Skip to main content
Erschienen in: Current Bladder Dysfunction Reports 2/2023

20.04.2023

Genetic, Genomic, and Heritable Components of Benign Prostatic Hyperplasia

verfasst von: Alan M. Makedon, Sera X. Sempson, Paige Hargis, Granville L. Lloyd

Erschienen in: Current Bladder Dysfunction Reports | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

While BPH, and the complications that follow, represents the largest cause of urologic suffering both in the USA and globally, the underlying causes remain unknown. As the age of the population grows and providers dwindle, better understanding, treatments and prevention of this disease process are critical. Multiple lines of research have suggested a genetic or genomic component, and we have summarized the recent findings and avenues for future exploration.

Recent Findings

Micro-RNAs are a relatively newly found class of genetic modulators that are intimately integrated with cellular function, and a number of specific imbalances or defects in these controlling molecules are associated with BPH. Similarly, single nucleotide polymorphisms and genome-wide arrays have allowed identification of cellular pathways that also appear linked with development of histologic BPH in ageing men. Alterations of these systems, including both hormonal and nonhormonal defects such as failure of senescence, appear to be linked with this hyperplasia.

Summary

The wide suffering caused by this unplanned growth of the prostate demands better understanding of its causes. We summarize current findings and open avenues of genetic and genomic research: imbalances in specific miRNAs and other imbalanced gene/protein expression pathways, specifically including TGF-β, multiple CYP- genes, and the microenvironments of the ER and AR receptors. Failures of senescence may be involved. The overarching causes are currently indistinguishable from the downstream effects, and much work remains.
Literatur
1.
2.
Zurück zum Zitat Asplund R. Mortality in the elderly in relation to nocturnal micturition. BJU Int. 1999;84(3):297–301.PubMedCrossRef Asplund R. Mortality in the elderly in relation to nocturnal micturition. BJU Int. 1999;84(3):297–301.PubMedCrossRef
3.
Zurück zum Zitat Launer BM, et al. The rising worldwide impact of benign prostatic hyperplasia. BJU Int. 2021;127(6):722–8.PubMedCrossRef Launer BM, et al. The rising worldwide impact of benign prostatic hyperplasia. BJU Int. 2021;127(6):722–8.PubMedCrossRef
4.
Zurück zum Zitat Catto JWF, et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol. 2011;59(5):671–81.PubMedCrossRef Catto JWF, et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol. 2011;59(5):671–81.PubMedCrossRef
5.
Zurück zum Zitat Haj-Ahmad TA, Abdalla MA, Haj-Ahmad Y. Potential urinary miRNA biomarker candidates for the accurate detection of prostate cancer among benign prostatic hyperplasia patients. J Cancer. 2014;5(3):182–91.PubMedPubMedCentralCrossRef Haj-Ahmad TA, Abdalla MA, Haj-Ahmad Y. Potential urinary miRNA biomarker candidates for the accurate detection of prostate cancer among benign prostatic hyperplasia patients. J Cancer. 2014;5(3):182–91.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Cai Y, et al. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009;7(4):147–54.PubMedCrossRef Cai Y, et al. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009;7(4):147–54.PubMedCrossRef
8.
Zurück zum Zitat Greco F, et al. The potential role of microRNAs as biomarkers in benign prostatic hyperplasia: a systematic review and meta-analysis. Eur Urol Focus. 2019;5(3):497–507.PubMedCrossRef Greco F, et al. The potential role of microRNAs as biomarkers in benign prostatic hyperplasia: a systematic review and meta-analysis. Eur Urol Focus. 2019;5(3):497–507.PubMedCrossRef
9.
