Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 6/2022

30.03.2022 | Original Article

Functional Impact and Regulation of Alternative Splicing in Mouse Heart Development and Disease

verfasst von: Carlos Martí-Gómez, Javier Larrasa-Alonso, Marina López-Olañeta, María Villalba-Orero, Pablo García-Pavía, Fátima Sánchez-Cabo, Enrique Lara-Pezzi

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Alternative splicing (AS) plays a major role in the generation of transcript diversity. In the heart, roles have been described for some AS variants, but the global impact and regulation of AS patterns are poorly understood. Here, we studied the AS profiles in heart disease, their relationship with heart development, and the regulatory mechanisms controlling AS dynamics in the mouse heart. We found that AS profiles characterized the different groups and that AS and gene expression changes affected independent genes and biological functions. Moreover, AS changes, specifically in heart disease, were associated with potential protein–protein interaction changes. While developmental transitions were mainly driven by the upregulation of MBNL1, AS changes in disease were driven by a complex regulatory network, where PTBP1 played a central role. Indeed, PTBP1 over-expression was sufficient to induce cardiac hypertrophy and diastolic dysfunction, potentially by perturbing AS patterns.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Das, S. R., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Jordan, L. C., Khan, S. S., Kissela, B. M., Knutson, K. L., … Null, N. (2019). Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation, 139(10), e56–e66. https://doi.org/10.1161/CIR.0000000000000659CrossRef Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Chang, A. R., Cheng, S., Das, S. R., Delling, F. N., Djousse, L., Elkind, M. S. V., Ferguson, J. F., Fornage, M., Jordan, L. C., Khan, S. S., Kissela, B. M., Knutson, K. L., … Null, N. (2019). Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation, 139(10), e56–e66. https://​doi.​org/​10.​1161/​CIR.​0000000000000659​CrossRef
3.
Zurück zum Zitat Barbosa-Morais, N. L., Irimia, M., Pan, Q., Xiong, H. Y., Gueroussov, S., Lee, L. J., Slobodeniuc, V., Kutter, C., Watt, S., Çolak, R., Kim, T., Misquitta-Ali, C. M., Wilson, M. D., Kim, P. M., Odom, D. T., Frey, B. J., & Blencowe, B. J. (2012). The evolutionary landscape of alternative splicing in vertebrate species. Science, 338(6114), 1587–1593. https://doi.org/10.1126/science.1230612CrossRef Barbosa-Morais, N. L., Irimia, M., Pan, Q., Xiong, H. Y., Gueroussov, S., Lee, L. J., Slobodeniuc, V., Kutter, C., Watt, S., Çolak, R., Kim, T., Misquitta-Ali, C. M., Wilson, M. D., Kim, P. M., Odom, D. T., Frey, B. J., & Blencowe, B. J. (2012). The evolutionary landscape of alternative splicing in vertebrate species. Science, 338(6114), 1587–1593. https://​doi.​org/​10.​1126/​science.​1230612CrossRef
6.
Zurück zum Zitat Kalsotra, A., & Cooper, T. A. (2011). Functional consequences of developmentally regulated alternative splicing. Nature Reviews. Genetics, 12(10), 715–729.CrossRef Kalsotra, A., & Cooper, T. A. (2011). Functional consequences of developmentally regulated alternative splicing. Nature Reviews. Genetics, 12(10), 715–729.CrossRef
9.
Zurück zum Zitat Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F., Campbell, N. H., Chavali, G., Chen, C., Del-Toro, N., Duesbury, M., Dumousseau, M., Galeota, E., Hinz, U., Iannuccelli, M., Jagannathan, S., Jimenez, R., Khadake, J., Lagreid, A., … Hermjakob, H. (2014). The MIntAct project – IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 42(Database issue), D358-363. https://doi.org/10.1093/nar/gkt1115CrossRef Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F., Campbell, N. H., Chavali, G., Chen, C., Del-Toro, N., Duesbury, M., Dumousseau, M., Galeota, E., Hinz, U., Iannuccelli, M., Jagannathan, S., Jimenez, R., Khadake, J., Lagreid, A., … Hermjakob, H. (2014). The MIntAct project – IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 42(Database issue), D358-363. https://​doi.​org/​10.​1093/​nar/​gkt1115CrossRef
11.
