Skip to main content
Erschienen in: Journal of Translational Medicine 1/2019

Open Access 01.12.2019 | Research

Genome-wide profiling reveals alternative polyadenylation of mRNA in human non-small cell lung cancer

verfasst von: Shirong Zhang, Xiaochen Zhang, Wei Lei, Jiafeng Liang, Yasi Xu, Hailiang Liu, Shenglin Ma

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2019

Abstract

Background

Lung cancer is the second most common cancer with an extremely poor overall survival rate. Post-transcriptional regulation of gene expression play many important roles in human cancer, and one of the potential mechanisms underlying this is alternative mRNA maturation at its 3′ untranslated regions (3′-UTRs).

Methods

Cancer tissues and paired adjacent normal lung tissues from 26 patients diagnosed with non-small cell lung cancer (NSCLC) were analyzed by in vitro transcription-sequencing alternative polyadenylation sites (IVT-SAPAS). 41,773,101 reads in average were obtained from each paired sample. A potential regulation of Cleavage Stimulation Factor Subunit 2 (CSTF2) on 3′UTR length of genes was tested in H460 cells.

Results

1439 (10.26%) genes showed up-regulated expression and 1364 (9.72%) genes showed down-regulated expression in lung cancer tissue versus normal lung tissue, and shorten 3′UTR in cancer tissue was detected in cancer tissues collected from 96.2% (25/26) patients, indicating lung cancer tend to have shortened 3′UTRs of these identified genes. KEGG analysis showed 1855 genes with shorten 3′UTR were enriched in mTOR signaling, ubiquitin mediated proteolysis and RNA degradation. Knocking down CSTF2 expression in H460 cells results in 3′UTR elongation of genes that was identified to be with shortened length in cancer tissues.

Conclusion

Alternative polyadenylation (APA) site-switching of 3′UTRs is prevalent in NSCLC, and CSTF2 may serve as an oncogene regulates the 3′UTR length of cancer related genes in NSCLC.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12967-019-1986-0) contains supplementary material, which is available to authorized users.
Shirong Zhang and Xiaochen Zhang contributed equally to this work

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
SCLC
small cell lung carcinoma
NSCLC
non-small cell lung carcinoma
3′-UTRs
3′ untranslated regions
APA
alternative polyadenylation
CSTF
cleavage stimulation factor
RT
reverse transcription
DAVID
the database for annotation, visualization and integrated discovery
DEGs
differentially expressed genes
KEGG
Kyoto Encyclopedia of Genes and Genomes
UTR
untranslated regions
GO
gene ontology
PABP
poly(A) binding protein
CPSF
cleavage and polyadenylation specificity factor
RRM
RNA recognition motif

