Skip to main content
Erschienen in: Current Diabetes Reports 7/2016

01.07.2016 | Genetics (AP Morris, Section Editor)

Genetics of Type 2 Diabetes: the Power of Isolated Populations

verfasst von: Mette Korre Andersen, Casper-Emil Tingskov Pedersen, Ida Moltke, Torben Hansen, Anders Albrechtsen, Niels Grarup

Erschienen in: Current Diabetes Reports | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

Type 2 diabetes (T2D) affects millions of people worldwide. Improving the understanding of the underlying mechanisms and ultimately improving the treatment strategies are, thus, of great interest. To achieve this, identification of genetic variation predisposing to T2D is important. A large number of variants have been identified in large outbred populations, mainly from Europe and Asia. However, to elucidate additional variation, isolated populations have a number of advantageous properties, including increased amounts of linkage disequilibrium, and increased probability for presence of high frequency disease-associated variants due to genetic drift. Collectively, this increases the statistical power to detect association signals in isolated populations compared to large outbred populations. In this review, we elaborate on why isolated populations are a powerful resource for the identification of complex disease variants and describe their contributions to the understanding of the genetics of T2D.
Literatur
2.
Zurück zum Zitat Medici F, Hawa M, Ianari A, et al. Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia. 1999;42:146–50.CrossRefPubMed Medici F, Hawa M, Ianari A, et al. Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia. 1999;42:146–50.CrossRefPubMed
3.
Zurück zum Zitat Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90.CrossRefPubMedPubMedCentral Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90.CrossRefPubMedPubMedCentral
4.•
Zurück zum Zitat Mahajan A, Go MJ, Zhang W, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234–44. The first major meta-analysis of type 2 diabetes genetics across multiple ancestries.CrossRefPubMed Mahajan A, Go MJ, Zhang W, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234–44. The first major meta-analysis of type 2 diabetes genetics across multiple ancestries.CrossRefPubMed
5.
Zurück zum Zitat Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26:76–80.CrossRefPubMed Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26:76–80.CrossRefPubMed
6.
Zurück zum Zitat Nielsen E-MD, Hansen L, Carstensen B, et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes. 2003;52:573–7.CrossRefPubMed Nielsen E-MD, Hansen L, Carstensen B, et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes. 2003;52:573–7.CrossRefPubMed
7.
Zurück zum Zitat Lim ET, Würtz P, Havulinna AS, et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 2014;10:e1004494.CrossRefPubMedPubMedCentral Lim ET, Würtz P, Havulinna AS, et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 2014;10:e1004494.CrossRefPubMedPubMedCentral
8.••
Zurück zum Zitat Lohmueller KE. The impact of population demography and selection on the genetic architecture of complex traits. PLoS Genet. 2014;10:e1004379. Carefully demonstrates the effect of recent population growth on the genetic architecture of complex traits.CrossRefPubMedPubMedCentral Lohmueller KE. The impact of population demography and selection on the genetic architecture of complex traits. PLoS Genet. 2014;10:e1004379. Carefully demonstrates the effect of recent population growth on the genetic architecture of complex traits.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet. 1999;22:139–44.CrossRefPubMed Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet. 1999;22:139–44.CrossRefPubMed
11.
Zurück zum Zitat Zuk O, Schaffner SF, Samocha K, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci. 2014;111:E455–64.CrossRefPubMedPubMedCentral Zuk O, Schaffner SF, Samocha K, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci. 2014;111:E455–64.CrossRefPubMedPubMedCentral