Zurück zum Zitat Yang, X., Coulombe-Huntington, J., Kang, S., Sheynkman, G. M., Hao, T., Richardson, A., Sun, S., Yang, F., Shen, Y. A., Murray, R. R., Spirohn, K., Begg, B. E., Duran-Frigola, M., Macwilliams, A., Pevzner, S. J., Zhong, Q., Trigg, S. A., Tam, S., Ghamsari, L., … Vidal, M. (2016). Widespread expansion of protein interaction capabilities by alternative splicing. Cell, 164(4), 805–817. https://doi.org/10.1016/j.cell.2016.01.029CrossRef Yang, X., Coulombe-Huntington, J., Kang, S., Sheynkman, G. M., Hao, T., Richardson, A., Sun, S., Yang, F., Shen, Y. A., Murray, R. R., Spirohn, K., Begg, B. E., Duran-Frigola, M., Macwilliams, A., Pevzner, S. J., Zhong, Q., Trigg, S. A., Tam, S., Ghamsari, L., … Vidal, M. (2016). Widespread expansion of protein interaction capabilities by alternative splicing. Cell, 164(4), 805–817. https://​doi.​org/​10.​1016/​j.​cell.​2016.​01.​029CrossRef
12.
Zurück zum Zitat Linares, A. J., Lin, C. H., Damianov, A., Adams, K. L., Novitch, B. G., & Black, D. L. (2015). The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. eLife, 4e09268. https://doi.org/10.7554/eLife.09268 Linares, A. J., Lin, C. H., Damianov, A., Adams, K. L., Novitch, B. G., & Black, D. L. (2015). The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. eLife, 4e09268. https://​doi.​org/​10.​7554/​eLife.​09268
13.
Zurück zum Zitat Richards, D. A., Aronovitz, M. J., Calamaras, T. D., Tam, K., Martin, G. L., Liu, P., Bowditch, H. K., Zhang, P., Huggins, G. S., & Blanton, R. M. (2019). Distinct phenotypes induced by three degrees of transverse aortic constriction in mice. Scientific Reports, 9(1), 5844. https://doi.org/10.1038/s41598-019-42209-7CrossRef Richards, D. A., Aronovitz, M. J., Calamaras, T. D., Tam, K., Martin, G. L., Liu, P., Bowditch, H. K., Zhang, P., Huggins, G. S., & Blanton, R. M. (2019). Distinct phenotypes induced by three degrees of transverse aortic constriction in mice. Scientific Reports, 9(1), 5844. https://​doi.​org/​10.​1038/​s41598-019-42209-7CrossRef
14.
Zurück zum Zitat Tapial, J., Ha, K. C. H., Sterne-Weiler, T., Gohr, A., Braunschweig, U., Hermoso-Pulido, A., Quesnel-Vallières, M., Permanyer, J., Sodaei, R., Marquez, Y., Cozzuto, L., Wang, X., Gómez-Velázquez, M., Rayon, T., Manzanares, M., Ponomarenko, J., Blencowe, B. J., & Irimia, M. (2017). An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Research, 27(10), 1759–1768. https://doi.org/10.1101/gr.220962.117CrossRef Tapial, J., Ha, K. C. H., Sterne-Weiler, T., Gohr, A., Braunschweig, U., Hermoso-Pulido, A., Quesnel-Vallières, M., Permanyer, J., Sodaei, R., Marquez, Y., Cozzuto, L., Wang, X., Gómez-Velázquez, M., Rayon, T., Manzanares, M., Ponomarenko, J., Blencowe, B. J., & Irimia, M. (2017). An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Research, 27(10), 1759–1768. https://​doi.​org/​10.​1101/​gr.​220962.​117CrossRef
18.