Introduction

Lung cancer is the second most common cancer and the leading cause of cancer-related death for both man and woman worldwide, with an extremely poor overall survival rate, 5-year survival rate is only approximate 18% [1]. Although, lung cancer can be divided into many subtypes, historically lung cancer can be classified into two distinct types according to clinical tumor behaviors, small cell lung carcinoma (SCLC) and non–small cell lung carcinoma (NSCLC) [2]. NSCLC is the most common type of lung cancer, accounting for 80–85% of all lung cancer cases, and, as a major subtype, about 45% to 50% of NSCLC is diagnosed as lung adenocarcinoma, 30–35% is squamous cell carcinomas [3, 4].
Cancer is a disease with multiple genetic alternations. For example, proto-oncogenes are often activated in cancer cells and contribute to the tumorigenesis. The activation of oncogene can be caused by a mutation that leads to constitutive activation of the encoded proteins or by a mutation that induce gene expression, the latter occur through mechanisms like amplification of the gene copy number or chromosomal translocations resulting in replacement with a constitutive active promoter [5]. However, studies have revealed that, in addition to these genetic alterations, post-transcriptional regulation of gene expression also play many important roles in cancer development and progression, and one of the potential mechanisms underlying this is alternative mRNA maturation at its 3′ untranslated regions (3′-UTRs) which leads to distinct mRNA isoforms from the same gene [6, 7].
The architecture of pre-mRNA consists of coding regions and non-coding regions located separately at the 5′ and 3′ end of mRNA. The 3′ ends of almost all eukaryotic mRNAs are formed in a two-step process, an endonucleolytic cleavage followed by polyadenylation (the addition of a poly-adenosine or poly(A) tail) [8]. The formation of 3′-UTRs through polyadenylation process of sequential addition of a poly(A) tail on 3′ end of precursor mRNA is the last key step in mRNA maturation process [9].
3′-UTR of mRNA often contains many binding sites for regulatory RNA-binding proteins and microRNAs, and thus the length of 3′-UTR is important for regulation of mRNA stability, localization and protein translation efficiency [10]. Alternative polyadenylation (APA), a phenomenon that RNA molecules with different 3′ ends originate from distinct polyadenylation sites of a single gene, can often results in mRNA isoforms with the same coding sequence but different lengths of 3′-UTRs, which is the last step of the post-transcriptional processing. APA has been discovered to be an emerging mechanism of regulating gene expression [11]. Of interest, cancer cells, or similarly proliferating cells like early-stage embryonic cells, often express substantial amounts of mRNA isoforms with shorter 3′-UTRs [6, 12]. Shortening of 3′-UTRs has also been found to correlate with poor prognosis of cancer patients, including lung cancer [13, 14]. However, the detailed mechanism of how APA is regulated in normal and in cancer cells remains to be elucidated.
In this study, we used paired clinical tissue specimen to determine the differential expressed genes and the tandem 3′-UTR lengths of these genes in NSCLC. We also examined the potential protein factors that may influence the observed change of the 3′-UTR length. Our results showed that shorten 3′-UTRs is a common feature for the genes that are differentially expressed in cancer cells, and expressions of 3′ end processing protein factors cleavage stimulation factor (CSTF) may play vital role for the shortening of 3′-UTR.

Materials and methods

Patient information and tissue specimens

Twenty-six patients diagnosed with NSCLC (Table 1) were enrolled in this study. The protocol for using paired cancerous tissues and adjacent normal lung tissues was approved by Ethics Committee of The First People’s Hospital of Hangzhou. Fresh tissues were collected after surgery from each patient. All samples were snap frozen in liquid nitrogen within 30 min after surgical removal and then stored at − 80 °C. H&E staining was performed for validation of pathologic status of each specimen.
Table 1
The clinical information about 26 patient diagnosed with NSCLC
No.
Sex
Age (years)
Smoking history (per month)
Pathologic type
TNM classification
Clinical stage
1
Women
73
No
Adenocarcinoma
T2aN1M0
IIB
2
Men
76
Yes
Adenocarcinoma
T2aN2M0
IIIA
3
Men
66
Yes
Adenocarcinoma
T2aN0M0
IB
4
Men
67
No
Squamous
T1cN0M0
IA
5
Women
62
No
Adenocarcinoma
T2aN1M0
IIB
6
Women
72
No
Adenocarcinoma
T2aN1M0
IIB
7
Women
78
No
Squamous
T2aN2M0
IIIA
8
Women
67
No
Squamous
T2aN0M0
IB
9
Man
49
Yes
Squamous
T4N0M0
IIIA
10
Women
63
No
Adenocarcinoma
T4N1M0
IIIA
11
Man
81
Yes
Adenocarcinoma
T2aN2M0
IIIA
12
Man
60
Yes
Adenocarcinoma
T2N2M0
IIIA
13
Man
59
Yes
Adenocarcinoma
T2aN0M0
IB
14
Women
49
No
Adenocarcinoma
T2N2M0
IIIA
15
Women
74
No
Adenocarcinoma
T2aN0M0
IB
16
Man
55
Yes
Adenocarcinoma
T1cN0M0
IA
17
Women
64
No
Adenocarcinoma
T2aN2M0
IIIA
18
Man
79
No
Adenocarcinoma
T1bN0M0
IA
19
Man
69
Yes
Squamous
T3N1M0
IIIA
20
Man
49
Yes
Squamous
T1bN0M0
IA
21
Man
63
No
Adenocarcinoma
T1cN1M0
IIB
22
Man
54
Yes
Adenocarcinoma
T2N2M0
IIIA
23
Women
71
No
Adenocarcinoma
T2aN1M0
IIB
24
Man
47
No
Adenocarcinoma
T1bN0M0
IA
25
Man
61
Yes
Squamous
T1cN2M0
IIIA
26
Women
58
No
Squamous
T2aN0M0
IB

