Skip to main content
Erschienen in: Journal of Assisted Reproduction and Genetics 10/2018

23.07.2018 | Review

GDF-9 and BMP-15 direct the follicle symphony

verfasst von: Alexandra Sanfins, Patrícia Rodrigues, David F. Albertini

Erschienen in: Journal of Assisted Reproduction and Genetics | Ausgabe 10/2018

Einloggen, um Zugang zu erhalten

Abstract

Understanding the physiology underlying the complex dialog between the oocyte and its surrounding somatic cells within the ovarian follicle has been crucial in defining optimal procedures for the development of clinical approaches in ART for women suffering from infertility and ovarian dysfunction. Recent studies have implicated oocyte-secreted factors like growth differentiation factor 9 (GDF-9) and bone morphogenetic protein 15 (BMP-15), members of the transforming growth factor-beta (TGFβ) superfamily, as potent regulators of folliculogenesis and ovulation. These two factors act as biologically active heterodimers or as homodimers in a synergistic cooperation. Through autocrine and paracrine mechanisms, the GDF-9 and BMP-15 system has been shown to regulate growth, differentiation, and function of granulosa and thecal cells during follicular development playing a vital role in oocyte development, ovulation, fertilization, and embryonic competence. The present mini-review provides an overview of recent findings relating GDF-9 and BMP-15 as fundamental factors implicated in the regulation of ovarian function and discusses their potential role as markers of oocyte quality in women.
Literatur
1.
Zurück zum Zitat Richards JS, Fitzpatrick SL, Clemens JW, Morris JK, Alliston T, Sirois J. Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes. Recent Prog Horm Res. 1995;50:223–54.PubMed Richards JS, Fitzpatrick SL, Clemens JW, Morris JK, Alliston T, Sirois J. Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes. Recent Prog Horm Res. 1995;50:223–54.PubMed
2.
Zurück zum Zitat McGinnis LK, Limback SD, Albertini DF. Signaling modalities during oogenesis in mammals. Curr Top Dev Biol. 2013;102:227–42.PubMedCrossRef McGinnis LK, Limback SD, Albertini DF. Signaling modalities during oogenesis in mammals. Curr Top Dev Biol. 2013;102:227–42.PubMedCrossRef
3.
Zurück zum Zitat Albertini DF, Barrett SL. Oocyte-somatic cell communication. Reprod Suppl. 2003;61:49–54.PubMed Albertini DF, Barrett SL. Oocyte-somatic cell communication. Reprod Suppl. 2003;61:49–54.PubMed
4.
Zurück zum Zitat Rodrigues P, Limback D, McGinnis LK, Plancha CE, Albertini DF. Oogenesis: prospects and challenges for the future. J Cell Physiol. 2008;216(2):355–65.PubMedCrossRef Rodrigues P, Limback D, McGinnis LK, Plancha CE, Albertini DF. Oogenesis: prospects and challenges for the future. J Cell Physiol. 2008;216(2):355–65.PubMedCrossRef
5.
Zurück zum Zitat Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol. 2000;226(2):167–79.PubMedCrossRef Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol. 2000;226(2):167–79.PubMedCrossRef
6.
Zurück zum Zitat Gilchrist RB, Ritter LJ, Armstrong DT. Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004;82-83:431–46.PubMedCrossRef Gilchrist RB, Ritter LJ, Armstrong DT. Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004;82-83:431–46.PubMedCrossRef
7.
Zurück zum Zitat Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17(2):121–55.PubMedCrossRef Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17(2):121–55.PubMedCrossRef
8.
Zurück zum Zitat Albertini DF. The Mammalian Oocyte. In: The Mammalian Oocyte, in Knobil and Neill's Physiology of Reproduction (Fourth Edition). Editor: A.Z. Tony Plant; 2015. p. 59–97.CrossRef Albertini DF. The Mammalian Oocyte. In: The Mammalian Oocyte, in Knobil and Neill's Physiology of Reproduction (Fourth Edition). Editor: A.Z. Tony Plant; 2015. p. 59–97.CrossRef
9.
Zurück zum Zitat Monniaux D. Driving folliculogenesis by the oocyte-somatic cell dialog: lessons from genetic models. Theriogenology. 2016;86(1):41–53.PubMedCrossRef Monniaux D. Driving folliculogenesis by the oocyte-somatic cell dialog: lessons from genetic models. Theriogenology. 2016;86(1):41–53.PubMedCrossRef
10.
Zurück zum Zitat Falck B. Site of production of oestrogen in rat ovary as studied in micro-transplants. Acta Physiol Scand Suppl. 1959;47(163):1–101.PubMed Falck B. Site of production of oestrogen in rat ovary as studied in micro-transplants. Acta Physiol Scand Suppl. 1959;47(163):1–101.PubMed
11.
Zurück zum Zitat el-Fouly MA, et al. Role of the ovum in follicular luteinization. Endocrinology. 1970;87(2):286–93.PubMedCrossRef el-Fouly MA, et al. Role of the ovum in follicular luteinization. Endocrinology. 1970;87(2):286–93.PubMedCrossRef
12.
Zurück zum Zitat Nekola MV, Nalbandov AV. Morphological changes of rat follicular cells as influenced by oocytes. Biol Reprod. 1971;4(2):154–60.PubMedCrossRef Nekola MV, Nalbandov AV. Morphological changes of rat follicular cells as influenced by oocytes. Biol Reprod. 1971;4(2):154–60.PubMedCrossRef
13.
Zurück zum Zitat Hutt KJ, Albertini DF. An oocentric view of folliculogenesis and embryogenesis. Reprod BioMed Online. 2007;14(6):758–64.PubMedCrossRef Hutt KJ, Albertini DF. An oocentric view of folliculogenesis and embryogenesis. Reprod BioMed Online. 2007;14(6):758–64.PubMedCrossRef
14.