12.•
Zurück zum Zitat Moltke I, Fumagalli M, Korneliussen TS, et al. Uncovering the genetic history of the present-day Greenlandic population. Am J Hum Genet. 2015;96:54–69. Careful studies of the genetic history of the Greenlandic population.CrossRefPubMedPubMedCentral Moltke I, Fumagalli M, Korneliussen TS, et al. Uncovering the genetic history of the present-day Greenlandic population. Am J Hum Genet. 2015;96:54–69. Careful studies of the genetic history of the Greenlandic population.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Service S, DeYoung J, Karayiorgou M, et al. Magnitude and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies. Nat Genet. 2006;38:556–60.CrossRefPubMed Service S, DeYoung J, Karayiorgou M, et al. Magnitude and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies. Nat Genet. 2006;38:556–60.CrossRefPubMed
14.
Zurück zum Zitat Weiss KM, Terwilliger JD. How many diseases does it take to map a gene with SNPs? Nat Genet. 2000;26:151–7.CrossRefPubMed Weiss KM, Terwilliger JD. How many diseases does it take to map a gene with SNPs? Nat Genet. 2000;26:151–7.CrossRefPubMed
17.
Zurück zum Zitat Newman DL, Abney M, McPeek MS, et al. The importance of genealogy in determining genetic associations with complex traits. Am J Hum Genet. 2001;69:1146–8.CrossRefPubMedPubMedCentral Newman DL, Abney M, McPeek MS, et al. The importance of genealogy in determining genetic associations with complex traits. Am J Hum Genet. 2001;69:1146–8.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Norio R. Finnish disease heritage I: characteristics, causes, background. Hum Genet. 2003;112:441–56.PubMed Norio R. Finnish disease heritage I: characteristics, causes, background. Hum Genet. 2003;112:441–56.PubMed
19.
Zurück zum Zitat Lohmueller KE. The distribution of deleterious genetic variation in human populations. Curr Opin Genet Dev. 2014;29:139–46.CrossRefPubMed Lohmueller KE. The distribution of deleterious genetic variation in human populations. Curr Opin Genet Dev. 2014;29:139–46.CrossRefPubMed
20.
Zurück zum Zitat Casals F, Hodgkinson A, Hussin J, et al. Whole-exome sequencing reveals a rapid change in the frequency of rare functional variants in a founding population of humans. PLoS Genet. 2013;9:e1003815.CrossRefPubMedPubMedCentral Casals F, Hodgkinson A, Hussin J, et al. Whole-exome sequencing reveals a rapid change in the frequency of rare functional variants in a founding population of humans. PLoS Genet. 2013;9:e1003815.CrossRefPubMedPubMedCentral
21.
22.
23.
Zurück zum Zitat Lohmueller KE, Indap AR, Schmidt S, et al. Proportionally more deleterious genetic variation in European than in African populations. Nature. 2008;451:994–7.CrossRefPubMedPubMedCentral Lohmueller KE, Indap AR, Schmidt S, et al. Proportionally more deleterious genetic variation in European than in African populations. Nature. 2008;451:994–7.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Simons YB, Turchin MC, Pritchard JK, et al. The deleterious mutation load is insensitive to recent population history. Nat Genet. 2014;46:220–4.CrossRefPubMedPubMedCentral Simons YB, Turchin MC, Pritchard JK, et al. The deleterious mutation load is insensitive to recent population history. Nat Genet. 2014;46:220–4.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Fu W, Gittelman RM, Bamshad MJ, et al. Characteristics of neutral and deleterious protein-coding variation among individuals and populations. Am J Hum Genet. 2014;95:421–36.CrossRefPubMedPubMedCentral Fu W, Gittelman RM, Bamshad MJ, et al. Characteristics of neutral and deleterious protein-coding variation among individuals and populations. Am J Hum Genet. 2014;95:421–36.CrossRefPubMedPubMedCentral
26.•