Cells culture

Human fetal lung fibroblast cell line HFL1 and lung cancer cell lines was purchased from ATCC (https://​www.​atcc.​org/​) and cultured in DMEM medium (Gibco, Waltham, MA, USA) supplemented with 10% fetal bovine serum (Gibco, Waltham, Massachusetts, USA), 100 U/mL penicillin and 100 μg/mL streptomycin at 37 °C humidified atmosphere with 5% CO2. Log-phase growing cells were collected for subsequent gene expression detection and RNA interference experiment.

RNA interference

oligo siRNA (GGTGGATCGTTCTCTACGT) designed to target CSTF2 (Cleavage Stimulation Factor Subunit 2) was synthesized by RiboBio Co., Ltd. (Guangzhou, China). CSTF2 oligo siRNA was transfected into H460 cells at a concentration of 50 nM using Lipofectamine RNAiMAX Reagent (Invitrogen, Carlsbad, CA, USA). Cells were collected 48 h later after transfection for subsequent experiments, and quantitative real-time PCR was used to validate the efficiency of the RNA interference. Scramble siRNA Oligo was used as a control.

Total RNA extraction and in vitro transcription-sequencing alternative polyadenylation sites (IVT-SAPAS) analysis

Total RNA were extracted from lung cancerous and paired adjacent normal tissues, or from cultured H460 cells using TRIzol reagent (Life Technologies, USA) according to the manufacturer’s protocol. The RNA samples were used to generate libraries for IVT-SAPAS analysis. The IVT-SAPAS was performed with the illumina HiSeq 2500 platform according to the manufacturer’s protocol [15]. Briefly, twelve libraries with distinct barcodes were pooled together and were sequenced with Hiseq 2500 with rapid run mode, and 20 dark cycles were taken and then 55 bp were further sequenced.

Analysis of APA sites

The raw reads from IVT-SAPAS analysis were mapped to the human genome (hg19) using Bowtie software [16], and internal priming was filtered by our in-house Perl scripts. Poly(A) sites of each sample were defined by clustering the unique mapped reads, and were then merged together across samples. The merged poly(A) sites were mapped to the 3′UTRs dataset constructed from UCSC known genes for further analysis. The expression levels of poly(A) sites were calculated by the clustered reads and scaled to the sample with the lowest number of raw reads.
To compare the 3′-UTR length across samples, we standardized the length by defining the longest 3′UTR as 1.0 and calculated the weighted mean of 3′-UTR length according to the reads and related position of multiple poly(A) sites for each gene. Genes with alternative poly(A) were identified by a test of linear trend with significant P-values paired to a false discovery rate with cutoff of 1% between the lung cancer tissue and paired para-carcinoma tissue. We denoted the 3′-UTR length of each gene identified in paired non-carcinoma tissue as 1 and that in cancerous tissue as 2, and used Pearson correlation to test the relationship between two variables. A positive R-value indicates that the genes in the cancerous tissue showing longer tandem 3′UTRs versus the paired non-cancerous tissue, and a negative R-value indicates that the genes in the cancerous tissue showing shorter tandem 3′UTRs versus the paired non-cancerous tissue.
Functional annotation of the DEGs and APA switching genes was performed using the DAVID (The Database for Annotation, Visualization and Integrated Discovery) Bioinformatics Resources (http://​david.​abcc.​ncifcrf.​gov/​), and genes with detected 3′UTRs length change were categorized for their significant enrichment according to Biological Process GO terms and pathways, with normalization of the background model for all transcripts found in both lung cancer and para-carcinoma tissues.

