Skip to main content
Erschienen in: Experimental Brain Research 3/2009

01.04.2009 | Research Article

Functional subdivisions in low-frequency primary auditory cortex (AI)

verfasst von: M. N. Wallace, A. R. Palmer

Erschienen in: Experimental Brain Research | Ausgabe 3/2009

Einloggen, um Zugang zu erhalten

Abstract

We wished to test the hypothesis that there are modules in low-frequency AI that can be identified by their responsiveness to communication calls or particular regions of space. Units were recorded in anaesthetised guinea pig AI and stimulated with conspecific vocalizations and a virtual motion stimulus (binaural beats) presented via a closed sound system. Recording tracks were mainly oriented orthogonally to the cortical surface. Some of these contained units that were all time-locked to the structure of the chutter call (14/22 tracks) and/or the purr call (12/22 tracks) and/or that had a preference for stimuli from a particular region of space (8/20 tracks with four contralateral, two ipsilateral and two midline), or where there was a strong asymmetry in the response to beats of different direction (two tracks). We conclude that about half of low-frequency AI is organized into modules that are consistent with separate “what” and “where” pathways.
Literatur
Zurück zum Zitat Abeles M, Goldstein MH Jr (1970) Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J Neurophysiol 33:172–187PubMed Abeles M, Goldstein MH Jr (1970) Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J Neurophysiol 33:172–187PubMed
Zurück zum Zitat Barbour DL, Callaway EM (2008) Excitatory local connections of superficial neurons in rat auditory cortex. J Neurosci 28:11174–11185PubMedCrossRef Barbour DL, Callaway EM (2008) Excitatory local connections of superficial neurons in rat auditory cortex. J Neurosci 28:11174–11185PubMedCrossRef
Zurück zum Zitat Bullock D, Palmer AR, Rees A (1988) A compact and easy to use tungsten in glass microelectrode manufacturing workstation. Med Biol Eng Comput 26:669–672PubMedCrossRef Bullock D, Palmer AR, Rees A (1988) A compact and easy to use tungsten in glass microelectrode manufacturing workstation. Med Biol Eng Comput 26:669–672PubMedCrossRef
Zurück zum Zitat Cheung SW, Bedenbaugh PH, Nagarajan SS, Schreiner CE (2001) Functional organization of squirrel monkey primary auditory cortex: Responses to pure tones. J Neurophysiol 85:1732–1749PubMed Cheung SW, Bedenbaugh PH, Nagarajan SS, Schreiner CE (2001) Functional organization of squirrel monkey primary auditory cortex: Responses to pure tones. J Neurophysiol 85:1732–1749PubMed
Zurück zum Zitat Culling JF, Darwin CJ (1994) Perceptual and computational separation of simultaneous vowels—cues arising from low-frequency beating. J Acoust Soc Am 95:1559–1569PubMedCrossRef Culling JF, Darwin CJ (1994) Perceptual and computational separation of simultaneous vowels—cues arising from low-frequency beating. J Acoust Soc Am 95:1559–1569PubMedCrossRef
Zurück zum Zitat Doan DE, Saunders JC (1999) Sensitivity to simulated directional sound motion in the rat primary auditory cortex. J Neurophysiol 81:2075–2087PubMed Doan DE, Saunders JC (1999) Sensitivity to simulated directional sound motion in the rat primary auditory cortex. J Neurophysiol 81:2075–2087PubMed
Zurück zum Zitat Fitzpatrick DC, Kuwada S, Batra R (2000) Neural sensitivity to interaural time differences: beyond the Jeffress model. J Neurosci 20:1605–1615PubMed Fitzpatrick DC, Kuwada S, Batra R (2000) Neural sensitivity to interaural time differences: beyond the Jeffress model. J Neurosci 20:1605–1615PubMed
Zurück zum Zitat Goldberg JM, Brown PB (1969) Responses of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 22:613–636 Goldberg JM, Brown PB (1969) Responses of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 22:613–636