Zurück zum Zitat Henn BM, Botigué LR, Bustamante CD, et al. Estimating the mutation load in human genomes. Nat Rev Genet. 2015;16:333–43. Highlights how deleterious mutations can evolve as if they were neutral, and shows why this leads to a correlation between burden of mutations and distance to Africa.CrossRefPubMed Henn BM, Botigué LR, Bustamante CD, et al. Estimating the mutation load in human genomes. Nat Rev Genet. 2015;16:333–43. Highlights how deleterious mutations can evolve as if they were neutral, and shows why this leads to a correlation between burden of mutations and distance to Africa.CrossRefPubMed
27.
Zurück zum Zitat Do R, Balick D, Li H, et al. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nat Genet. 2015;47:126–31.CrossRefPubMedPubMedCentral Do R, Balick D, Li H, et al. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nat Genet. 2015;47:126–31.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Henn BM, Botigué LR, Peischl S, et al. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. Proc Natl Acad Sci. 2016;113:E440–9.CrossRefPubMed Henn BM, Botigué LR, Peischl S, et al. Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. Proc Natl Acad Sci. 2016;113:E440–9.CrossRefPubMed
29.
Zurück zum Zitat Wright AF, Carothers AD, Pirastu M. Population choice in mapping genes for complex diseases. Nat Genet. 1999;23:397–404.CrossRefPubMed Wright AF, Carothers AD, Pirastu M. Population choice in mapping genes for complex diseases. Nat Genet. 1999;23:397–404.CrossRefPubMed
30.
Zurück zum Zitat Jørgensen ME, Borch-Johnsen K, Stolk R, et al. Fat distribution and glucose intolerance among Greenland Inuit. Diabetes Care. 2013;36:2988–94.CrossRefPubMedPubMedCentral Jørgensen ME, Borch-Johnsen K, Stolk R, et al. Fat distribution and glucose intolerance among Greenland Inuit. Diabetes Care. 2013;36:2988–94.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Hsueh WC, Mitchell BD, Aburomia R, et al. Diabetes in the Old Order Amish: characterization and heritability analysis of the Amish family diabetes study. Diabetes Care. 2000;23:595–601.CrossRefPubMed Hsueh WC, Mitchell BD, Aburomia R, et al. Diabetes in the Old Order Amish: characterization and heritability analysis of the Amish family diabetes study. Diabetes Care. 2000;23:595–601.CrossRefPubMed
35.
Zurück zum Zitat Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5.CrossRefPubMedPubMedCentral Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Diabetes Genetics Initiative of Broad Institute of Harvard and MIT and Novartis Institutes of BioMedical Research LU, Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.CrossRef Diabetes Genetics Initiative of Broad Institute of Harvard and MIT and Novartis Institutes of BioMedical Research LU, Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.CrossRef
37.
Zurück zum Zitat Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320–3.CrossRefPubMed Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320–3.CrossRefPubMed
38.••
Zurück zum Zitat Steinthorsdottir V, Thorleifsson G, Sulem P, et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46:294–8. A well-designed study demonstrating the power of combining cutting-edge genotyping technology and extensive genealogical information to identify rare and low-frequency variants associated with type 2 diabetes.CrossRefPubMed Steinthorsdottir V, Thorleifsson G, Sulem P, et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46:294–8. A well-designed study demonstrating the power of combining cutting-edge genotyping technology and extensive genealogical information to identify rare and low-frequency variants associated with type 2 diabetes.CrossRefPubMed
39.
Zurück zum Zitat Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39:770–5.CrossRefPubMed Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39:770–5.CrossRefPubMed
40.••