Zurück zum Zitat Irimia, M., Weatheritt, R. J., Ellis, J. D., Parikshak, N. N., Gonatopoulos-Pournatzis, T., Babor, M., Quesnel-Vallières, M., Tapial, J., Raj, B., O’hanlon, D., Barrios-Rodiles, M., Sternberg, M. J. E., Cordes, S. P., Roth, F. P., Wrana, J. L., Geschwind, D. H., & Blencowe, B. J. (2014). A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell, 159(7), 1511–1523. https://doi.org/10.1016/j.cell.2014.11.035CrossRef Irimia, M., Weatheritt, R. J., Ellis, J. D., Parikshak, N. N., Gonatopoulos-Pournatzis, T., Babor, M., Quesnel-Vallières, M., Tapial, J., Raj, B., O’hanlon, D., Barrios-Rodiles, M., Sternberg, M. J. E., Cordes, S. P., Roth, F. P., Wrana, J. L., Geschwind, D. H., & Blencowe, B. J. (2014). A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell, 159(7), 1511–1523. https://​doi.​org/​10.​1016/​j.​cell.​2014.​11.​035CrossRef
24.
Zurück zum Zitat Crone, S. A., Zhao, Y. Y., Fan, L., Gu, Y., Minamisawa, S., Liu, Y., Peterson, K. L., Chen, J., Kahn, R., Condorelli, G., Ross, J., Jr., Chien, K. R., & Lee, K. F. (2002). ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Medicine, 8(5), 459–465. https://doi.org/10.1038/nm0502-459CrossRef Crone, S. A., Zhao, Y. Y., Fan, L., Gu, Y., Minamisawa, S., Liu, Y., Peterson, K. L., Chen, J., Kahn, R., Condorelli, G., Ross, J., Jr., Chien, K. R., & Lee, K. F. (2002). ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Medicine, 8(5), 459–465. https://​doi.​org/​10.​1038/​nm0502-459CrossRef
25.
Zurück zum Zitat D’uva, G., Aharonov, A., Lauriola, M., Kain, D., Yahalom-Ronen, Y., Carvalho, S., Weisinger, K., Bassat, E., Rajchman, D., Yifa, O., Lysenko, M., Konfino, T., Hegesh, J., Brenner, O., Neeman, M., Yarden, Y., Leor, J., Sarig, R., Harvey, R. P., & Tzahor, E. (2015). ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nature Cell Biology, 17(5), 627–638. https://doi.org/10.1038/ncb3149CrossRef D’uva, G., Aharonov, A., Lauriola, M., Kain, D., Yahalom-Ronen, Y., Carvalho, S., Weisinger, K., Bassat, E., Rajchman, D., Yifa, O., Lysenko, M., Konfino, T., Hegesh, J., Brenner, O., Neeman, M., Yarden, Y., Leor, J., Sarig, R., Harvey, R. P., & Tzahor, E. (2015). ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nature Cell Biology, 17(5), 627–638. https://​doi.​org/​10.​1038/​ncb3149CrossRef
26.
Zurück zum Zitat Dixon, D. M., Choi, J., El-Ghazali, A., Park, S. Y., Roos, K. P., Jordan, M. C., Fishbein, M. C., Comai, L., & Reddy, S. (2015). Loss of muscleblind-like 1 results in cardiac pathology and persistence of embryonic splice isoforms. Scientific Reports, 59042.https://doi.org/10.1038/srep09042 Dixon, D. M., Choi, J., El-Ghazali, A., Park, S. Y., Roos, K. P., Jordan, M. C., Fishbein, M. C., Comai, L., & Reddy, S. (2015). Loss of muscleblind-like 1 results in cardiac pathology and persistence of embryonic splice isoforms. Scientific Reports, 59042.https://​doi.​org/​10.​1038/​srep09042
27.
Zurück zum Zitat Kalsotra, A., Xiao, X., Ward, A. J., Castle, J. C., Johnson, J. M., Burge, C. B., & Cooper, T. A. (2008). A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20333–20338. https://doi.org/10.1073/pnas.0809045105CrossRef Kalsotra, A., Xiao, X., Ward, A. J., Castle, J. C., Johnson, J. M., Burge, C. B., & Cooper, T. A. (2008). A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20333–20338. https://​doi.​org/​10.​1073/​pnas.​0809045105CrossRef
29.
