascular Ultrasound / Ausgabe 1/2020
Elektronische ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-020-00216-z

Weitere Artikel der Ausgabe 1/2020

Cardiovascular Ultrasound 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.