Zurück zum Zitat Flannick J, Thorleifsson G, Beer NL, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46:357–63. Major study identifying type 2 diabetes protective rare loss-of-function variants in beta cell expressed SLC30A8, and pinpoints this protein as a potential treatment target.CrossRefPubMedPubMedCentral Flannick J, Thorleifsson G, Beer NL, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46:357–63. Major study identifying type 2 diabetes protective rare loss-of-function variants in beta cell expressed SLC30A8, and pinpoints this protein as a potential treatment target.CrossRefPubMedPubMedCentral
41.••
Zurück zum Zitat Moltke I, Grarup N, Jørgensen ME, et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature. 2014;512:190–3. Elegant study identifying a type 2 diabetes risk variant in TBC1D4, and determining its functional role in relation to diabetes, and thereby demonstrating the power of the Greenlandic population in genetic association studies.CrossRefPubMed Moltke I, Grarup N, Jørgensen ME, et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature. 2014;512:190–3. Elegant study identifying a type 2 diabetes risk variant in TBC1D4, and determining its functional role in relation to diabetes, and thereby demonstrating the power of the Greenlandic population in genetic association studies.CrossRefPubMed
42.
Zurück zum Zitat Hanson RL, Muller YL, Kobes S, et al. A genome-wide association study in American Indians implicates DNER as a susceptibility locus for type 2 diabetes. Diabetes. 2014;63:369–76.CrossRefPubMed Hanson RL, Muller YL, Kobes S, et al. A genome-wide association study in American Indians implicates DNER as a susceptibility locus for type 2 diabetes. Diabetes. 2014;63:369–76.CrossRefPubMed
43.•
Zurück zum Zitat Baier LJ, Muller YL, Remedi MS, et al. ABCC8 R1420H loss-of-function variant in a Southwest American Indian community: association with increased birth weight and doubled risk of type 2 diabetes. Diabetes. 2015;64:4322–32. Example of successful identification of a type 2 diabetes associated variant by targeted sequencing in an isolated population.CrossRefPubMed Baier LJ, Muller YL, Remedi MS, et al. ABCC8 R1420H loss-of-function variant in a Southwest American Indian community: association with increased birth weight and doubled risk of type 2 diabetes. Diabetes. 2015;64:4322–32. Example of successful identification of a type 2 diabetes associated variant by targeted sequencing in an isolated population.CrossRefPubMed
44.
Zurück zum Zitat Rampersaud E, Damcott CM, Fu M, et al. Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish: evidence for replication from diabetes-related quantitative traits and from independent populations. Diabetes. 2007;56:3053–62.CrossRefPubMed Rampersaud E, Damcott CM, Fu M, et al. Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish: evidence for replication from diabetes-related quantitative traits and from independent populations. Diabetes. 2007;56:3053–62.CrossRefPubMed
45.
Zurück zum Zitat Wang SR, Agarwala V, Flannick J, et al. Simulation of Finnish population history, guided by empirical genetic data, to assess power of rare-variant tests in Finland. Am J Hum Genet. 2014;94:710–20.CrossRefPubMedPubMedCentral Wang SR, Agarwala V, Flannick J, et al. Simulation of Finnish population history, guided by empirical genetic data, to assess power of rare-variant tests in Finland. Am J Hum Genet. 2014;94:710–20.CrossRefPubMedPubMedCentral
46.
47.
Zurück zum Zitat Kittles RA, Bergen AW, Urbanek M, et al. Autosomal, mitochondrial, and Y chromosome DNA variation in Finland: evidence for a male-specific bottleneck. Am J Phys Anthropol. 1999;108:381–99.CrossRefPubMed Kittles RA, Bergen AW, Urbanek M, et al. Autosomal, mitochondrial, and Y chromosome DNA variation in Finland: evidence for a male-specific bottleneck. Am J Phys Anthropol. 1999;108:381–99.CrossRefPubMed
48.