Zurück zum Zitat Erickson GF, Shimasaki S. The role of the oocyte in folliculogenesis. Trends Endocrinol Metab. 2000;11(5):193–8.PubMedCrossRef Erickson GF, Shimasaki S. The role of the oocyte in folliculogenesis. Trends Endocrinol Metab. 2000;11(5):193–8.PubMedCrossRef
15.
Zurück zum Zitat Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296(5576):2178–80.PubMedCrossRef Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296(5576):2178–80.PubMedCrossRef
16.
Zurück zum Zitat Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14(2):159–77.PubMedCrossRef Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14(2):159–77.PubMedCrossRef
17.
Zurück zum Zitat Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829–38.PubMedCrossRef Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829–38.PubMedCrossRef
18.
Zurück zum Zitat Eppig JJ, Chesnel F, Hirao Y, O'Brien MJ, Pendola FL, Watanabe S, et al. Oocyte control of granulosa cell development: how and why. Hum Reprod. 1997;12(11 Suppl):127–32.PubMed Eppig JJ, Chesnel F, Hirao Y, O'Brien MJ, Pendola FL, Watanabe S, et al. Oocyte control of granulosa cell development: how and why. Hum Reprod. 1997;12(11 Suppl):127–32.PubMed
19.
Zurück zum Zitat Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol. 2006;296(2):514–21.PubMedCrossRef Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol. 2006;296(2):514–21.PubMedCrossRef
20.
Zurück zum Zitat Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27(1):32–42.PubMedPubMedCentralCrossRef Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27(1):32–42.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Vanderhyden BC, et al. Evaluation of members of the TGFbeta superfamily as candidates for the oocyte factors that control mouse cumulus expansion and steroidogenesis. Reprod Suppl. 2003;61:55–70.PubMed Vanderhyden BC, et al. Evaluation of members of the TGFbeta superfamily as candidates for the oocyte factors that control mouse cumulus expansion and steroidogenesis. Reprod Suppl. 2003;61:55–70.PubMed
22.
Zurück zum Zitat Vanderhyden BC, Tonary AM. Differential regulation of progesterone and estradiol production by mouse cumulus and mural granulosa cells by A factor(s) secreted by the oocyte. Biol Reprod. 1995;53(6):1243–50.PubMedCrossRef Vanderhyden BC, Tonary AM. Differential regulation of progesterone and estradiol production by mouse cumulus and mural granulosa cells by A factor(s) secreted by the oocyte. Biol Reprod. 1995;53(6):1243–50.PubMedCrossRef
23.
Zurück zum Zitat Eppig JJ, Wigglesworth K, Pendola F, Hirao Y. Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol Reprod. 1997;56(4):976–84.PubMedCrossRef Eppig JJ, Wigglesworth K, Pendola F, Hirao Y. Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol Reprod. 1997;56(4):976–84.PubMedCrossRef
24.
Zurück zum Zitat Gilchrist RB, et al. Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation. J Cell Sci. 2006;119(Pt 18):3811–21.PubMedCrossRef Gilchrist RB, et al. Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation. J Cell Sci. 2006;119(Pt 18):3811–21.PubMedCrossRef
25.
Zurück zum Zitat Eppig JJ, Pendola FL, Wigglesworth K. Mouse oocytes suppress cAMP-induced expression of LH receptor mRNA by granulosa cells in vitro. Mol Reprod Dev. 1998;49(3):327–32.PubMedCrossRef Eppig JJ, Pendola FL, Wigglesworth K. Mouse oocytes suppress cAMP-induced expression of LH receptor mRNA by granulosa cells in vitro. Mol Reprod Dev. 1998;49(3):327–32.PubMedCrossRef
26.
Zurück zum Zitat Gilchrist RB, Ritter LJ, Armstrong DT. Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation. Dev Biol. 2001;240(1):289–98.PubMedCrossRef Gilchrist RB, Ritter LJ, Armstrong DT. Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation. Dev Biol. 2001;240(1):289–98.PubMedCrossRef
27.
Zurück zum Zitat Armstrong DT, Xia P, de Gannes G, Tekpetey FR, Khamsi F. Differential effects of insulin-like growth factor-I and follicle-stimulating hormone on proliferation and differentiation of bovine cumulus cells and granulosa cells. Biol Reprod. 1996;54(2):331–8.PubMedCrossRef Armstrong DT, Xia P, de Gannes G, Tekpetey FR, Khamsi F. Differential effects of insulin-like growth factor-I and follicle-stimulating hormone on proliferation and differentiation of bovine cumulus cells and granulosa cells. Biol Reprod. 1996;54(2):331–8.PubMedCrossRef
28.
Zurück zum Zitat Li R, Norman RJ, Armstrong DT, Gilchrist RB. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol Reprod. 2000;63(3):839–45.PubMedCrossRef Li R, Norman RJ, Armstrong DT, Gilchrist RB. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol Reprod. 2000;63(3):839–45.PubMedCrossRef
29.
Zurück zum Zitat Coskun S, Uzumcu M, Lin YC, Friedman CI, Alak BM. Regulation of cumulus cell steroidogenesis by the porcine oocyte and preliminary characterization of oocyte-produced factor(s). Biol Reprod. 1995;53(3):670–5.PubMedCrossRef Coskun S, Uzumcu M, Lin YC, Friedman CI, Alak BM. Regulation of cumulus cell steroidogenesis by the porcine oocyte and preliminary characterization of oocyte-produced factor(s). Biol Reprod. 1995;53(3):670–5.PubMedCrossRef
30.
Zurück zum Zitat Hussein TS, et al. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118(Pt 22):5257–68.PubMedCrossRef Hussein TS, et al. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118(Pt 22):5257–68.PubMedCrossRef
31.
Zurück zum Zitat Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191–206.PubMedCrossRef Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191–206.PubMedCrossRef