Zurück zum Zitat Seputra KP, et al. miRNA-21 Serum evaluation in BPH, hormone sensitive prostate cancer, and castrate resistant prostate cancer: attempt for diagnostic biomarker evaluation. Acta Inform Med. 2021;29(4):266–9.PubMedPubMedCentralCrossRef Seputra KP, et al. miRNA-21 Serum evaluation in BPH, hormone sensitive prostate cancer, and castrate resistant prostate cancer: attempt for diagnostic biomarker evaluation. Acta Inform Med. 2021;29(4):266–9.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Zhang N, et al. MicroRNA expression profiles in benign prostatic hyperplasia. Mol Med Rep. 2018;17(3):3853–8.PubMed Zhang N, et al. MicroRNA expression profiles in benign prostatic hyperplasia. Mol Med Rep. 2018;17(3):3853–8.PubMed
12.
Zurück zum Zitat Wieszczeczyński M, et al. MicroRNA and vascular endothelial growth factor (VEGF) as new useful markers in the diagnosis of benign prostatic hyperplasia in dogs. Theriogenology. 2021;171:113–8.PubMedCrossRef Wieszczeczyński M, et al. MicroRNA and vascular endothelial growth factor (VEGF) as new useful markers in the diagnosis of benign prostatic hyperplasia in dogs. Theriogenology. 2021;171:113–8.PubMedCrossRef
14.
Zurück zum Zitat Wang R, et al. Long noncoding RNA DNM3OS promotes prostate stromal cells transformation via the miR-29a/29b/COL3A1 and miR-361/TGFβ1 axes. Aging (Albany NY). 2019;11(21):9442–60.PubMedCrossRef Wang R, et al. Long noncoding RNA DNM3OS promotes prostate stromal cells transformation via the miR-29a/29b/COL3A1 and miR-361/TGFβ1 axes. Aging (Albany NY). 2019;11(21):9442–60.PubMedCrossRef
15.
Zurück zum Zitat Wang Z, et al. The miR-223-3p/MAP1B axis aggravates TGF-β-induced proliferation and migration of BPH-1 cells. Cell Signal. 2021;84:110004.PubMedCrossRef Wang Z, et al. The miR-223-3p/MAP1B axis aggravates TGF-β-induced proliferation and migration of BPH-1 cells. Cell Signal. 2021;84:110004.PubMedCrossRef
16.
Zurück zum Zitat Chen Y, et al. LncRNA DIO3OS regulated by TGF-β1 and resveratrol enhances epithelial mesenchymal transition of benign prostatic hyperplasia epithelial cells and proliferation of prostate stromal cells. Transl Androl Urol. 2021;10(2):643–53.PubMedPubMedCentralCrossRef Chen Y, et al. LncRNA DIO3OS regulated by TGF-β1 and resveratrol enhances epithelial mesenchymal transition of benign prostatic hyperplasia epithelial cells and proliferation of prostate stromal cells. Transl Androl Urol. 2021;10(2):643–53.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Roldán Gallardo FF, Quintar AA. The pathological growth of the prostate gland in atherogenic contexts. Experimental Gerontology. 2021;148:111304.PubMedCrossRef Roldán Gallardo FF, Quintar AA. The pathological growth of the prostate gland in atherogenic contexts. Experimental Gerontology. 2021;148:111304.PubMedCrossRef
18.
Zurück zum Zitat Chen X, et al. Regulation of microRNAs by rape bee pollen on benign prostate hyperplasia in rats. Andrologia. 2020;52(1):e13386.PubMedCrossRef Chen X, et al. Regulation of microRNAs by rape bee pollen on benign prostate hyperplasia in rats. Andrologia. 2020;52(1):e13386.PubMedCrossRef
19.
Zurück zum Zitat Yang M, Xu Z, Zhuang Z. Influence of androgen receptor antagonist MDV3100 therapy on rats with benign prostatic hyperplasia. Int Neurourol J. 2021;25(3):219–28.PubMedPubMedCentralCrossRef Yang M, Xu Z, Zhuang Z. Influence of androgen receptor antagonist MDV3100 therapy on rats with benign prostatic hyperplasia. Int Neurourol J. 2021;25(3):219–28.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Song H, Hu S, Jin J. 395 - CD3+ T cells suppress androgen receptor in BPH via IL-1β/miR-15b-5p signaling to affect 5 alpha reductase inhibitor treatment. European Urology Open Science. 2020;19:e646.CrossRef Song H, Hu S, Jin J. 395 - CD3+ T cells suppress androgen receptor in BPH via IL-1β/miR-15b-5p signaling to affect 5 alpha reductase inhibitor treatment. European Urology Open Science. 2020;19:e646.CrossRef
21.
Zurück zum Zitat Tanaka T, et al. Urine miR-21–5p as a potential biomarker for predicting effectiveness of tadalafil in benign prostatic hyperplasia. Future Sci OA. 2018;4(6):Fso304.PubMedPubMedCentralCrossRef Tanaka T, et al. Urine miR-21–5p as a potential biomarker for predicting effectiveness of tadalafil in benign prostatic hyperplasia. Future Sci OA. 2018;4(6):Fso304.PubMedPubMedCentralCrossRef
22.
23.
Zurück zum Zitat Dong Q, et al. HCSGD: An integrated database of human cellular senescence genes. J Genet Genomics. 2017;44(5):227–34.PubMedCrossRef Dong Q, et al. HCSGD: An integrated database of human cellular senescence genes. J Genet Genomics. 2017;44(5):227–34.PubMedCrossRef
