Skip to main content
Erschienen in: Translational Stroke Research 1/2013

01.02.2013 | Original Article

Genetic Animal Models of Preconditioning

verfasst von: Priti Azad, Gabriel G. Haddad

Erschienen in: Translational Stroke Research | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

The preconditioning phenomena have been well established in the heart as well as in the brain. In this review, we detail some of the original studies on preconditioning as well as studies from our lab using rodents and a genetic model system (fruit fly). We have used Drosophila in our lab to solve some of the questions related to tolerance or susceptibility to hypoxia. We believe that these pro-survival strategies and genetic pathways help us understand some of the preconditioning mechanisms that protect the brain from ischemia.
Literatur
3.
Zurück zum Zitat Lu GW, Chui XY, Zhao LF. Brain mechanisms of hypoxic preconditioning. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2004;20(1):98–103.PubMed Lu GW, Chui XY, Zhao LF. Brain mechanisms of hypoxic preconditioning. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2004;20(1):98–103.PubMed
4.
Zurück zum Zitat Shao G, Lu GW. Hypoxic preconditioning in an autohypoxic animal model. Neurosci Bull. 2012;28(3):316–20.PubMedCrossRef Shao G, Lu GW. Hypoxic preconditioning in an autohypoxic animal model. Neurosci Bull. 2012;28(3):316–20.PubMedCrossRef
6.
Zurück zum Zitat Shpargel KB, Jalabi W, Jin Y, Dadabayev A, Penn MS, Trapp BD. Preconditioning paradigms and pathways in the brain. Cleve Clin J Med. 2008;75 Suppl 2:S77–82.PubMedCrossRef Shpargel KB, Jalabi W, Jin Y, Dadabayev A, Penn MS, Trapp BD. Preconditioning paradigms and pathways in the brain. Cleve Clin J Med. 2008;75 Suppl 2:S77–82.PubMedCrossRef
7.
Zurück zum Zitat Dahl NA, Balfour WM. Prolonged anoxic survival due to anoxia pre-exposure: brain ATP, lactate, and pyruvate. Am J Physiol. 1964;207:452–6.PubMed Dahl NA, Balfour WM. Prolonged anoxic survival due to anoxia pre-exposure: brain ATP, lactate, and pyruvate. Am J Physiol. 1964;207:452–6.PubMed
8.
Zurück zum Zitat Janoff A. Alterations in lysosomes (intracellular enzymes) during shock; effects of preconditioning (tolerance) and protective drugs. Int Anesthesiol Clin. 1964;2:251–69.PubMedCrossRef Janoff A. Alterations in lysosomes (intracellular enzymes) during shock; effects of preconditioning (tolerance) and protective drugs. Int Anesthesiol Clin. 1964;2:251–69.PubMedCrossRef
9.
Zurück zum Zitat Omata N, Murata T, Takamatsu S, Maruoka N, Wada Y, Yonekura Y, et al. Hypoxic tolerance induction in rat brain slices following hypoxic preconditioning due to expression of neuroprotective proteins as revealed by dynamic changes in glucose metabolism. Neurosci Lett. 2002;329(2):205–8.PubMedCrossRef Omata N, Murata T, Takamatsu S, Maruoka N, Wada Y, Yonekura Y, et al. Hypoxic tolerance induction in rat brain slices following hypoxic preconditioning due to expression of neuroprotective proteins as revealed by dynamic changes in glucose metabolism. Neurosci Lett. 2002;329(2):205–8.PubMedCrossRef
10.
Zurück zum Zitat Semenov DG, Miller OL, Samoilov MO. Effect of in vivo hypoxic preconditioning on changes in intracellular calcium content induced by long-term anoxia in rat brain slices. Bull Exp Biol Med. 2004;138(4):338–40.PubMedCrossRef Semenov DG, Miller OL, Samoilov MO. Effect of in vivo hypoxic preconditioning on changes in intracellular calcium content induced by long-term anoxia in rat brain slices. Bull Exp Biol Med. 2004;138(4):338–40.PubMedCrossRef
12.
Zurück zum Zitat Schurr A, Reid KH, Tseng MT, West C, Rigor BM. Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res. 1986;374(2):244–8.PubMedCrossRef Schurr A, Reid KH, Tseng MT, West C, Rigor BM. Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res. 1986;374(2):244–8.PubMedCrossRef