Zurück zum Zitat Helgason A, Nicholson G, Stefánsson K, et al. A reassessment of genetic diversity in Icelanders: strong evidence from multiple loci for relative homogeneity caused by genetic drift. Ann Hum Genet. 2003;67:281–97.CrossRefPubMed Helgason A, Nicholson G, Stefánsson K, et al. A reassessment of genetic diversity in Icelanders: strong evidence from multiple loci for relative homogeneity caused by genetic drift. Ann Hum Genet. 2003;67:281–97.CrossRefPubMed
49.
Zurück zum Zitat Kushner JA, Ciemerych MA, Sicinska E, et al. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol. 2005;25:3752–62.CrossRefPubMedPubMedCentral Kushner JA, Ciemerych MA, Sicinska E, et al. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol. 2005;25:3752–62.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Huyghe JR, Jackson AU, Fogarty MP, et al. Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. Nat Genet. 2013;45:197–201.CrossRefPubMed Huyghe JR, Jackson AU, Fogarty MP, et al. Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. Nat Genet. 2013;45:197–201.CrossRefPubMed
51.
Zurück zum Zitat Yaghootkar H, Stancáková A, Freathy RM, et al. Association analysis of 29,956 individuals confirms that a low-frequency variant at CCND2 halves the risk of type 2 diabetes by enhancing insulin secretion. Diabetes. 2015;64:2279–85.CrossRefPubMed Yaghootkar H, Stancáková A, Freathy RM, et al. Association analysis of 29,956 individuals confirms that a low-frequency variant at CCND2 halves the risk of type 2 diabetes by enhancing insulin secretion. Diabetes. 2015;64:2279–85.CrossRefPubMed
52.
Zurück zum Zitat Thanabalasingham G, Owen KR. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ. 2011;343:d6044.CrossRefPubMed Thanabalasingham G, Owen KR. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ. 2011;343:d6044.CrossRefPubMed
53.
Zurück zum Zitat Edghill EL, Khamis A, Weedon MN, et al. Sequencing PDX1 (insulin promoter factor 1) in 1788 UK individuals found 5% had a low frequency coding variant, but these variants are not associated with type 2 diabetes. Diabet Med. 2011;28:681–4.CrossRefPubMedPubMedCentral Edghill EL, Khamis A, Weedon MN, et al. Sequencing PDX1 (insulin promoter factor 1) in 1788 UK individuals found 5% had a low frequency coding variant, but these variants are not associated with type 2 diabetes. Diabet Med. 2011;28:681–4.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Raghavan M, DeGiorgio M, Albrechtsen A, et al. The genetic prehistory of the New World Arctic. Science. 2014;345:1255832.CrossRefPubMed Raghavan M, DeGiorgio M, Albrechtsen A, et al. The genetic prehistory of the New World Arctic. Science. 2014;345:1255832.CrossRefPubMed
55.
Zurück zum Zitat Jeppesen C, Jørgensen ME, Bjerregaard P. Assessment of consumption of marine food in Greenland by a food frequency questionnaire and biomarkers. Int J Circumpolar Health. 2012;71:18361.CrossRefPubMed Jeppesen C, Jørgensen ME, Bjerregaard P. Assessment of consumption of marine food in Greenland by a food frequency questionnaire and biomarkers. Int J Circumpolar Health. 2012;71:18361.CrossRefPubMed
56.•
Zurück zum Zitat Fumagalli M, Moltke I, Grarup N, et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science. 2015;349:1343–7. This study demonstrates the existence of several genetic regions influenced by adaptation in the Greenlandic population.CrossRefPubMed Fumagalli M, Moltke I, Grarup N, et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science. 2015;349:1343–7. This study demonstrates the existence of several genetic regions influenced by adaptation in the Greenlandic population.CrossRefPubMed
57.
Zurück zum Zitat Sano H, Kane S, Sano E, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem. 2003;278:14599–602.CrossRefPubMed Sano H, Kane S, Sano E, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem. 2003;278:14599–602.CrossRefPubMed
58.