32.
Zurück zum Zitat Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev. 2002;23(6):787–823.PubMedCrossRef Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev. 2002;23(6):787–823.PubMedCrossRef
33.
Zurück zum Zitat Juengel JL, McNatty KP. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update. 2005;11(2):143–60.PubMedCrossRef Juengel JL, McNatty KP. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update. 2005;11(2):143–60.PubMedCrossRef
34.
Zurück zum Zitat Chang HM, Qiao J, Leung PC. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update. 2016;23(1):1–18.PubMedPubMedCentralCrossRef Chang HM, Qiao J, Leung PC. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update. 2016;23(1):1–18.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat de Castro FC, Cruz MH, Leal CL. Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility - a review. Asian-Australas J Anim Sci. 2016;29(8):1065–74.PubMedCrossRef de Castro FC, Cruz MH, Leal CL. Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility - a review. Asian-Australas J Anim Sci. 2016;29(8):1065–74.PubMedCrossRef
36.
Zurück zum Zitat Persani L, Rossetti R, di Pasquale E, Cacciatore C, Fabre S. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update. 2014;20(6):869–83.PubMedCrossRef Persani L, Rossetti R, di Pasquale E, Cacciatore C, Fabre S. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update. 2014;20(6):869–83.PubMedCrossRef
38.
Zurück zum Zitat Shimasaki S, Zachow RJ, Li D, Kim H, Iemura SI, Ueno N, et al. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci U S A. 1999;96(13):7282–7.PubMedPubMedCentralCrossRef Shimasaki S, Zachow RJ, Li D, Kim H, Iemura SI, Ueno N, et al. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci U S A. 1999;96(13):7282–7.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Berisha B, Schams D, Kosmann M, Amselgruber W, Einspanier R. Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles. J Endocrinol. 2000;167(3):371–82.PubMedCrossRef Berisha B, Schams D, Kosmann M, Amselgruber W, Einspanier R. Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles. J Endocrinol. 2000;167(3):371–82.PubMedCrossRef
40.
Zurück zum Zitat Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004;25(1):72–101.PubMedCrossRef Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004;25(1):72–101.PubMedCrossRef
41.
Zurück zum Zitat McPherron AC, Lee SJ. GDF-3 and GDF-9: two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines. J Biol Chem. 1993;268(5):3444–9.PubMed McPherron AC, Lee SJ. GDF-3 and GDF-9: two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines. J Biol Chem. 1993;268(5):3444–9.PubMed
42.
Zurück zum Zitat McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol. 1995;9(1):131–6.PubMed McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol. 1995;9(1):131–6.PubMed
43.
Zurück zum Zitat Laitinen M, Vuojolainen K, Jaatinen R, Ketola I, Aaltonen J, Lehtonen E, et al. A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis. Mech Dev. 1998;78(1–2):135–40.PubMedCrossRef Laitinen M, Vuojolainen K, Jaatinen R, Ketola I, Aaltonen J, Lehtonen E, et al. A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis. Mech Dev. 1998;78(1–2):135–40.PubMedCrossRef
44.
Zurück zum Zitat Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998;12(12):1809–17.PubMedCrossRef Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998;12(12):1809–17.PubMedCrossRef
45.
Zurück zum Zitat Incerti B, Dong J, Borsani G, Matzuk MM. Structure of the mouse growth/differentiation factor 9 gene. Biochim Biophys Acta. 1994;1222(1):125–8.PubMedCrossRef Incerti B, Dong J, Borsani G, Matzuk MM. Structure of the mouse growth/differentiation factor 9 gene. Biochim Biophys Acta. 1994;1222(1):125–8.PubMedCrossRef
46.
Zurück zum Zitat Ahmad HI, et al. Maximum-likelihood approaches reveal signatures of positive selection in BMP-15 and GDF-9 genes modulating ovarian function in mammalian female fertility, in Ecol Evol. 2017. p. 8895–902.PubMedPubMedCentralCrossRef Ahmad HI, et al. Maximum-likelihood approaches reveal signatures of positive selection in BMP-15 and GDF-9 genes modulating ovarian function in mammalian female fertility, in Ecol Evol. 2017. p. 8895–902.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Ahmad HI, Ahmad MJ, Adeel MM, Asif AR, du X. Positive selection drives the evolution of endocrine regulatory bone morphogenetic protein system in mammals. Oncotarget. 2018;9(26):18435–45.PubMedPubMedCentralCrossRef Ahmad HI, Ahmad MJ, Adeel MM, Asif AR, du X. Positive selection drives the evolution of endocrine regulatory bone morphogenetic protein system in mammals. Oncotarget. 2018;9(26):18435–45.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Mottershead DG, Pulkki MM, Muggalla P, Pasternack A, Tolonen M, Myllymaa S, et al. Characterization of recombinant human growth differentiation factor-9 signaling in ovarian granulosa cells. Mol Cell Endocrinol. 2008;283(1–2):58–67.PubMedCrossRef Mottershead DG, Pulkki MM, Muggalla P, Pasternack A, Tolonen M, Myllymaa S, et al. Characterization of recombinant human growth differentiation factor-9 signaling in ovarian granulosa cells. Mol Cell Endocrinol. 2008;283(1–2):58–67.PubMedCrossRef
49.
Zurück zum Zitat Paulini F, Melo EO. The role of oocyte-secreted factors GDF-9 and BMP-15 in follicular development and oogenesis. Reprod Domest Anim. 2011;46(2):354–61.PubMedCrossRef Paulini F, Melo EO. The role of oocyte-secreted factors GDF-9 and BMP-15 in follicular development and oogenesis. Reprod Domest Anim. 2011;46(2):354–61.PubMedCrossRef