24.
Zurück zum Zitat Tacutu R, et al. Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res. 2018;46(D1):D1083-d1090.PubMedCrossRef Tacutu R, et al. Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res. 2018;46(D1):D1083-d1090.PubMedCrossRef
25.
26.
Zurück zum Zitat Parsons JK, et al. Metabolic factors associated with benign prostatic hyperplasia. J Clin Endocrinol Metab. 2006;91(7):2562–8.PubMedCrossRef Parsons JK, et al. Metabolic factors associated with benign prostatic hyperplasia. J Clin Endocrinol Metab. 2006;91(7):2562–8.PubMedCrossRef
27.
Zurück zum Zitat Cornu JN, et al. Correlation between prostate volume and single nucleotide polymorphisms implicated in the steroid pathway. World J Urol. 2017;35(2):293–8.PubMedCrossRef Cornu JN, et al. Correlation between prostate volume and single nucleotide polymorphisms implicated in the steroid pathway. World J Urol. 2017;35(2):293–8.PubMedCrossRef
29.
Zurück zum Zitat Chen ZP, Yan Y, Chen CJ, Li M, Chen C, Zhao SC, Song T, Liu T, Zou CH, Xu Q, Li X. The single nucleotide polymorphism rs700518 is an independent risk factor for metabolic syndrome and benign prostatic hyperplasia (MetS-BPH). Andrology. 2018;6(4):568–78.PubMedPubMedCentralCrossRef Chen ZP, Yan Y, Chen CJ, Li M, Chen C, Zhao SC, Song T, Liu T, Zou CH, Xu Q, Li X. The single nucleotide polymorphism rs700518 is an independent risk factor for metabolic syndrome and benign prostatic hyperplasia (MetS-BPH). Andrology. 2018;6(4):568–78.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Ajayi A, Abraham K. Understanding the role of estrogen in the development of benign prostatic hyperplasia. African J Urol. 2018;24(2):93–7.CrossRef Ajayi A, Abraham K. Understanding the role of estrogen in the development of benign prostatic hyperplasia. African J Urol. 2018;24(2):93–7.CrossRef
32.
Zurück zum Zitat Xiangyun Liu JX, Li K, Wang R, Yang Q. Aerobic exercise regulating expression of ERá and ERâ in prostate to prevent benign prostatic hyperplasia of obesity mice. Indian J Anim Res. 2019;583–586. Xiangyun Liu JX, Li K, Wang R, Yang Q. Aerobic exercise regulating expression of ERá and ERâ in prostate to prevent benign prostatic hyperplasia of obesity mice. Indian J Anim Res. 2019;583–586.
33.
Zurück zum Zitat Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation. 2011;82(4–5):184–99.PubMedPubMedCentralCrossRef Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation. 2011;82(4–5):184–99.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Ignatov A, et al. Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast Cancer Res Treat. 2010;123(1):87–96.PubMedCrossRef Ignatov A, et al. Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast Cancer Res Treat. 2010;123(1):87–96.PubMedCrossRef
36.
Zurück zum Zitat Ignatov A, et al. G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance in breast cancer. Breast Cancer Res Treat. 2011;128(2):457–66.PubMedCrossRef Ignatov A, et al. G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance in breast cancer. Breast Cancer Res Treat. 2011;128(2):457–66.PubMedCrossRef
38.
Zurück zum Zitat Qu LG, Wardan H, Davis ID, Pezaro C, Sluka P. Effects of estrogen receptor signaling on prostate cancer carcinogenesis. J Lab Clin Med. 2020;222:56–66. Qu LG, Wardan H, Davis ID, Pezaro C, Sluka P. Effects of estrogen receptor signaling on prostate cancer carcinogenesis. J Lab Clin Med. 2020;222:56–66.
39.
Zurück zum Zitat Tsurusaki T, et al. Zone-dependent expression of estrogen receptors α and β in human benign prostatic hyperplasia. J Clin Endocrinol Metab. 2003;88(3):1333–40.PubMedCrossRef Tsurusaki T, et al. Zone-dependent expression of estrogen receptors α and β in human benign prostatic hyperplasia. J Clin Endocrinol Metab. 2003;88(3):1333–40.PubMedCrossRef
40.