Zurück zum Zitat Williams RC, Long JC, Hanson RL, et al. Individual estimates of European genetic admixture associated with lower body-mass index, plasma glucose, and prevalence of type 2 diabetes in Pima Indians. Am J Hum Genet. 2000;66:527–38.CrossRefPubMed Williams RC, Long JC, Hanson RL, et al. Individual estimates of European genetic admixture associated with lower body-mass index, plasma glucose, and prevalence of type 2 diabetes in Pima Indians. Am J Hum Genet. 2000;66:527–38.CrossRefPubMed
59.
Zurück zum Zitat Rong R, Hanson RL, Ortiz D, et al. Association analysis of variation in/near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians. Diabetes. 2009;58:478–88.CrossRefPubMedPubMedCentral Rong R, Hanson RL, Ortiz D, et al. Association analysis of variation in/near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians. Diabetes. 2009;58:478–88.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Haiman CA, Fesinmeyer MD, Spencer KL, et al. Consistent directions of effect for established type 2 diabetes risk variants across populations: the population architecture using Genomics and Epidemiology (PAGE) Consortium. Diabetes. 2012;61:1642–7.CrossRefPubMedPubMedCentral Haiman CA, Fesinmeyer MD, Spencer KL, et al. Consistent directions of effect for established type 2 diabetes risk variants across populations: the population architecture using Genomics and Epidemiology (PAGE) Consortium. Diabetes. 2012;61:1642–7.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Guo T, Hanson RL, Traurig M, et al. TCF7L2 is not a major susceptibility gene for type 2 diabetes in Pima Indians: analysis of 3,501 individuals. Diabetes. 2007;56:3082–8.CrossRefPubMed Guo T, Hanson RL, Traurig M, et al. TCF7L2 is not a major susceptibility gene for type 2 diabetes in Pima Indians: analysis of 3,501 individuals. Diabetes. 2007;56:3082–8.CrossRefPubMed
62.
Zurück zum Zitat Hanson RL, Bogardus C, Duggan D, et al. A search for variants associated with young-onset type 2 diabetes in American Indians in a 100K genotyping array. Diabetes. 2007;56:3045–52.CrossRefPubMed Hanson RL, Bogardus C, Duggan D, et al. A search for variants associated with young-onset type 2 diabetes in American Indians in a 100K genotyping array. Diabetes. 2007;56:3045–52.CrossRefPubMed
63.
Zurück zum Zitat Deng Z, Shen J, Ye J, et al. Association between single nucleotide polymorphisms of delta/notch-like epidermal growth factor (EGF)-related receptor (DNER) and Delta-like 1 Ligand (DLL 1) with the risk of type 2 diabetes mellitus in a Chinese Han population. Cell Biochem Biophys. 2015;71:331–5.CrossRefPubMed Deng Z, Shen J, Ye J, et al. Association between single nucleotide polymorphisms of delta/notch-like epidermal growth factor (EGF)-related receptor (DNER) and Delta-like 1 Ligand (DLL 1) with the risk of type 2 diabetes mellitus in a Chinese Han population. Cell Biochem Biophys. 2015;71:331–5.CrossRefPubMed
64.
Zurück zum Zitat Bar Y, Efrat S. The NOTCH pathway in β-cell growth and differentiation. Vitam Horm. 2014;95:391–405.CrossRefPubMed Bar Y, Efrat S. The NOTCH pathway in β-cell growth and differentiation. Vitam Horm. 2014;95:391–405.CrossRefPubMed
65.
Zurück zum Zitat Huang K, Nair AK, Muller YL, et al. Whole exome sequencing identifies variation in CYB5A and RNF10 associated with adiposity and type 2 diabetes. Obesity. 2014;22:984–8.CrossRefPubMed Huang K, Nair AK, Muller YL, et al. Whole exome sequencing identifies variation in CYB5A and RNF10 associated with adiposity and type 2 diabetes. Obesity. 2014;22:984–8.CrossRefPubMed
66.
Zurück zum Zitat Flanagan SE, Patch A-M, Mackay DJG, et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes. 2007;56:1930–7.CrossRefPubMed Flanagan SE, Patch A-M, Mackay DJG, et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes. 2007;56:1930–7.CrossRefPubMed
67.
Zurück zum Zitat Gloyn AL, Weedon MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52:568–72.CrossRefPubMed Gloyn AL, Weedon MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52:568–72.CrossRefPubMed