14.
Zurück zum Zitat Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci. 1993;13(8):3510–24.PubMed Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci. 1993;13(8):3510–24.PubMed
16.
Zurück zum Zitat Cantagrel S, Krier C, Ducrocq S, Bodard S, Payen V, Laugier J, et al. Hypoxic preconditioning reduces apoptosis in a rat model of immature brain hypoxia–ischaemia. Neurosci Lett. 2003;347(2):106–10.PubMedCrossRef Cantagrel S, Krier C, Ducrocq S, Bodard S, Payen V, Laugier J, et al. Hypoxic preconditioning reduces apoptosis in a rat model of immature brain hypoxia–ischaemia. Neurosci Lett. 2003;347(2):106–10.PubMedCrossRef
17.
Zurück zum Zitat Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, Schumann-Bard P. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab. 2002;22(4):393–403. doi:10.1097/00004647-200204000-00003.PubMedCrossRef Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, Schumann-Bard P. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab. 2002;22(4):393–403. doi:10.​1097/​00004647-200204000-00003.PubMedCrossRef
18.
Zurück zum Zitat Kulinskii VI, Minakina LN, Gavrilina TV. Neuroprotective effect of hypoxic preconditioning: phenomenon and mechanisms. Bull Exp Biol Med. 2002;133(2):202–4.PubMedCrossRef Kulinskii VI, Minakina LN, Gavrilina TV. Neuroprotective effect of hypoxic preconditioning: phenomenon and mechanisms. Bull Exp Biol Med. 2002;133(2):202–4.PubMedCrossRef
19.
Zurück zum Zitat Miller BA, Perez RS, Shah AR, Gonzales ER, Park TS, Gidday JM. Cerebral protection by hypoxic preconditioning in a murine model of focal ischemia–reperfusion. Neuroreport. 2001;12(8):1663–9.PubMedCrossRef Miller BA, Perez RS, Shah AR, Gonzales ER, Park TS, Gidday JM. Cerebral protection by hypoxic preconditioning in a murine model of focal ischemia–reperfusion. Neuroreport. 2001;12(8):1663–9.PubMedCrossRef
21.
Zurück zum Zitat Blanco M, Lizasoain I, Sobrino T, Vivancos J, Castillo J. Ischemic preconditioning: a novel target for neuroprotective therapy. Cerebrovasc Dis. 2006;21 Suppl 2:38–47. doi:10.1159/000091702.PubMedCrossRef Blanco M, Lizasoain I, Sobrino T, Vivancos J, Castillo J. Ischemic preconditioning: a novel target for neuroprotective therapy. Cerebrovasc Dis. 2006;21 Suppl 2:38–47. doi:10.​1159/​000091702.PubMedCrossRef
22.
Zurück zum Zitat Perez-Pinzon MA, Xu GP, Dietrich WD, Rosenthal M, Sick TJ. Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia. J Cereb Blood Flow Metab. 1997;17(2):175–82. doi:10.1097/00004647-199702000-00007.PubMedCrossRef Perez-Pinzon MA, Xu GP, Dietrich WD, Rosenthal M, Sick TJ. Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia. J Cereb Blood Flow Metab. 1997;17(2):175–82. doi:10.​1097/​00004647-199702000-00007.PubMedCrossRef
23.
Zurück zum Zitat Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet. 2003;362(9389):1028–37. doi:10.1016/S0140-6736(03)14412-1.PubMedCrossRef Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet. 2003;362(9389):1028–37. doi:10.​1016/​S0140-6736(03)14412-1.PubMedCrossRef
24.
Zurück zum Zitat O’Reilly JP, Haddad GG. Chronic hypoxia in vivo renders neocortical neurons more vulnerable to subsequent acute hypoxic stress. Brain Res. 1996;711(1–2):203–10.PubMedCrossRef O’Reilly JP, Haddad GG. Chronic hypoxia in vivo renders neocortical neurons more vulnerable to subsequent acute hypoxic stress. Brain Res. 1996;711(1–2):203–10.PubMedCrossRef
25.