Quantitative real-time PCR

Total RNA extracted from cells using TRIzol Reagent (Life Technologies, USA) was used for cDNA synthesis with using SuperScript® III Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA) and an oligo (dT) primer. 1.0 μg of total RNA was used for reverse transcription (RT) according to the manufacturer’s recommendations. qRT-PCR was performed in 10 μL of quantitative reaction mixtures containing 5 μL of SYBR Premix ExTaq (Takara, Japan), 0.4 μM each of forward and reverse primers, 1 μL cDNA, and nuclease-free water. The program used for qRT-PCR consisted of a denaturing cycle of 2 min at 95 °C, 45 cycles of PCR (95 °C for 10 s, 60 °C for 30 s) and a melting cycle of 60 °C for 15 s. The primer sequences is listed as below: CSTF2 qF 5′-TCGTTCTCTACGTTCTGTGTTCGTG-3′; CSTF2 qR 5′-ACCCTTTGGCTTTCCTGTCTCTCT-3′; β-actin 5′-qFGAGAAAATCTGGCACCACACCTT-3′; β-actin qR 5′-GCACAGCCTGGATAGCAACGTA-3′; The mRNA level of CSTF2 gene in H460 cells was normalized to β-actin mRNA level. Results of real-time PCR were analyzed using the 2−ΔCT method to compare the transcriptional levels of CSTF2 gene in lung cancer cells to that in normal control.

Western blotting analysis

Cells were collected and lysed in RIPA buffer containing protease and phosphatase inhibitors. 20 μg of cell lysates were used for western blot analyses using antibodies against CSTF2 and GAPDH (Cell Signaling Technology, USA). Simply, proteins were separated by SDS-PAGE and transferred to the polyvinylidene difluoride membrane. The membrane was then incubated with primary antibody at 4 °C overnight, followed by incubation of secondary antibody for one hour. Finally, the target proteins detected by chemiluminescence kit. The western blot signal was detected by ChemiDoc XRS + (BioRad, USA).

Results

Summary statistics of the IVT-SAPAS data in clinical samples

From a total of 41,773,101 average reads per each paired sample that were obtained from IVT-SAPAS analysis, we found an average read of 17,260,816 that meet the criteria for data analysis after data filtering, genome alignment and orientation filtering (Additional file 1: Table S1). Of them, 5,303,272 reads correspond to APA sites, with near 69.7% reads being mapped to the transcript of the UCSC ends database and Tian’s database, and 1.5% and 1.3% of the reads being mapped to the noncoding gene or 1 kb downstream of the UCSC canonical genes defined using the GENCODE gene loci, respectively (Fig. 1a). In addition, there were 5.5%, 15.6% and 1.7% of reads were mapped in the introns, 3′UTRs or coding sequences (CDSs), respectively.

Differentially expressed genes (DEGs) in NSCLC

We conducted a gene expression survey for lung cancer tissue versus paired non-carcinoma tissue by calculating the number of transcript reads. Based on this analysis, we identified a total of 14,030 genes with distinct difference of expression. Of them, 1439 (10.26%) genes showed up-regulated expression and 1364 (9.72%) genes showed down-regulated expression in lung cancerous tissue (Fig. 1b). KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis further revealed that the up-regulated genes in cancer tissues were enriched in signaling pathways primarily associated with cell cycle and biosynthesis of amino acids (Fig. 1c), and the down-regulated genes were enriched in pathways of neuroactive ligand-receptor interaction and cytokine–cytokine receptor interaction (Fig. 1d).

Identification of APA switching genes in NSCLC

Previous studies have demonstrated that highly proliferative cells or cancer cells often expressed substantial amounts of mRNA isoforms with shortened 3′UTRs [6, 17]. Studies also revealed that shortened 3′UTRs correlated with poor prognosis of cancer, including lung cancer [13, 18]. We thus performed a comparison analysis for the tandem 3′UTRs lengths of these identified genes. For this, we set up a standard of the 3′UTR length by designating the longest 3′UTR as 1.0 and calculated the 3′UTR length of each gene using weighted mean of 3′UTR length with multiple APA sites to reduce the variance of 3′UTR length. We detected shortened 3′UTR in collected cancer tissues from 96.2% (25/26) patients, as shown in Fig. 2a. We also performed a test of linear trend to determine the tandem 3′UTR length switching. Based on the statistical significance (FDR = 0.01, |r| ≥ 0.1), we identified total of 7639 genes with potential APA switching in 26 paired clinical samples. Of interest, we noticed that lung cancer cells tend to have shortened 3′UTRs of these identified genes (1855 genes showing shorten 3′UTR and 58 genes showing elongated 3′UTR). Additional file 1: Table S2 shows the gene numbers with identified APA switching for each patient.
To determine the significance of these APA site-switching events, we performed functional annotation using the web-accessible DAVID program. The analysis indicated that genes with shorten 3′UTR are enriched in signaling pathways such as mTOR signaling, ubiquitin mediated proteolysis and RNA degradation (Fig. 2b). With gene ontology (GO) enrichment analysis, we also identified the top 30 enriched genes with shorten 3′UTR determined in these clinical samples (Fig. 2c).