Zurück zum Zitat Wu W-F, et al. Estrogen receptor B and treatment with a phytoestrogen are associated with inhibition of nuclear translocation of EGFR in the prostate. Proc Natl Acad Sci. 2021;118(13):e2011269118.PubMedPubMedCentralCrossRef Wu W-F, et al. Estrogen receptor B and treatment with a phytoestrogen are associated with inhibition of nuclear translocation of EGFR in the prostate. Proc Natl Acad Sci. 2021;118(13):e2011269118.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Nicholson TM, et al. Estrogen receptor-α is a key mediator and therapeutic target for bladder complications of benign prostatic hyperplasia. J Urol. 2015;193(2):722–9.PubMedCrossRef Nicholson TM, et al. Estrogen receptor-α is a key mediator and therapeutic target for bladder complications of benign prostatic hyperplasia. J Urol. 2015;193(2):722–9.PubMedCrossRef
42.
Zurück zum Zitat Prajapatiab A, et al. Oncogenic transformation of human benign prostate hyperplasia with chronic cadmium exposure. J Trace Elem Med Biol. 2020;62:126633.CrossRef Prajapatiab A, et al. Oncogenic transformation of human benign prostate hyperplasia with chronic cadmium exposure. J Trace Elem Med Biol. 2020;62:126633.CrossRef
43.
44.
Zurück zum Zitat Qian X, et al. Genetic variants in 5p13.2 and 7q21.1 are associated with treatment for benign prostatic hyperplasia with the α-adrenergic receptor antagonist. Aging Male. 2017;20(4):250–6.PubMedCrossRef Qian X, et al. Genetic variants in 5p13.2 and 7q21.1 are associated with treatment for benign prostatic hyperplasia with the α-adrenergic receptor antagonist. Aging Male. 2017;20(4):250–6.PubMedCrossRef
45.
Zurück zum Zitat Mononen N, Schleutker J. Polymorphisms in genes involved in androgen pathways as risk factors for prostate cancer. J Urol. 2009;181(4):1541–9.PubMedCrossRef Mononen N, Schleutker J. Polymorphisms in genes involved in androgen pathways as risk factors for prostate cancer. J Urol. 2009;181(4):1541–9.PubMedCrossRef
46.
Zurück zum Zitat Zeigler-Johnson CM, et al. Ethnic differences in the frequency of prostate cancer susceptibility alleles at SRD5A2 and CYP3A4. Hum Hered. 2002;54(1):13–21.PubMedCrossRef Zeigler-Johnson CM, et al. Ethnic differences in the frequency of prostate cancer susceptibility alleles at SRD5A2 and CYP3A4. Hum Hered. 2002;54(1):13–21.PubMedCrossRef
47.
Zurück zum Zitat Gorjala P, et al. Role of CYP3A5 in modulating androgen receptor signaling and its relevance to African American men with prostate cancer. Cancers (Basel). 2020;12(4):989.PubMedPubMedCentralCrossRef Gorjala P, et al. Role of CYP3A5 in modulating androgen receptor signaling and its relevance to African American men with prostate cancer. Cancers (Basel). 2020;12(4):989.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Mitra R, Goodman OB Jr. CYP3A5 regulates prostate cancer cell growth by facilitating nuclear translocation of AR. Prostate. 2015;75(5):527–38.PubMedCrossRef Mitra R, Goodman OB Jr. CYP3A5 regulates prostate cancer cell growth by facilitating nuclear translocation of AR. Prostate. 2015;75(5):527–38.PubMedCrossRef
49.
Zurück zum Zitat Liang Y, et al. Association of CYP3A5*3 polymorphisms and prostate cancer risk: a meta-analysis. J Cancer Res Ther. 2018;14(Supplement):S463–7.PubMed Liang Y, et al. Association of CYP3A5*3 polymorphisms and prostate cancer risk: a meta-analysis. J Cancer Res Ther. 2018;14(Supplement):S463–7.PubMed
50.
Zurück zum Zitat Berges R, et al. Association of polymorphisms in CYP19A1 and CYP3A4 genes with lower urinary tract symptoms, prostate volume, uroflow and PSA in a population-based sample. World J Urol. 2011;29(2):143–8.PubMedCrossRef Berges R, et al. Association of polymorphisms in CYP19A1 and CYP3A4 genes with lower urinary tract symptoms, prostate volume, uroflow and PSA in a population-based sample. World J Urol. 2011;29(2):143–8.PubMedCrossRef
52.
Zurück zum Zitat Vasaitis TS, Bruno RD, Njar VC. CYP17 inhibitors for prostate cancer therapy. J Steroid Biochem Mol Biol. 2011;125(1–2):23–31.PubMedCrossRef Vasaitis TS, Bruno RD, Njar VC. CYP17 inhibitors for prostate cancer therapy. J Steroid Biochem Mol Biol. 2011;125(1–2):23–31.PubMedCrossRef
53.