Zurück zum Zitat Liu, Z., Wang, L., Welch, J. D., Ma, H., Zhou, Y., Vaseghi, H. R., Yu, S., Wall, J. B., Alimohamadi, S., Zheng, M., Yin, C., Shen, W., Prins, J. F., Liu, J., & Qian, L. (2017). Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature, 551(7678), 100–104. https://doi.org/10.1038/nature24454CrossRef Liu, Z., Wang, L., Welch, J. D., Ma, H., Zhou, Y., Vaseghi, H. R., Yu, S., Wall, J. B., Alimohamadi, S., Zheng, M., Yin, C., Shen, W., Prins, J. F., Liu, J., & Qian, L. (2017). Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature, 551(7678), 100–104. https://​doi.​org/​10.​1038/​nature24454CrossRef
30.
Zurück zum Zitat Fochi, S., Lorenzi, P., Galasso, M., Stefani, C., Trabetti, E., Zipeto, D., & Romanelli, M. G. (2020). The emerging role of the RBM20 and PTBP1 ribonucleoproteins in heart development and cardiovascular diseases. Genes, 11(4). https://doi.org/10.3390/genes11040402 Fochi, S., Lorenzi, P., Galasso, M., Stefani, C., Trabetti, E., Zipeto, D., & Romanelli, M. G. (2020). The emerging role of the RBM20 and PTBP1 ribonucleoproteins in heart development and cardiovascular diseases. Genes, 11(4). https://​doi.​org/​10.​3390/​genes11040402
32.
Zurück zum Zitat Bassat, E., Mutlak, Y. E., Genzelinakh, A., Shadrin, I. Y., Baruch Umansky, K., Yifa, O., Kain, D., Rajchman, D., Leach, J., RiabovBassat, D., Udi, Y., Sarig, R., Sagi, I., Martin, J. F., Bursac, N., Cohen, S., & Tzahor, E. (2017). The extracellular matrix protein agrin promotes heart regeneration in mice. Nature, 547(7662), 179–184. https://doi.org/10.1038/nature22978CrossRef Bassat, E., Mutlak, Y. E., Genzelinakh, A., Shadrin, I. Y., Baruch Umansky, K., Yifa, O., Kain, D., Rajchman, D., Leach, J., RiabovBassat, D., Udi, Y., Sarig, R., Sagi, I., Martin, J. F., Bursac, N., Cohen, S., & Tzahor, E. (2017). The extracellular matrix protein agrin promotes heart regeneration in mice. Nature, 547(7662), 179–184. https://​doi.​org/​10.​1038/​nature22978CrossRef
33.
Zurück zum Zitat Hilgenberg, L. G. W., Pham, B., Ortega, M., Walid, S., Kemmerly, T., O’dowd, D. K., & Smith, M. A. (2009). Agrin regulation of alpha3 sodium-potassium ATPase activity modulates cardiac myocyte contraction. The Journal of Biological Chemistry, 284(25), 16956–16965. https://doi.org/10.1074/jbc.M806855200CrossRef Hilgenberg, L. G. W., Pham, B., Ortega, M., Walid, S., Kemmerly, T., O’dowd, D. K., & Smith, M. A. (2009). Agrin regulation of alpha3 sodium-potassium ATPase activity modulates cardiac myocyte contraction. The Journal of Biological Chemistry, 284(25), 16956–16965. https://​doi.​org/​10.​1074/​jbc.​M806855200CrossRef
35.
Zurück zum Zitat Li, Y., Pawlik, B., Elcioglu, N., Aglan, M., Kayserili, H., Yigit, G., Percin, F., Goodman, F., Nürnberg, G., Cenani, A., Urquhart, J., Chung, B. D., Ismail, S., Amr, K., Aslanger, A. D., Becker, C., Netzer, C., Scambler, P., Eyaid, W., … Wollnik, B. (2010). LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. American Journal of Human Genetics, 86(5), 696–706. https://doi.org/10.1016/j.ajhg.2010.03.004CrossRef Li, Y., Pawlik, B., Elcioglu, N., Aglan, M., Kayserili, H., Yigit, G., Percin, F., Goodman, F., Nürnberg, G., Cenani, A., Urquhart, J., Chung, B. D., Ismail, S., Amr, K., Aslanger, A. D., Becker, C., Netzer, C., Scambler, P., Eyaid, W., … Wollnik, B. (2010). LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. American Journal of Human Genetics, 86(5), 696–706. https://​doi.​org/​10.​1016/​j.​ajhg.​2010.​03.​004CrossRef
39.