Zurück zum Zitat Xia Y, Fung ML, O’Reilly JP, Haddad GG. Increased neuronal excitability after long-term O2 deprivation is mediated mainly by sodium channels. Brain Res Mol Brain Res. 2000;76(2):211–9.PubMedCrossRef Xia Y, Fung ML, O’Reilly JP, Haddad GG. Increased neuronal excitability after long-term O2 deprivation is mediated mainly by sodium channels. Brain Res Mol Brain Res. 2000;76(2):211–9.PubMedCrossRef
27.
Zurück zum Zitat Haddad GG, Wyman RJ, Mohsenin A, Sun Y, Krishnan SN. Behavioral and electrophysiologic responses of Drosophila melanogaster to prolonged periods of anoxia. J Insect Physiol. 1997;43(3):203–10.PubMedCrossRef Haddad GG, Wyman RJ, Mohsenin A, Sun Y, Krishnan SN. Behavioral and electrophysiologic responses of Drosophila melanogaster to prolonged periods of anoxia. J Insect Physiol. 1997;43(3):203–10.PubMedCrossRef
28.
Zurück zum Zitat Ma E, Haddad GG. Anoxia regulates gene expression in the central nervous system of Drosophila melanogaster. Brain Res Mol Brain Res. 1997;46(1–2):325–8.PubMedCrossRef Ma E, Haddad GG. Anoxia regulates gene expression in the central nervous system of Drosophila melanogaster. Brain Res Mol Brain Res. 1997;46(1–2):325–8.PubMedCrossRef
29.
Zurück zum Zitat Ma E, Xu T, Haddad GG. Gene regulation by O2 deprivation: an anoxia-regulated novel gene in Drosophila melanogaster. Brain Res Mol Brain Res. 1999;63(2):217–24.PubMedCrossRef Ma E, Xu T, Haddad GG. Gene regulation by O2 deprivation: an anoxia-regulated novel gene in Drosophila melanogaster. Brain Res Mol Brain Res. 1999;63(2):217–24.PubMedCrossRef
30.
Zurück zum Zitat Ma E, Haddad G. A Drosophila CDK5alpha-like molecule and its possible role in response to O2 deprivation. Biochem Biophys Res Commun. 1999;261(2):459–63.PubMedCrossRef Ma E, Haddad G. A Drosophila CDK5alpha-like molecule and its possible role in response to O2 deprivation. Biochem Biophys Res Commun. 1999;261(2):459–63.PubMedCrossRef
31.
Zurück zum Zitat Fortini ME, Skupski MP, Boguski MS, Hariharan IK. A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol. 2000;150(2):F23–30.PubMedCrossRef Fortini ME, Skupski MP, Boguski MS, Hariharan IK. A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol. 2000;150(2):F23–30.PubMedCrossRef
32.
Zurück zum Zitat Azad P, Zhou D, Russo E, Haddad GG. Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster. PLoS One. 2009;4(4):e5371.PubMedCrossRef Azad P, Zhou D, Russo E, Haddad GG. Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster. PLoS One. 2009;4(4):e5371.PubMedCrossRef
33.
Zurück zum Zitat Steinmann CM, Bornman L. Acclimatization, preconditioning and heat shock proteins. Med Hypotheses. 1996;47(4):257–60.PubMedCrossRef Steinmann CM, Bornman L. Acclimatization, preconditioning and heat shock proteins. Med Hypotheses. 1996;47(4):257–60.PubMedCrossRef
34.
Zurück zum Zitat Xi G, Keep RF, Hua Y, Hoff JT. Thrombin preconditioning, heat shock proteins and thrombin-induced brain edema. Acta Neurochir Suppl. 2000;76:511–5.PubMed Xi G, Keep RF, Hua Y, Hoff JT. Thrombin preconditioning, heat shock proteins and thrombin-induced brain edema. Acta Neurochir Suppl. 2000;76:511–5.PubMed
36.
Zurück zum Zitat Nakata N, Kato H, Kogure K. Inhibition of ischaemic tolerance in the gerbil hippocampus by quercetin and anti-heat shock protein-70 antibody. Neuroreport. 1993;4(6):695–8.PubMedCrossRef Nakata N, Kato H, Kogure K. Inhibition of ischaemic tolerance in the gerbil hippocampus by quercetin and anti-heat shock protein-70 antibody. Neuroreport. 1993;4(6):695–8.PubMedCrossRef
Metadaten
Titel
Genetic Animal Models of Preconditioning
verfasst von
Priti Azad
Gabriel G. Haddad
Publikationsdatum
01.02.2013
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 1/2013
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-012-0218-1

Weitere Artikel der Ausgabe 1/2013

Translational Stroke Research 1/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.