Zurück zum Zitat Crucitta S, et al. CYP17A1 polymorphism c-362T>C predicts clinical outcome in metastatic castration-resistance prostate cancer patients treated with abiraterone. Cancer Chemother Pharmacol. 2020;86(4):527–33.PubMedCrossRef Crucitta S, et al. CYP17A1 polymorphism c-362T>C predicts clinical outcome in metastatic castration-resistance prostate cancer patients treated with abiraterone. Cancer Chemother Pharmacol. 2020;86(4):527–33.PubMedCrossRef
54.
Zurück zum Zitat Haiman CA, et al. The relationship between a polymorphism in CYP17 with plasma hormone levels and prostate cancer. Cancer Epidemiol Biomarkers Prev. 2001;10(7):743–8.PubMed Haiman CA, et al. The relationship between a polymorphism in CYP17 with plasma hormone levels and prostate cancer. Cancer Epidemiol Biomarkers Prev. 2001;10(7):743–8.PubMed
55.
Zurück zum Zitat Azzouzi AR, et al. Impact of constitutional genetic variation in androgen/oestrogen-regulating genes on age-related changes in human prostate. Eur J Endocrinol. 2002;147(4):479–84.PubMedCrossRef Azzouzi AR, et al. Impact of constitutional genetic variation in androgen/oestrogen-regulating genes on age-related changes in human prostate. Eur J Endocrinol. 2002;147(4):479–84.PubMedCrossRef
56.
Zurück zum Zitat Habuchi T, et al. Increased risk of prostate cancer and benign prostatic hyperplasia associated with a CYP17 gene polymorphism with a gene dosage effect1. Can Res. 2000;60(20):5710–3. Habuchi T, et al. Increased risk of prostate cancer and benign prostatic hyperplasia associated with a CYP17 gene polymorphism with a gene dosage effect1. Can Res. 2000;60(20):5710–3.
57.
Zurück zum Zitat Sivoňová MK, et al. Effect of CYP17 and PSA gene polymorphisms on prostate cancer risk and circulating PSA levels in the Slovak population. Mol Biol Rep. 2012;39(8):7871–80.PubMedCrossRef Sivoňová MK, et al. Effect of CYP17 and PSA gene polymorphisms on prostate cancer risk and circulating PSA levels in the Slovak population. Mol Biol Rep. 2012;39(8):7871–80.PubMedCrossRef
58.
Zurück zum Zitat Kuddus RH, Ezzi AAE, El-Saidi MA. Abstract 5304: Association of prostate cancer and benign prostate hyperplasia with polymorphisms in VDR gene, CYP17 gene and SRD5A2 gene among Lebanese men. Cancer Res. 2013;73(8_Supplement):5304–5304.CrossRef Kuddus RH, Ezzi AAE, El-Saidi MA. Abstract 5304: Association of prostate cancer and benign prostate hyperplasia with polymorphisms in VDR gene, CYP17 gene and SRD5A2 gene among Lebanese men. Cancer Res. 2013;73(8_Supplement):5304–5304.CrossRef
60.
Zurück zum Zitat Blakemore J, Naftolin F. Aromatase: contributions to physiology and disease in women and men. Physiology (Bethesda). 2016;31(4):258–69.PubMed Blakemore J, Naftolin F. Aromatase: contributions to physiology and disease in women and men. Physiology (Bethesda). 2016;31(4):258–69.PubMed
61.
Zurück zum Zitat Ellem SJ, Risbridger GP. Aromatase and regulating the estrogen:androgen ratio in the prostate gland. J Steroid Biochem Mol Biol. 2010;118(4):246–51.PubMedCrossRef Ellem SJ, Risbridger GP. Aromatase and regulating the estrogen:androgen ratio in the prostate gland. J Steroid Biochem Mol Biol. 2010;118(4):246–51.PubMedCrossRef
63.
Zurück zum Zitat Brodie A, Lu Q, Nakamura J. Aromatase in the normal breast and breast cancer. J Steroid Biochem Mol Biol. 1997;61(3–6):281–6.PubMedCrossRef Brodie A, Lu Q, Nakamura J. Aromatase in the normal breast and breast cancer. J Steroid Biochem Mol Biol. 1997;61(3–6):281–6.PubMedCrossRef
64.
Zurück zum Zitat Ellem SJ, Risbridger GP. Aromatase and prostate cancer. Minerva Endocrinol. 2006;31(1):1–12.PubMed Ellem SJ, Risbridger GP. Aromatase and prostate cancer. Minerva Endocrinol. 2006;31(1):1–12.PubMed
65.
Zurück zum Zitat Salari K, et al. MP31-15 gene expression profiling reveals molecular subtypes of benign prostatic hyperplasia. J Urol. 2015;193(4S):e361–e361.CrossRef Salari K, et al. MP31-15 gene expression profiling reveals molecular subtypes of benign prostatic hyperplasia. J Urol. 2015;193(4S):e361–e361.CrossRef
66.
Zurück zum Zitat Ng M, et al. PD16-11 Trans-ethnic genome-wide association study reveals new therapeutic targets for benign prostatic hyperplasia. J Urol. 2022;207(Supplement 5):e272.CrossRef Ng M, et al. PD16-11 Trans-ethnic genome-wide association study reveals new therapeutic targets for benign prostatic hyperplasia. J Urol. 2022;207(Supplement 5):e272.CrossRef