Zurück zum Zitat Weyn-Vanhentenryck, S. M., Feng, H., Ustianenko, D., Duffié, R., Yan, Q., Jacko, M., Martinez, J. C., Goodwin, M., Zhang, X., Hengst, U., Lomvardas, S., Swanson, M. S., & Zhang, C. (2018). Precise temporal regulation of alternative splicing during neural development. Nature Communications, 9(1), 2189. https://doi.org/10.1038/s41467-018-04559-0CrossRef Weyn-Vanhentenryck, S. M., Feng, H., Ustianenko, D., Duffié, R., Yan, Q., Jacko, M., Martinez, J. C., Goodwin, M., Zhang, X., Hengst, U., Lomvardas, S., Swanson, M. S., & Zhang, C. (2018). Precise temporal regulation of alternative splicing during neural development. Nature Communications, 9(1), 2189. https://​doi.​org/​10.​1038/​s41467-018-04559-0CrossRef
40.
Zurück zum Zitat Giudice, J., Xia, Z., Wang, E. T., Scavuzzo, M. A., Ward, A. J., Kalsotra, A., Wang, W., Wehrens, X. H., Burge, C. B., Li, W., & Cooper, T. A. (2014). Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nature Communications, 53603.https://doi.org/10.1038/ncomms4603 Giudice, J., Xia, Z., Wang, E. T., Scavuzzo, M. A., Ward, A. J., Kalsotra, A., Wang, W., Wehrens, X. H., Burge, C. B., Li, W., & Cooper, T. A. (2014). Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nature Communications, 53603.https://​doi.​org/​10.​1038/​ncomms4603
41.
Zurück zum Zitat Dominguez, D., Freese, P., Alexis, M. S., Su, A., Hochman, M., Palden, T., Bazile, C., Lambert, N. J., Van Nostrand, E. L., Pratt, G. A., Yeo, G. W., Graveley, B. R., & Burge, C. B. (2018). Sequence, structure, and context preferences of human RNA binding proteins. Molecular Cell, 70(5), 854-867.e859. https://doi.org/10.1016/j.molcel.2018.05.001CrossRef Dominguez, D., Freese, P., Alexis, M. S., Su, A., Hochman, M., Palden, T., Bazile, C., Lambert, N. J., Van Nostrand, E. L., Pratt, G. A., Yeo, G. W., Graveley, B. R., & Burge, C. B. (2018). Sequence, structure, and context preferences of human RNA binding proteins. Molecular Cell, 70(5), 854-867.e859. https://​doi.​org/​10.​1016/​j.​molcel.​2018.​05.​001CrossRef
42.
Zurück zum Zitat Ray, D., Kazan, H., Cook, K. B., Weirauch, M. T., Najafabadi, H. S., Li, X., Gueroussov, S., Albu, M., Zheng, H., Yang, A., Na, H., Irimia, M., Matzat, L. H., Dale, R. K., Smith, S. A., Yarosh, C. A., Kelly, S. M., Nabet, B., Mecenas, D., … Hughes, T. R. (2013). A compendium of RNA-binding motifs for decoding gene regulation. Nature, 499(7457), 172–177. https://doi.org/10.1038/nature12311CrossRef Ray, D., Kazan, H., Cook, K. B., Weirauch, M. T., Najafabadi, H. S., Li, X., Gueroussov, S., Albu, M., Zheng, H., Yang, A., Na, H., Irimia, M., Matzat, L. H., Dale, R. K., Smith, S. A., Yarosh, C. A., Kelly, S. M., Nabet, B., Mecenas, D., … Hughes, T. R. (2013). A compendium of RNA-binding motifs for decoding gene regulation. Nature, 499(7457), 172–177. https://​doi.​org/​10.​1038/​nature12311CrossRef
44.
Metadaten
Titel
Functional Impact and Regulation of Alternative Splicing in Mouse Heart Development and Disease
verfasst von
Carlos Martí-Gómez
Javier Larrasa-Alonso
Marina López-Olañeta
María Villalba-Orero
Pablo García-Pavía
Fátima Sánchez-Cabo
Enrique Lara-Pezzi
Publikationsdatum
30.03.2022
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 6/2022
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-022-10244-x

Weitere Artikel der Ausgabe 6/2022

Journal of Cardiovascular Translational Research 6/2022 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.