68.
Zurück zum Zitat Florez JC, Burtt N, de Bakker PI, et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes. 2004;53:1360–8.CrossRefPubMed Florez JC, Burtt N, de Bakker PI, et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes. 2004;53:1360–8.CrossRefPubMed
69.
Zurück zum Zitat Pearson ER. Dissecting the etiology of type 2 diabetes in the Pima Indian population. Diabetes. 2015;64:3993–5.CrossRefPubMed Pearson ER. Dissecting the etiology of type 2 diabetes in the Pima Indian population. Diabetes. 2015;64:3993–5.CrossRefPubMed
70.
Zurück zum Zitat Proks P, Reimann F, Green N, et al. Sulfonylurea stimulation of insulin secretion. Diabetes. 2002;51 Suppl 3:S368–76.CrossRefPubMed Proks P, Reimann F, Green N, et al. Sulfonylurea stimulation of insulin secretion. Diabetes. 2002;51 Suppl 3:S368–76.CrossRefPubMed
71.
Zurück zum Zitat Hegele RA, Cao H, Harris SB, et al. The hepatocyte nuclear factor-1 alpha G319S variant is associated with early-onset type 2 diabetes in Canadian Oji-Cree. JCEM. 1999;84:1077–82.PubMed Hegele RA, Cao H, Harris SB, et al. The hepatocyte nuclear factor-1 alpha G319S variant is associated with early-onset type 2 diabetes in Canadian Oji-Cree. JCEM. 1999;84:1077–82.PubMed
72.
Zurück zum Zitat Estrada K, Aukrust I, Bjørkhaug L, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA. 2014;311:2305–14.CrossRefPubMed Estrada K, Aukrust I, Bjørkhaug L, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA. 2014;311:2305–14.CrossRefPubMed
73.
74.
Zurück zum Zitat Damcott CM, Pollin TI, Reinhart LJ, et al. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes. 2006;55:2654–9.CrossRefPubMed Damcott CM, Pollin TI, Reinhart LJ, et al. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes. 2006;55:2654–9.CrossRefPubMed
75.
Zurück zum Zitat Mounier C, Lavoie L, Dumas V, et al. Specific inhibition by hGRB10zeta of insulin-induced glycogen synthase activation: evidence for a novel signaling pathway. Mol Cell Endocrinol. 2001;173:15–27.CrossRefPubMed Mounier C, Lavoie L, Dumas V, et al. Specific inhibition by hGRB10zeta of insulin-induced glycogen synthase activation: evidence for a novel signaling pathway. Mol Cell Endocrinol. 2001;173:15–27.CrossRefPubMed
76.
Zurück zum Zitat Deng Y, Bhattacharya S, Swamy OR, et al. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action. J Biol Chem. 2003;278:39311–22.CrossRefPubMed Deng Y, Bhattacharya S, Swamy OR, et al. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action. J Biol Chem. 2003;278:39311–22.CrossRefPubMed
77.
Zurück zum Zitat Langlais P, Dong LQ, Ramos FJ, et al. Negative regulation of insulin-stimulated mitogen-activated protein kinase signaling by Grb10. Mol Endocrinol. 2004;18:350–8.CrossRefPubMed Langlais P, Dong LQ, Ramos FJ, et al. Negative regulation of insulin-stimulated mitogen-activated protein kinase signaling by Grb10. Mol Endocrinol. 2004;18:350–8.CrossRefPubMed
Metadaten
Titel
Genetics of Type 2 Diabetes: the Power of Isolated Populations
verfasst von
Mette Korre Andersen
Casper-Emil Tingskov Pedersen
Ida Moltke
Torben Hansen
Anders Albrechtsen
Niels Grarup
Publikationsdatum
01.07.2016
Verlag
Springer US
Erschienen in
Current Diabetes Reports / Ausgabe 7/2016
Print ISSN: 1534-4827
Elektronische ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-016-0757-z

Weitere Artikel der Ausgabe 7/2016

Current Diabetes Reports 7/2016 Zur Ausgabe

Pediatric Type 2 Diabetes (PS Zeitler, Section Editor)

Cardiac Abnormalities in Youth with Obesity and Type 2 Diabetes

Immunology and Transplantation (L Piemonti and V Sordi, Section Editors)

Gut Immunity and Type 1 Diabetes: a Mélange of Microbes, Diet, and Host Interactions?

Pediatric Type 2 Diabetes (PS Zeitler, Section Editor)

Insulin Resistance of Puberty

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.