67.
Zurück zum Zitat Li W, Klein RJ. Genome-wide association study identifies a role for the progesterone receptor in benign prostatic hyperplasia risk. Prostate Cancer Prostatic Dis. 2021;24(2):492–8.PubMedCrossRef Li W, Klein RJ. Genome-wide association study identifies a role for the progesterone receptor in benign prostatic hyperplasia risk. Prostate Cancer Prostatic Dis. 2021;24(2):492–8.PubMedCrossRef
68.
Zurück zum Zitat Hellwege JN, et al. Heritability and genome-wide association study of benign prostatic hyperplasia (BPH) in the eMERGE network. Sci Rep. 2019;9(1):6077.PubMedPubMedCentralCrossRef Hellwege JN, et al. Heritability and genome-wide association study of benign prostatic hyperplasia (BPH) in the eMERGE network. Sci Rep. 2019;9(1):6077.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Gudmundsson J, et al. Genome-wide associations for benign prostatic hyperplasia reveal a genetic correlation with serum levels of PSA. Nat Commun. 2018;9(1):4568.PubMedPubMedCentralCrossRef Gudmundsson J, et al. Genome-wide associations for benign prostatic hyperplasia reveal a genetic correlation with serum levels of PSA. Nat Commun. 2018;9(1):4568.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Na R, et al. A genetic variant nearGATA3implicated in inherited susceptibility and etiology of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Prostate. 2017;77(11):1213–20.PubMedPubMedCentralCrossRef Na R, et al. A genetic variant nearGATA3implicated in inherited susceptibility and etiology of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Prostate. 2017;77(11):1213–20.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Giri A, et al. Genetic determinants of metabolism and benign prostate enlargement: associations with prostate volume. PLoS ONE. 2015;10(7): e0132028.PubMedPubMedCentralCrossRef Giri A, et al. Genetic determinants of metabolism and benign prostate enlargement: associations with prostate volume. PLoS ONE. 2015;10(7): e0132028.PubMedPubMedCentralCrossRef
72.
73.
Zurück zum Zitat Comuzzie AG, et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the hispanic population. PLoS ONE. 2012;7(12):e51954.PubMedPubMedCentralCrossRef Comuzzie AG, et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the hispanic population. PLoS ONE. 2012;7(12):e51954.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Chambers KF, et al. Stromal upregulation of lateral epithelial adhesions: Gene expression analysis of signalling pathways in prostate epithelium. J Biomed Sci. 2011;18(1):45.PubMedPubMedCentralCrossRef Chambers KF, et al. Stromal upregulation of lateral epithelial adhesions: Gene expression analysis of signalling pathways in prostate epithelium. J Biomed Sci. 2011;18(1):45.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Singh AP, et al. Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells. Cancer Lett. 2008;259(1):28–38.PubMedCrossRef Singh AP, et al. Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells. Cancer Lett. 2008;259(1):28–38.PubMedCrossRef
76.
Zurück zum Zitat Pritchard CC, Nelson PS. Gene expression profiling in the developing prostate. Differentiation. 2008;76(6):624–40.PubMedCrossRef Pritchard CC, Nelson PS. Gene expression profiling in the developing prostate. Differentiation. 2008;76(6):624–40.PubMedCrossRef
78.
Zurück zum Zitat Wu D, et al. Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer. Nucleic Acids Res. 2014;42(6):3607–22.PubMedPubMedCentralCrossRef Wu D, et al. Three-tiered role of the pioneer factor GATA2 in promoting androgen-dependent gene expression in prostate cancer. Nucleic Acids Res. 2014;42(6):3607–22.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Wang Q, et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell. 2007;27(3):380–92.PubMedPubMedCentralCrossRef Wang Q, et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell. 2007;27(3):380–92.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Samuel, et al. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell. 2015;27(2):223–39.CrossRef Samuel, et al. A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell. 2015;27(2):223–39.CrossRef