CSTF2 regulates 3′UTR shortening in NSCLC cell

To assess the potential mechanisms of 3′UTR shortening in human lung cancer, we examined the RNA expression of genes (Additional file 1: Table S3) that their encoding proteins may correlate to 3′UTR length editing. Of total 93 candidate genes, we found that 28 genes displayed significant changes of up-regulation and 5 genes of down-regulation. Our results also revealed that CSTF2 was one of the top genes with most significant up-regulation in cancerous tissues versus paired non-cancerous tissues (Fig. 3a and Additional file 1: Tables S3, S4). Of interest, we detected higher protein expression of CSTF2 in six NSCLC cancer cell lines versus normal lung HFL1 cell line. Of these established cancer cell lines, H460 cells showed highest expression level of CSTF2 (Fig. 3b). Our qRT-PCR analysis further confirmed the higher mRNA expression of CSTF2 in H460 cells when comparing to HFL1 cells (Fig. 3c). We further assess the expression pattern of CSTF2 in lung cancer samples in The Cancer Genome Atlas database (TCGA), and the results from 100 paired TCGA clinical samples showed near twofolds change of up-regulated CSTF2 expression in cancer cells versus normal lung cells, which is in consistence with the CSTF2 expression pattern of our clinical samples (Fig. 3d). We thus hypothesize that the CSTF2 gene may play a key role in regulation of 3′UTR length in lung cancer cells.
To test this, we used RNA interference to knock down the CSTF2 expression in H460 cells, and determined the APA site-switching events with IVT-SAPAS analysis. We observed near 80% knocking-down effect of siRNA on CSTF2 expression (Fig. 4a), and a total of 10,235 genes with significant change after siRNA transduction was detected in H460 cells. Of them, 5694 genes (55.63%) are with APA site-switching events, 269 genes (2.62%) show expression difference, and 78 genes (0.76%) show distinct change of 3′UTR length. Of note, the global comparison shows consistence of IVT-SAPAS reads for genes with APA site switching between data sets for the clinical samples and for H460 cells, however, significant differences are observed for genes with differential expression or with different 3′UTR in length, whereas more reads were detected with clinical sample set (Additional file 1: Table 5S). In addition, we noticed that the IVT-SAPAS reads from the clinical samples and H460 cells showed similar distribution pattern of poly(A) signals (6-nucleotides), which is consistent with the previously reported [15] and demonstrates the validity of the IVT-SAPAS analysis used in our study capturing poly(A) site (Fig. 4b).
In IVT-SAPAS assay for H460 set, we detected elongation of 3′UTR length for 60 genes in CSTF2-siRNA transducted cells (Fig. 4c). Of interest, we found that, of the 1855 genes with shorter 3′UTR length identified in human lung cancer tissues (Fig. 4d), 38 genes displayed elongation of 3′UTR length when CSTF2 expression was knocked down in H460 cells (Fig. 4e and Table 2). The functional annotation of these genes further revealed that eleven of these 38 overlapping genes can be annotated into signaling pathways of insulin signaling, lipid metabolism and MAPK signaling. For example, FGF2 (fibroblast growth factor 2, uc003iev.1), which shows 0.3 fold-change of down-regulation in cancer tissue (P-value = 1.85e−4), has been demonstrated to play vital roles in tumor angiogenesis and