50.
Zurück zum Zitat McIntosh CJ, Lun S, Lawrence S, Western AH, McNatty KP, Juengel JL. The proregion of mouse BMP-15 regulates the cooperative interactions of BMP-15 and GDF-9. Biol Reprod. 2008;79(5):889–96.PubMedCrossRef McIntosh CJ, Lun S, Lawrence S, Western AH, McNatty KP, Juengel JL. The proregion of mouse BMP-15 regulates the cooperative interactions of BMP-15 and GDF-9. Biol Reprod. 2008;79(5):889–96.PubMedCrossRef
51.
Zurück zum Zitat Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001;15(6):854–66.PubMedCrossRef Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001;15(6):854–66.PubMedCrossRef
52.
Zurück zum Zitat Peng J, Li Q, Wigglesworth K, Rangarajan A, Kattamuri C, Peterson RT, et al. Growth differentiation factor 9: bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci U S A. 2013;110(8):E776–85.PubMedPubMedCentralCrossRef Peng J, Li Q, Wigglesworth K, Rangarajan A, Kattamuri C, Peterson RT, et al. Growth differentiation factor 9: bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci U S A. 2013;110(8):E776–85.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Mottershead DG, Sugimura S, al-Musawi SL, Li JJ, Richani D, White MA, et al. Cumulin, an oocyte-secreted heterodimer of the transforming growth factor-beta family, is a potent activator of granulosa cells and improves oocyte quality. J Biol Chem. 2015;290(39):24007–20.PubMedPubMedCentralCrossRef Mottershead DG, Sugimura S, al-Musawi SL, Li JJ, Richani D, White MA, et al. Cumulin, an oocyte-secreted heterodimer of the transforming growth factor-beta family, is a potent activator of granulosa cells and improves oocyte quality. J Biol Chem. 2015;290(39):24007–20.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Su YQ, Sugiura K, Wigglesworth K, O'Brien MJ, Affourtit JP, Pangas SA, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP-15 and GDF-9 control cholesterol biosynthesis in cumulus cells. Development. 2008;135(1):111–21.CrossRefPubMed Su YQ, Sugiura K, Wigglesworth K, O'Brien MJ, Affourtit JP, Pangas SA, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP-15 and GDF-9 control cholesterol biosynthesis in cumulus cells. Development. 2008;135(1):111–21.CrossRefPubMed
55.
Zurück zum Zitat Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, et al. Oocyte-derived BMP-15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134(14):2593–603.PubMedCrossRef Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, et al. Oocyte-derived BMP-15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134(14):2593–603.PubMedCrossRef
56.
Zurück zum Zitat Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice. Dev Biol. 2007;305(1):300–11.PubMedPubMedCentralCrossRef Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice. Dev Biol. 2007;305(1):300–11.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Hashimoto O, Moore RK, Shimasaki S. Posttranslational processing of mouse and human BMP-15: potential implication in the determination of ovulation quota. Proc Natl Acad Sci U S A. 2005;102(15):5426–31.PubMedPubMedCentralCrossRef Hashimoto O, Moore RK, Shimasaki S. Posttranslational processing of mouse and human BMP-15: potential implication in the determination of ovulation quota. Proc Natl Acad Sci U S A. 2005;102(15):5426–31.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Pangas SA, Matzuk MM. The art and artifact of GDF-9 activity: cumulus expansion and the cumulus expansion-enabling factor. Biol Reprod. 2005;73(4):582–5.PubMedCrossRef Pangas SA, Matzuk MM. The art and artifact of GDF-9 activity: cumulus expansion and the cumulus expansion-enabling factor. Biol Reprod. 2005;73(4):582–5.PubMedCrossRef
59.
Zurück zum Zitat Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes determine cumulus cell lineage in mouse ovarian follicles. J Cell Sci. 2007;120(Pt 8):1330–40.PubMedCrossRef Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes determine cumulus cell lineage in mouse ovarian follicles. J Cell Sci. 2007;120(Pt 8):1330–40.PubMedCrossRef
60.
Zurück zum Zitat Ernst EH, Franks S, Hardy K, Villesen P, Lykke-Hartmann K. Granulosa cells from human primordial and primary follicles show differential global gene expression profiles. Hum Reprod. 2018;33(4):666–79.PubMedCrossRef Ernst EH, Franks S, Hardy K, Villesen P, Lykke-Hartmann K. Granulosa cells from human primordial and primary follicles show differential global gene expression profiles. Hum Reprod. 2018;33(4):666–79.PubMedCrossRef
61.
Zurück zum Zitat Chang HM, Cheng JC, Leung PC. Theca-derived BMP4 and BMP7 down-regulate connexin43 expression and decrease gap junction intercellular communication activity in immortalized human granulosa cells. J Clin Endocrinol Metab. 2013;98(3):E437–45.PubMedCrossRef Chang HM, Cheng JC, Leung PC. Theca-derived BMP4 and BMP7 down-regulate connexin43 expression and decrease gap junction intercellular communication activity in immortalized human granulosa cells. J Clin Endocrinol Metab. 2013;98(3):E437–45.PubMedCrossRef
62.