81.
Zurück zum Zitat Rodriguez-Bravo V, et al. The role of GATA2 in lethal prostate cancer aggressiveness. Nat Rev Urol. 2017;14(1):38–48.PubMedCrossRef Rodriguez-Bravo V, et al. The role of GATA2 in lethal prostate cancer aggressiveness. Nat Rev Urol. 2017;14(1):38–48.PubMedCrossRef
82.
Zurück zum Zitat Wilson BJ, Giguère V. Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway. Mol Cancer. 2008;7(1):49.PubMedPubMedCentralCrossRef Wilson BJ, Giguère V. Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway. Mol Cancer. 2008;7(1):49.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Dydensborg AB, et al. GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene. 2009;28(29):2634–42.PubMedCrossRef Dydensborg AB, et al. GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene. 2009;28(29):2634–42.PubMedCrossRef
84.
Zurück zum Zitat Na R, et al. A genetic variant near GATA3 implicated in inherited susceptibility and etiology of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Prostate. 2017;77(11):1213–20.PubMedPubMedCentralCrossRef Na R, et al. A genetic variant near GATA3 implicated in inherited susceptibility and etiology of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Prostate. 2017;77(11):1213–20.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Khan SF, et al. The roles and regulation of TBX3 in development and disease. Gene. 2020;726:144223.PubMedCrossRef Khan SF, et al. The roles and regulation of TBX3 in development and disease. Gene. 2020;726:144223.PubMedCrossRef
87.
Zurück zum Zitat Antoine S, Makedon A, Lloyd G. Identification of genes associated with the risk of requiring BPH surgery. J Urol. 2021;206(Supplement 3):e202–e202.CrossRef Antoine S, Makedon A, Lloyd G. Identification of genes associated with the risk of requiring BPH surgery. J Urol. 2021;206(Supplement 3):e202–e202.CrossRef
88.
Zurück zum Zitat Raja A, Hori S, Armitage JN. Hormonal manipulation of lower urinary tract symptoms secondary to benign prostatic obstruction. Indian J Urol. 2014;30(2):189–93.PubMedPubMedCentralCrossRef Raja A, Hori S, Armitage JN. Hormonal manipulation of lower urinary tract symptoms secondary to benign prostatic obstruction. Indian J Urol. 2014;30(2):189–93.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Koutros S, et al. Xenobiotic-metabolizing gene variants, pesticide use, and the risk of prostate cancer. Pharmacogenet Genomics. 2011;21(10):615–23.PubMedPubMedCentralCrossRef Koutros S, et al. Xenobiotic-metabolizing gene variants, pesticide use, and the risk of prostate cancer. Pharmacogenet Genomics. 2011;21(10):615–23.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Marisiddaiah R, et al. Lycopene alters intracellular glutathione status and antioxidant/phase II detoxifying enzymes in human prostate cancer cells. The FASEB Journal. 2011;25(S1):344.5-344.5. Marisiddaiah R, et al. Lycopene alters intracellular glutathione status and antioxidant/phase II detoxifying enzymes in human prostate cancer cells. The FASEB Journal. 2011;25(S1):344.5-344.5.
92.
Zurück zum Zitat Tian H, et al. ASC-J9® suppresses prostate cancer cell proliferation and invasion via altering the ATF3-PTK2 signaling. J Exp Clin Cancer Res. 2021;40(1):3.PubMedPubMedCentralCrossRef Tian H, et al. ASC-J9® suppresses prostate cancer cell proliferation and invasion via altering the ATF3-PTK2 signaling. J Exp Clin Cancer Res. 2021;40(1):3.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Yajnik V, et al. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell. 2003;112(5):673–84.PubMedCrossRef Yajnik V, et al. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell. 2003;112(5):673–84.PubMedCrossRef
95.
Zurück zum Zitat Hafiz S, et al. Expression of melanocortin receptors in human prostate cancer cell lines: MC2R activation by ACTH increases prostate cancer cell proliferation. Int J Oncol. 2012;41(4):1373–80.PubMedCrossRef Hafiz S, et al. Expression of melanocortin receptors in human prostate cancer cell lines: MC2R activation by ACTH increases prostate cancer cell proliferation. Int J Oncol. 2012;41(4):1373–80.PubMedCrossRef
96.