Zurück zum Zitat Horikawa J, Hess A, Nasu M, Hosokawa Y, Scheich H, Taniguchi I (2001) Optical imaging of neural activity in multiple auditory cortical fields of guinea pigs. Neuroreport 12:3335–3339PubMedCrossRef Horikawa J, Hess A, Nasu M, Hosokawa Y, Scheich H, Taniguchi I (2001) Optical imaging of neural activity in multiple auditory cortical fields of guinea pigs. Neuroreport 12:3335–3339PubMedCrossRef
Zurück zum Zitat Hubel DH, Wiesel TN (1997) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B 198:1–59CrossRef Hubel DH, Wiesel TN (1997) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B 198:1–59CrossRef
Zurück zum Zitat Jenkins WM, Merzenich MM (1984) Role of cat primary auditory cortex for sound-localization behavior. J Neurophysiol 52:819–847PubMed Jenkins WM, Merzenich MM (1984) Role of cat primary auditory cortex for sound-localization behavior. J Neurophysiol 52:819–847PubMed
Zurück zum Zitat Kaas J, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci USA 97:11793–11799PubMedCrossRef Kaas J, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci USA 97:11793–11799PubMedCrossRef
Zurück zum Zitat Linden JF, Schreiner CE (2003) Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cerebr Cortex 13:83–89CrossRef Linden JF, Schreiner CE (2003) Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cerebr Cortex 13:83–89CrossRef
Zurück zum Zitat Lomber SG, Malhotra S (2008) Double dissociation of “what” and “where” processing in auditory cortex. Nat Neurosci 11:609–616PubMedCrossRef Lomber SG, Malhotra S (2008) Double dissociation of “what” and “where” processing in auditory cortex. Nat Neurosci 11:609–616PubMedCrossRef
Zurück zum Zitat Macpherson EA, Middlebrooks JC (2002) Listener weighting of cues from lateral angle: the duplex theory of sound localization revisited. J Acoust Soc Am 91:1648–1661 Macpherson EA, Middlebrooks JC (2002) Listener weighting of cues from lateral angle: the duplex theory of sound localization revisited. J Acoust Soc Am 91:1648–1661
Zurück zum Zitat Malhotra S, Hall AJ, Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J Neurophysiol 92:1625–1643PubMedCrossRef Malhotra S, Hall AJ, Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J Neurophysiol 92:1625–1643PubMedCrossRef
Zurück zum Zitat Malhotra S, Stecker GC, Middlebrooks JC, Lomber SG (2008) Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone. J Neurophysiol 99:1628–1642PubMedCrossRef Malhotra S, Stecker GC, Middlebrooks JC, Lomber SG (2008) Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone. J Neurophysiol 99:1628–1642PubMedCrossRef
Zurück zum Zitat Malone BJ, Scott BH, Semple MN (2002) Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of macaques. J Neurosci 22:4625–4638PubMed Malone BJ, Scott BH, Semple MN (2002) Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of macaques. J Neurosci 22:4625–4638PubMed
Zurück zum Zitat McAlpine D, Jiang D, Palmer AR (1996) Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig. Hear Res 97:136–152PubMedCrossRef McAlpine D, Jiang D, Palmer AR (1996) Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig. Hear Res 97:136–152PubMedCrossRef
Zurück zum Zitat McAlpine D, Jiang D, Shackleton TM, Palmer AR (1998) Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus. J Neurosci 18:6026–6039PubMed McAlpine D, Jiang D, Shackleton TM, Palmer AR (1998) Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus. J Neurosci 18:6026–6039PubMed
Zurück zum Zitat McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4:396–401PubMedCrossRef McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4:396–401PubMedCrossRef