Zurück zum Zitat Chang HM, Cheng JC, Taylor E, Leung PCK. Oocyte-derived BMP-15 but not GDF-9 down-regulates connexin43 expression and decreases gap junction intercellular communication activity in immortalized human granulosa cells. Mol Hum Reprod. 2014;20(5):373–83.PubMedPubMedCentralCrossRef Chang HM, Cheng JC, Taylor E, Leung PCK. Oocyte-derived BMP-15 but not GDF-9 down-regulates connexin43 expression and decreases gap junction intercellular communication activity in immortalized human granulosa cells. Mol Hum Reprod. 2014;20(5):373–83.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383(6600):531–5.PubMedCrossRef Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383(6600):531–5.PubMedCrossRef
64.
Zurück zum Zitat Galloway SM, McNatty KP, Cambridge LM, Laitinen MPE, Juengel JL, Jokiranta TS, et al. Mutations in an oocyte-derived growth factor gene (BMP-15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet. 2000;25(3):279–83.PubMedCrossRef Galloway SM, McNatty KP, Cambridge LM, Laitinen MPE, Juengel JL, Jokiranta TS, et al. Mutations in an oocyte-derived growth factor gene (BMP-15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet. 2000;25(3):279–83.PubMedCrossRef
65.
Zurück zum Zitat Gueripel X, Brun V, Gougeon A. Oocyte bone morphogenetic protein 15, but not growth differentiation factor 9, is increased during gonadotropin-induced follicular development in the immature mouse and is associated with cumulus oophorus expansion. Biol Reprod. 2006;75(6):836–43.PubMedCrossRef Gueripel X, Brun V, Gougeon A. Oocyte bone morphogenetic protein 15, but not growth differentiation factor 9, is increased during gonadotropin-induced follicular development in the immature mouse and is associated with cumulus oophorus expansion. Biol Reprod. 2006;75(6):836–43.PubMedCrossRef
66.
Zurück zum Zitat Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol. 1999;13(6):1018–34.PubMedCrossRef Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol. 1999;13(6):1018–34.PubMedCrossRef
67.
Zurück zum Zitat Li JJ, et al. Modifications of human growth differentiation factor 9 to improve the generation of embryos from low competence oocytes, in Mol Endocrinol. 2015. p. 40–52.PubMedCrossRef Li JJ, et al. Modifications of human growth differentiation factor 9 to improve the generation of embryos from low competence oocytes, in Mol Endocrinol. 2015. p. 40–52.PubMedCrossRef
68.
Zurück zum Zitat Hennet ML, Combelles CM. The antral follicle: a microenvironment for oocyte differentiation. Int J Dev Biol. 2012;56(10–12):819–31.PubMedCrossRef Hennet ML, Combelles CM. The antral follicle: a microenvironment for oocyte differentiation. Int J Dev Biol. 2012;56(10–12):819–31.PubMedCrossRef
69.
Zurück zum Zitat de Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev. 2004;15(1):1–11.PubMedCrossRef de Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev. 2004;15(1):1–11.PubMedCrossRef
70.
Zurück zum Zitat Moore RK, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J Biol Chem. 2003;278(1):304–10.PubMedCrossRef Moore RK, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J Biol Chem. 2003;278(1):304–10.PubMedCrossRef
71.
Zurück zum Zitat Mazerbourg S, Klein C, Roh J, Kaivo-Oja N, Mottershead DG, Korchynskyi O, et al. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol. 2004;18(3):653–65.PubMedCrossRef Mazerbourg S, Klein C, Roh J, Kaivo-Oja N, Mottershead DG, Korchynskyi O, et al. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol. 2004;18(3):653–65.PubMedCrossRef
72.
Zurück zum Zitat Vitt UA, Mazerbourg S, Klein C, Hsueh AJW. Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biol Reprod. 2002;67(2):473–80.PubMedCrossRef Vitt UA, Mazerbourg S, Klein C, Hsueh AJW. Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biol Reprod. 2002;67(2):473–80.PubMedCrossRef
73.
Zurück zum Zitat Mazerbourg S, Hsueh AJ. Genomic analyses facilitate identification of receptors and signalling pathways for growth differentiation factor 9 and related orphan bone morphogenetic protein/growth differentiation factor ligands. Hum Reprod Update. 2006;12(4):373–83.PubMedCrossRef Mazerbourg S, Hsueh AJ. Genomic analyses facilitate identification of receptors and signalling pathways for growth differentiation factor 9 and related orphan bone morphogenetic protein/growth differentiation factor ligands. Hum Reprod Update. 2006;12(4):373–83.PubMedCrossRef
74.
Zurück zum Zitat Franzen P, et al. Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell. 1993;75(4):681–92.PubMedCrossRef Franzen P, et al. Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell. 1993;75(4):681–92.PubMedCrossRef
75.
Zurück zum Zitat Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390(6659):465–71.PubMedCrossRef Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390(6659):465–71.PubMedCrossRef
76.
Zurück zum Zitat Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells. 2002;7(12):1191–204.PubMedCrossRef Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells. 2002;7(12):1191–204.PubMedCrossRef
77.
Zurück zum Zitat Reader KL, Heath DA, Lun S, McIntosh CJ, Western AH, Littlejohn RP, et al. Signalling pathways involved in the cooperative effects of ovine and murine GDF-9+BMP-15-stimulated thymidine uptake by rat granulosa cells. Reproduction. 2011;142(1):123–31.PubMedCrossRef Reader KL, Heath DA, Lun S, McIntosh CJ, Western AH, Littlejohn RP, et al. Signalling pathways involved in the cooperative effects of ovine and murine GDF-9+BMP-15-stimulated thymidine uptake by rat granulosa cells. Reproduction. 2011;142(1):123–31.PubMedCrossRef
78.