Zurück zum Zitat Geng C, et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci U S A. 2013;110(17):6997–7002.PubMedPubMedCentralCrossRef Geng C, et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci U S A. 2013;110(17):6997–7002.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Blattner M, et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K/mTOR and AR signaling. Cancer Cell. 2017;31(3):436–51.PubMedPubMedCentralCrossRef Blattner M, et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K/mTOR and AR signaling. Cancer Cell. 2017;31(3):436–51.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Chen EJ, et al. Abiraterone treatment in castration-resistant prostate cancer selects for progesterone responsive mutant androgen receptors. Clin Cancer Res. 2015;21(6):1273–80.PubMedCrossRef Chen EJ, et al. Abiraterone treatment in castration-resistant prostate cancer selects for progesterone responsive mutant androgen receptors. Clin Cancer Res. 2015;21(6):1273–80.PubMedCrossRef
103.
Zurück zum Zitat Chen R, Yu Y, Dong X. Progesterone receptor in the prostate: a potential suppressor for benign prostatic hyperplasia and prostate cancer. J Steroid Biochem Mol Biol. 2017;166:91–6.PubMedCrossRef Chen R, Yu Y, Dong X. Progesterone receptor in the prostate: a potential suppressor for benign prostatic hyperplasia and prostate cancer. J Steroid Biochem Mol Biol. 2017;166:91–6.PubMedCrossRef
104.
Zurück zum Zitat Yu Y, et al. Progesterone receptor expression during prostate cancer progression suggests a role of this receptor in stromal cell differentiation. Prostate. 2015;75(10):1043–50.PubMedCrossRef Yu Y, et al. Progesterone receptor expression during prostate cancer progression suggests a role of this receptor in stromal cell differentiation. Prostate. 2015;75(10):1043–50.PubMedCrossRef
106.
Zurück zum Zitat Abate-Shen C, Shen MM, Gelmann E. Integrating differentiation and cancer: the Nkx31 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation. 2008;76(6):717–27.PubMedPubMedCentralCrossRef Abate-Shen C, Shen MM, Gelmann E. Integrating differentiation and cancer: the Nkx31 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation. 2008;76(6):717–27.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Antao AM, Ramakrishna S, Kim KS. The role of Nkx3.1 in cancers and stemness. Int J Stem Cells. 2021;14(2):168–79.PubMedPubMedCentral Antao AM, Ramakrishna S, Kim KS. The role of Nkx3.1 in cancers and stemness. Int J Stem Cells. 2021;14(2):168–79.PubMedPubMedCentral
108.
Zurück zum Zitat Irer B, et al. Increased expression of NKX3.1 in benign prostatic hyperplasia. Urology. 2009;73(5):1140–4.PubMedCrossRef Irer B, et al. Increased expression of NKX3.1 in benign prostatic hyperplasia. Urology. 2009;73(5):1140–4.PubMedCrossRef
109.
Zurück zum Zitat Gozal NB, et al. PD46-06 Symptomatic benign prostatic hyperplasia with immune-enriched landscapes show lower incidence of prostate cancer development. J Urol. 2022;207(Supplement 5):e790.CrossRef Gozal NB, et al. PD46-06 Symptomatic benign prostatic hyperplasia with immune-enriched landscapes show lower incidence of prostate cancer development. J Urol. 2022;207(Supplement 5):e790.CrossRef
Metadaten
Titel
Genetic, Genomic, and Heritable Components of Benign Prostatic Hyperplasia
verfasst von
Alan M. Makedon
Sera X. Sempson
Paige Hargis
Granville L. Lloyd
Publikationsdatum
20.04.2023
Verlag
Springer US
Erschienen in
Current Bladder Dysfunction Reports / Ausgabe 2/2023
Print ISSN: 1931-7212
Elektronische ISSN: 1931-7220
DOI
https://doi.org/10.1007/s11884-023-00697-4

Weitere Artikel der Ausgabe 2/2023

Current Bladder Dysfunction Reports 2/2023 Zur Ausgabe

STRESS INCONTINENCE AND PROLAPSE (S REYNOLDS, SECTION EDITOR)

Managing Pelvic Organ Prolapse After Urinary Diversion or Neobladder

OUTCOMES IN FUNCTIONAL UROLOGY (A CAMERON, SECTION EDITOR)

How Do We Assess Success After Surgical Management of Urethral Stricture Disease?

VOIDING DYSFUNCTION EVALUATION (B BRUCKER AND B PEYRONNET, SECTION EDITORS)

Telemedicine in Overactive Bladder Syndrome

Auf Antibiotika verzichten? Was bei unkomplizierter Zystitis hilft

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.