Zurück zum Zitat Mendelson JR, Schreiner CE, Sutter ML (1997) Functional topography of cat primary auditory cortex: response latencies. J Comp Physiol A 181:615–633PubMedCrossRef Mendelson JR, Schreiner CE, Sutter ML (1997) Functional topography of cat primary auditory cortex: response latencies. J Comp Physiol A 181:615–633PubMedCrossRef
Zurück zum Zitat Prieto JJ, Peterson BA, Winer JA (1994) Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI). J Comp Neurol 344:349–382PubMedCrossRef Prieto JJ, Peterson BA, Winer JA (1994) Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI). J Comp Neurol 344:349–382PubMedCrossRef
Zurück zum Zitat Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388PubMedCrossRef Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388PubMedCrossRef
Zurück zum Zitat Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97:11800–11806PubMedCrossRef Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci USA 97:11800–11806PubMedCrossRef
Zurück zum Zitat Rayleigh L (1907) On our perception of sound direction. Philos Mag 13:214–232 Rayleigh L (1907) On our perception of sound direction. Philos Mag 13:214–232
Zurück zum Zitat Read HL, Winer JA, Schreiner CE (2002) Functional architecture of auditory cortex. Curr Opin Neurobiol 12:433–440PubMedCrossRef Read HL, Winer JA, Schreiner CE (2002) Functional architecture of auditory cortex. Curr Opin Neurobiol 12:433–440PubMedCrossRef
Zurück zum Zitat Reale RA, Brugge JF (1990) Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues. J Neurophysiol 64:1247–1260PubMed Reale RA, Brugge JF (1990) Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues. J Neurophysiol 64:1247–1260PubMed
Zurück zum Zitat Recanzone GH (2000) Spatial processing in the auditory cortex of the macaque monkey. Proc Natl Acad Sci USA 97:11829–11835PubMedCrossRef Recanzone GH (2000) Spatial processing in the auditory cortex of the macaque monkey. Proc Natl Acad Sci USA 97:11829–11835PubMedCrossRef
Zurück zum Zitat Rutkowski RG, Wallace MN, Shackleton TM, Palmer AR (2000) Organisation of binaural interactions in the primary and dorsocaudal fields of the guinea pig auditory cortex. Hear Res 145:177–189PubMedCrossRef Rutkowski RG, Wallace MN, Shackleton TM, Palmer AR (2000) Organisation of binaural interactions in the primary and dorsocaudal fields of the guinea pig auditory cortex. Hear Res 145:177–189PubMedCrossRef
Zurück zum Zitat Schreiner CE, Winer JA (2007) Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–365PubMedCrossRef Schreiner CE, Winer JA (2007) Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–365PubMedCrossRef
Zurück zum Zitat Shackleton TM, Arnott RH, Palmer AR (2005) Sensitivity to interaural correlation of single neurons in the inferior colliculus of guinea pigs. J Assoc Res Otolaryngol 6:244–259PubMedCrossRef Shackleton TM, Arnott RH, Palmer AR (2005) Sensitivity to interaural correlation of single neurons in the inferior colliculus of guinea pigs. J Assoc Res Otolaryngol 6:244–259PubMedCrossRef
Zurück zum Zitat Shen J-X, Xu Z-M, Yao Y-D (1999) Evidence for columnar organization in the auditory cortex of the mouse. Hear Res 137:174–177PubMedCrossRef Shen J-X, Xu Z-M, Yao Y-D (1999) Evidence for columnar organization in the auditory cortex of the mouse. Hear Res 137:174–177PubMedCrossRef
Zurück zum Zitat Smith PH, Populin LC (2001) Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. J Comp Neurol 436:508–519PubMedCrossRef Smith PH, Populin LC (2001) Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. J Comp Neurol 436:508–519PubMedCrossRef
Zurück zum Zitat Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PloS Biol 3(3):e78PubMedCrossRef Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PloS Biol 3(3):e78PubMedCrossRef
Zurück zum Zitat Stevens SS, Newman EB (1936) The localization of actual sources of sound. Am J Psych 48:297–306CrossRef Stevens SS, Newman EB (1936) The localization of actual sources of sound. Am J Psych 48:297–306CrossRef