Zurück zum Zitat Mottershead DG, Ritter LJ, Gilchrist RB. Signalling pathways mediating specific synergistic interactions between GDF-9 and BMP-15. Mol Hum Reprod. 2012;18(3):121–8.PubMedCrossRef Mottershead DG, Ritter LJ, Gilchrist RB. Signalling pathways mediating specific synergistic interactions between GDF-9 and BMP-15. Mol Hum Reprod. 2012;18(3):121–8.PubMedCrossRef
79.
Zurück zum Zitat Reader KL, Mottershead DG, Martin GA, Gilchrist RB, Heath DA, McNatty KP, et al. Signalling pathways involved in the synergistic effects of human growth differentiation factor 9 and bone morphogenetic protein 15. Reprod Fertil Dev. 2016;28(4):491–8.PubMedCrossRef Reader KL, Mottershead DG, Martin GA, Gilchrist RB, Heath DA, McNatty KP, et al. Signalling pathways involved in the synergistic effects of human growth differentiation factor 9 and bone morphogenetic protein 15. Reprod Fertil Dev. 2016;28(4):491–8.PubMedCrossRef
80.
Zurück zum Zitat Chen H, Liu C, Jiang H, Gao Y, Xu M, Wang J, et al. Regulatory role of miRNA-375 in expression of BMP-15/GDF-9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells. Cell Physiol Biochem. 2017;41(2):439–50.PubMedCrossRef Chen H, Liu C, Jiang H, Gao Y, Xu M, Wang J, et al. Regulatory role of miRNA-375 in expression of BMP-15/GDF-9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells. Cell Physiol Biochem. 2017;41(2):439–50.PubMedCrossRef
81.
Zurück zum Zitat Liu C, Yuan B, Chen H, Xu M, Sun X, Xu JJ, et al. Effects of MiR-375-BMPR2 as a key factor downstream of BMP-15/GDF-9 on the Smad1/5/8 and Smad2/3 signaling pathways. Cell Physiol Biochem. 2018;46(1):213–25.PubMedCrossRef Liu C, Yuan B, Chen H, Xu M, Sun X, Xu JJ, et al. Effects of MiR-375-BMPR2 as a key factor downstream of BMP-15/GDF-9 on the Smad1/5/8 and Smad2/3 signaling pathways. Cell Physiol Biochem. 2018;46(1):213–25.PubMedCrossRef
82.
Zurück zum Zitat Gilchrist RB, Ritter LJ. Differences in the participation of TGFB superfamily signalling pathways mediating porcine and murine cumulus cell expansion. Reproduction. 2011;142(5):647–57.PubMedCrossRef Gilchrist RB, Ritter LJ. Differences in the participation of TGFB superfamily signalling pathways mediating porcine and murine cumulus cell expansion. Reproduction. 2011;142(5):647–57.PubMedCrossRef
83.
Zurück zum Zitat Chang HM, Cheng JC, Klausen C, Leung PCK. BMP-15 suppresses progesterone production by down-regulating StAR via ALK3 in human granulosa cells. Mol Endocrinol. 2013;27(12):2093–104.PubMedPubMedCentralCrossRef Chang HM, Cheng JC, Klausen C, Leung PCK. BMP-15 suppresses progesterone production by down-regulating StAR via ALK3 in human granulosa cells. Mol Endocrinol. 2013;27(12):2093–104.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Albertini DF, et al. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121(5):647–53.PubMedCrossRef Albertini DF, et al. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121(5):647–53.PubMedCrossRef
85.
Zurück zum Zitat Grondahl ML, et al. Anti-Mullerian hormone remains highly expressed in human cumulus cells during the final stages of folliculogenesis. Reprod BioMed Online. 2011;22(4):389–98.PubMedCrossRef Grondahl ML, et al. Anti-Mullerian hormone remains highly expressed in human cumulus cells during the final stages of folliculogenesis. Reprod BioMed Online. 2011;22(4):389–98.PubMedCrossRef
86.
Zurück zum Zitat Dekel N, Kraicer PF. Induction in vitro of mucification of rat cumulus oophorus by gonadotrophins and adenosine 3′,5′-monophosphate. Endocrinology. 1978;102(6):1797–802.PubMedCrossRef Dekel N, Kraicer PF. Induction in vitro of mucification of rat cumulus oophorus by gonadotrophins and adenosine 3′,5′-monophosphate. Endocrinology. 1978;102(6):1797–802.PubMedCrossRef
87.
Zurück zum Zitat Eppig JJ. Regulation of cumulus oophorus expansion by gonadotropins in vivo and in vitro. Biol Reprod. 1980;23(3):545–52.PubMedCrossRef Eppig JJ. Regulation of cumulus oophorus expansion by gonadotropins in vivo and in vitro. Biol Reprod. 1980;23(3):545–52.PubMedCrossRef
88.
Zurück zum Zitat Russell DL, Robker RL. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Update. 2007;13(3):289–312.PubMedCrossRef Russell DL, Robker RL. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Update. 2007;13(3):289–312.PubMedCrossRef
89.
Zurück zum Zitat Fang L, Cheng JC, Chang HM, Sun YP, Leung PCK. EGF-like growth factors induce COX-2-derived PGE2 production through ERK1/2 in human granulosa cells. J Clin Endocrinol Metab. 2013;98(12):4932–41.PubMedCrossRef Fang L, Cheng JC, Chang HM, Sun YP, Leung PCK. EGF-like growth factors induce COX-2-derived PGE2 production through ERK1/2 in human granulosa cells. J Clin Endocrinol Metab. 2013;98(12):4932–41.PubMedCrossRef
90.
Zurück zum Zitat Russell DL, Salustri A. Extracellular matrix of the cumulus-oocyte complex. Semin Reprod Med. 2006;24(4):217–27.PubMedCrossRef Russell DL, Salustri A. Extracellular matrix of the cumulus-oocyte complex. Semin Reprod Med. 2006;24(4):217–27.PubMedCrossRef
91.
Zurück zum Zitat Baranova NS, Inforzato A, Briggs DC, Tilakaratna V, Enghild JJ, Thakar D, et al. Incorporation of pentraxin 3 into hyaluronan matrices is tightly regulated and promotes matrix cross-linking. J Biol Chem. 2014;289(44):30481–98.PubMedPubMedCentralCrossRef Baranova NS, Inforzato A, Briggs DC, Tilakaratna V, Enghild JJ, Thakar D, et al. Incorporation of pentraxin 3 into hyaluronan matrices is tightly regulated and promotes matrix cross-linking. J Biol Chem. 2014;289(44):30481–98.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Zhang H, Tian S, Klausen C, Zhu H, Liu R, Leung PCK. Differential activation of noncanonical SMAD2/SMAD3 signaling by bone morphogenetic proteins causes disproportionate induction of hyaluronan production in immortalized human granulosa cells. Mol Cell Endocrinol. 2016;428:17–27.PubMedCrossRef Zhang H, Tian S, Klausen C, Zhu H, Liu R, Leung PCK. Differential activation of noncanonical SMAD2/SMAD3 signaling by bone morphogenetic proteins causes disproportionate induction of hyaluronan production in immortalized human granulosa cells. Mol Cell Endocrinol. 2016;428:17–27.PubMedCrossRef
93.
Zurück zum Zitat Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, et al. Mutations in the genes for oocyte-derived growth factors GDF-9 and BMP-15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod. 2004;70(4):900–9.PubMedCrossRef Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, et al. Mutations in the genes for oocyte-derived growth factors GDF-9 and BMP-15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod. 2004;70(4):900–9.PubMedCrossRef
94.
Zurück zum Zitat Wu YT, et al. High bone morphogenetic protein-15 level in follicular fluid is associated with high quality oocyte and subsequent embryonic development. Hum Reprod. 2007;22(6):1526–31.PubMedCrossRef Wu YT, et al. High bone morphogenetic protein-15 level in follicular fluid is associated with high quality oocyte and subsequent embryonic development. Hum Reprod. 2007;22(6):1526–31.PubMedCrossRef
95.
Zurück zum Zitat Gode F, et al. Influence of follicular fluid GDF-9 and BMP-15 on embryo quality. Fertil Steril. 2011;95(7):2274–8.PubMedCrossRef Gode F, et al. Influence of follicular fluid GDF-9 and BMP-15 on embryo quality. Fertil Steril. 2011;95(7):2274–8.PubMedCrossRef
96.
97.
98.
Zurück zum Zitat Takebayashi K, et al. Mutation analysis of the growth differentiation factor-9 and -9B genes in patients with premature ovarian failure and polycystic ovary syndrome. Fertil Steril. 2000;74(5):976–9.PubMedCrossRef Takebayashi K, et al. Mutation analysis of the growth differentiation factor-9 and -9B genes in patients with premature ovarian failure and polycystic ovary syndrome. Fertil Steril. 2000;74(5):976–9.PubMedCrossRef
99.
Zurück zum Zitat Crispi S, et al. Transcriptional profiling of endometriosis tissues identifies genes related to organogenesis defects. J Cell Physiol. 2013;228(9):1927–34.PubMedCrossRef Crispi S, et al. Transcriptional profiling of endometriosis tissues identifies genes related to organogenesis defects. J Cell Physiol. 2013;228(9):1927–34.PubMedCrossRef
100.
101.
Zurück zum Zitat Tong S, Short RV. Dizygotic twinning as a measure of human fertility. Hum Reprod. 1998;13(1):95–8.PubMedCrossRef Tong S, Short RV. Dizygotic twinning as a measure of human fertility. Hum Reprod. 1998;13(1):95–8.PubMedCrossRef
102.
Zurück zum Zitat Zhao SY, et al. Expression of growth differentiation factor-9 and bone morphogenetic protein-15 in oocytes and cumulus granulosa cells of patients with polycystic ovary syndrome. Fertil Steril. 2010;94(1):261–7.PubMedCrossRef Zhao SY, et al. Expression of growth differentiation factor-9 and bone morphogenetic protein-15 in oocytes and cumulus granulosa cells of patients with polycystic ovary syndrome. Fertil Steril. 2010;94(1):261–7.PubMedCrossRef
103.
Zurück zum Zitat Dey SR, et al. Coculturing denuded oocytes during the in vitro maturation of bovine cumulus oocyte complexes exerts a synergistic effect on embryo development. Theriogenology. 2012;77(6):1064–77.PubMedCrossRef Dey SR, et al. Coculturing denuded oocytes during the in vitro maturation of bovine cumulus oocyte complexes exerts a synergistic effect on embryo development. Theriogenology. 2012;77(6):1064–77.PubMedCrossRef
104.
Zurück zum Zitat Oocyte-secreted factors in oocyte maturation media enhance subsequent development of bovine cloned embryos - Su - 2014 - Mol Reprod Dev - Wiley Online Library. 2018. Oocyte-secreted factors in oocyte maturation media enhance subsequent development of bovine cloned embryos - Su - 2014 - Mol Reprod Dev - Wiley Online Library. 2018.
105.
Zurück zum Zitat Sudiman J, et al. Effects of differing oocyte-secreted factors during mouse in vitro maturation on subsequent embryo and fetal development. J Assist Reprod Genet. 2014;31(3):295–306.PubMedPubMedCentralCrossRef Sudiman J, et al. Effects of differing oocyte-secreted factors during mouse in vitro maturation on subsequent embryo and fetal development. J Assist Reprod Genet. 2014;31(3):295–306.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Yeo CX, et al. Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum Reprod. 2008;23(1):67–73.PubMedCrossRef Yeo CX, et al. Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum Reprod. 2008;23(1):67–73.PubMedCrossRef
107.
Zurück zum Zitat Romaguera R, et al. Oocyte secreted factors improve embryo developmental competence of COCs from small follicles in prepubertal goats. Theriogenology. 2010;74(6):1050–9.PubMedCrossRef Romaguera R, et al. Oocyte secreted factors improve embryo developmental competence of COCs from small follicles in prepubertal goats. Theriogenology. 2010;74(6):1050–9.PubMedCrossRef
108.