Zurück zum Zitat Sugimoto S, Sakurada M, Horikawa J, Taniguchi I (1997) The columnar and layer-specific response properties of neurons in the primary auditory cortex of Mongolian gerbils. Hear Res 112:175–185PubMedCrossRef Sugimoto S, Sakurada M, Horikawa J, Taniguchi I (1997) The columnar and layer-specific response properties of neurons in the primary auditory cortex of Mongolian gerbils. Hear Res 112:175–185PubMedCrossRef
Zurück zum Zitat Syka J, Šuta D, Popelář J (2005) Responses to species-specific vocalizations in the auditory cortex of awake and anesthetised guinea pigs. Hear Res 206:177–184PubMedCrossRef Syka J, Šuta D, Popelář J (2005) Responses to species-specific vocalizations in the auditory cortex of awake and anesthetised guinea pigs. Hear Res 206:177–184PubMedCrossRef
Zurück zum Zitat Tanaka H, Komatuzaki A, Taniguchi I (1994) Spatial distribution of response latency in the anterior field of the auditory cortex of the guinea pig. Audiol Jpn 37:222–228 Tanaka H, Komatuzaki A, Taniguchi I (1994) Spatial distribution of response latency in the anterior field of the auditory cortex of the guinea pig. Audiol Jpn 37:222–228
Zurück zum Zitat Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293PubMedCrossRef Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293PubMedCrossRef
Zurück zum Zitat Velenovsky DS, Cetas JS, Price RO, Sinex DG, McMullen NT (2003) Functional subregions in primary auditory cortex defined by thalamocortical terminal arbors: an electrophysiological and anterograde labeling study. J Neurosci 23:308–316PubMed Velenovsky DS, Cetas JS, Price RO, Sinex DG, McMullen NT (2003) Functional subregions in primary auditory cortex defined by thalamocortical terminal arbors: an electrophysiological and anterograde labeling study. J Neurosci 23:308–316PubMed
Zurück zum Zitat Wallace MN, Palmer AR (2008) Laminar differences in the response properties of cells in the primary auditory cortex. Exp Brain Res 184:179–191PubMedCrossRef Wallace MN, Palmer AR (2008) Laminar differences in the response properties of cells in the primary auditory cortex. Exp Brain Res 184:179–191PubMedCrossRef
Zurück zum Zitat Wallace MN, Rutkowski RG, Palmer AR (2000) Identification and localisation of auditory areas in guinea pig cortex. Exp Brain Res 132:445–456PubMedCrossRef Wallace MN, Rutkowski RG, Palmer AR (2000) Identification and localisation of auditory areas in guinea pig cortex. Exp Brain Res 132:445–456PubMedCrossRef
Zurück zum Zitat Wallace MN, Rutkowski RG, Palmer AR (2002) Interconnections of auditory areas in the guinea pig neocortex. Exp Brain Res 143:106–119PubMedCrossRef Wallace MN, Rutkowski RG, Palmer AR (2002) Interconnections of auditory areas in the guinea pig neocortex. Exp Brain Res 143:106–119PubMedCrossRef
Zurück zum Zitat Wallace MN, Shackleton TM, Anderson LA, Palmer AR (2005) Representation of the purr call in the guinea pig primary auditory cortex. Hear Res 204:115–126PubMedCrossRef Wallace MN, Shackleton TM, Anderson LA, Palmer AR (2005) Representation of the purr call in the guinea pig primary auditory cortex. Hear Res 204:115–126PubMedCrossRef
Zurück zum Zitat Wang X, Lu T, Snider RK, Liang L (2005) Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435:341–346PubMedCrossRef Wang X, Lu T, Snider RK, Liang L (2005) Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435:341–346PubMedCrossRef
Metadaten
Titel
Functional subdivisions in low-frequency primary auditory cortex (AI)
verfasst von
M. N. Wallace
A. R. Palmer
Publikationsdatum
01.04.2009
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 3/2009
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-009-1714-8

Weitere Artikel der Ausgabe 3/2009

Experimental Brain Research 3/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.