Zurück zum Zitat Gomez MN, et al. Effect of oocyte-secreted factors on porcine in vitro maturation, cumulus expansion and developmental competence of parthenotes. Zygote. 2012;20(2):135–45.PubMedCrossRef Gomez MN, et al. Effect of oocyte-secreted factors on porcine in vitro maturation, cumulus expansion and developmental competence of parthenotes. Zygote. 2012;20(2):135–45.PubMedCrossRef
109.
Zurück zum Zitat Ferrarini E, et al. Clinical characteristics and genetic analysis in women with premature ovarian insufficiency. Maturitas. 2013;74(1):61–7.PubMedCrossRef Ferrarini E, et al. Clinical characteristics and genetic analysis in women with premature ovarian insufficiency. Maturitas. 2013;74(1):61–7.PubMedCrossRef
110.
Zurück zum Zitat Persani L, Rossetti R, Cacciatore C. Genes involved in human premature ovarian failure. J Mol Endocrinol. 2010;45(5):257–79.PubMedCrossRef Persani L, Rossetti R, Cacciatore C. Genes involved in human premature ovarian failure. J Mol Endocrinol. 2010;45(5):257–79.PubMedCrossRef
111.
Zurück zum Zitat Tiotiu D, et al. Variants of the BMP-15 gene in a cohort of patients with premature ovarian failure. Hum Reprod. 2010;25(6):1581–7.PubMedCrossRef Tiotiu D, et al. Variants of the BMP-15 gene in a cohort of patients with premature ovarian failure. Hum Reprod. 2010;25(6):1581–7.PubMedCrossRef
112.
Zurück zum Zitat Auclair S, et al. Positive selection in bone morphogenetic protein 15 targets a natural mutation associated with primary ovarian insufficiency in human. PLoS One. 2013;8(10):e78199.PubMedPubMedCentralCrossRef Auclair S, et al. Positive selection in bone morphogenetic protein 15 targets a natural mutation associated with primary ovarian insufficiency in human. PLoS One. 2013;8(10):e78199.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Di Pasquale E, et al. Identification of new variants of human BMP-15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab. 2006;91(5):1976–9.PubMedCrossRef Di Pasquale E, et al. Identification of new variants of human BMP-15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab. 2006;91(5):1976–9.PubMedCrossRef
114.
Zurück zum Zitat Kumar R, et al. BMP-15 and GDF-9 gene mutations in premature ovarian failure. J Reprod Infertil. 2017;18(1):185–9.PubMedPubMedCentral Kumar R, et al. BMP-15 and GDF-9 gene mutations in premature ovarian failure. J Reprod Infertil. 2017;18(1):185–9.PubMedPubMedCentral
115.
Zurück zum Zitat Patino LC, et al. BMP-15 mutations associated with primary ovarian insufficiency reduce expression, activity, or synergy with GDF-9. J Clin Endocrinol Metab. 2017;102(3):1009–19.PubMed Patino LC, et al. BMP-15 mutations associated with primary ovarian insufficiency reduce expression, activity, or synergy with GDF-9. J Clin Endocrinol Metab. 2017;102(3):1009–19.PubMed
116.
Zurück zum Zitat Regan SL, et al. Dysregulation of granulosal bone morphogenetic protein receptor 1B density is associated with reduced ovarian reserve and the age-related decline in human fertility. Mol Cell Endocrinol. 2016;425:84–93.PubMedCrossRef Regan SL, et al. Dysregulation of granulosal bone morphogenetic protein receptor 1B density is associated with reduced ovarian reserve and the age-related decline in human fertility. Mol Cell Endocrinol. 2016;425:84–93.PubMedCrossRef
117.
Zurück zum Zitat Salehnia M, Pajokh M, Ghorbanmehr N. Short term organ culture of mouse ovary in the medium supplemented with bone morphogenetic protein 15 and follicle stimulating hormone: a morphological, hormonal and molecular study. J Reprod Infertil. 2016;17(4):199–207.PubMedPubMedCentral Salehnia M, Pajokh M, Ghorbanmehr N. Short term organ culture of mouse ovary in the medium supplemented with bone morphogenetic protein 15 and follicle stimulating hormone: a morphological, hormonal and molecular study. J Reprod Infertil. 2016;17(4):199–207.PubMedPubMedCentral
118.
Zurück zum Zitat Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod. 2012;86(2):27.PubMedCrossRef Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod. 2012;86(2):27.PubMedCrossRef
Metadaten
Titel
GDF-9 and BMP-15 direct the follicle symphony
verfasst von
Alexandra Sanfins
Patrícia Rodrigues
David F. Albertini
Publikationsdatum
23.07.2018
Verlag
Springer US
Erschienen in
Journal of Assisted Reproduction and Genetics / Ausgabe 10/2018
Print ISSN: 1058-0468
Elektronische ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-018-1268-4

Weitere Artikel der Ausgabe 10/2018

Journal of Assisted Reproduction and Genetics 10/2018 Zur Ausgabe

Hirsutismus bei PCOS: Laser- und Lichttherapien helfen

26.04.2024 Hirsutismus Nachrichten

Laser- und Lichtbehandlungen können bei Frauen mit polyzystischem Ovarialsyndrom (PCOS) den übermäßigen Haarwuchs verringern und das Wohlbefinden verbessern – bei alleiniger Anwendung oder in Kombination mit Medikamenten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Weniger postpartale Depressionen nach Esketamin-Einmalgabe

Bislang gibt es kein Medikament zur Prävention von Wochenbettdepressionen. Das Injektionsanästhetikum Esketamin könnte womöglich diese Lücke füllen.

Bei RSV-Impfung vor 60. Lebensjahr über Off-Label-Gebrauch aufklären!

22.04.2024 DGIM 2024 Kongressbericht

Durch die Häufung nach der COVID-19-Pandemie sind Infektionen mit dem Respiratorischen Synzytial-Virus (RSV) in den Fokus gerückt. Fachgesellschaften empfehlen eine Impfung inzwischen nicht nur für Säuglinge und Kleinkinder.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.