lymphangiogenesis of lung cancer [19, 20]; MAP4K4 (mitogen-activated protein kinase kinase kinase kinase 4, uc002tbc.2), which shows 1.2 fold-change of upregulation in cancer tissue (P-value = 0.037), contributes to cell proliferation, anchorage-independent growth and cancer cell migration of lung cancer [21]. Of interest, the analysis for the distributions of poly(A) reads showed switching of distal stop codon in clinical samples may indicate cancer cells prefer to use the shorten length of transcripts for both FGF2 and MAP4K4 when comparing to normal cells, and the knocking down of CSTF2 expression in H460 cells could lead to changes of transcript lengths of these genes according to the detected numbers and sites of poly(A) reads (Additional file 2: Fig. S1). These findings thus not only demonstrate the vital role of CSTF2 in regulation of 3′UTR length for cancer cell-associated genes, but also indicate a potential of CSTF2 or its protein family may also serve as oncogene(s) driving carcinogenesis of NSCLC.
Table 2
KEGG pathway analysis of 38 overlapping genes in si-CSTF2 cell line
UCSC ID
Gene name
KEGG_PATHWAY
uc001dlw.2
SH3-domain GRB2-like endophilin B1
hsa04144:Endocytosis
uc001kta.2
Beta-transducin repeat containing
hsa04114:Oocyte meiosis, hsa04120:Ubiquitin mediated proteolysis, hsa04310:Wnt signaling pathway, hsa04340:Hedgehog signaling pathway
uc002pew.2
Calmodulin 3 (phosphorylase kinase, delta); calmodulin 2 (phosphorylase kinase, delta); calmodulin 1 (phosphorylase kinase, delta)
hsa04020:Calcium signaling pathway, hsa04070:Phosphatidylinositol signaling system, hsa04114:Oocyte meiosis, hsa04270:Vascular smooth muscle contraction, hsa04720:Long-term potentiation, hsa04722:Neurotrophin signaling pathway, hsa04740:Olfactory transduction, hsa04910:Insulin signaling pathway, hsa04912:GnRH signaling pathway, hsa04916:Melanogenesis, hsa05010:Alzheimer’s disease, hsa05214:Glioma
uc003iev.1
Fibroblast growth factor 2 (basic)
hsa04010:MAPK signaling pathway, hsa04810:Regulation of actin cytoskeleton, hsa05200:Pathways in cancer, hsa05218:Melanoma
uc002tbc.2
Mitogen-activated protein kinase kinase kinase kinase 4
hsa04010:MAPK signaling pathway
uc003hzp.2
Phospholipase A2, group XIIA
hsa00564:Glycerophospholipid metabolism, hsa00565:Ether lipid metabolism, hsa00590:Arachidonic acid metabolism, hsa00591:Linoleic acid metabolism, hsa00592:alpha-Linolenic acid metabolism, hsa04010:MAPK signaling pathway, hsa04270:Vascular smooth muscle contraction, hsa04370:VEGF signaling pathway, hsa04664:Fc epsilon RI signaling pathway, hsa04730:Long-term depression, hsa04912:GnRH signaling pathway
uc003hbs.1
Phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase
hsa00230:Purine metabolism
uc002fuw.3
Platelet-activating factor acetylhydrolase, isoform Ib, subunit 1 (45 kDa)
hsa00565:Ether lipid metabolism
uc002jhg.2
Protein kinase, cAMP-dependent, regulatory, type I, alpha (tissue specific extinguisher 1)
hsa04210:Apoptosis, hsa04910:Insulin signaling pathway,
uc004czg.3
Pyruvate dehydrogenase (lipoamide) alpha 1
hsa00010:Glycolysis/Gluconeogenesis, hsa00020:Citrate cycle (TCA cycle), hsa00290:Valine, leucine and isoleucine biosynthesis, hsa00620:Pyruvate metabolism, hsa00650:Butanoate metabolism,
uc001xbo.2
Suppressor of cytokine signaling 4
hsa04630:Jak-STAT signaling pathway, hsa04910:Insulin signaling pathway, hsa04930:Type II diabetes mellitus

Discussion

In eukaryotic cells, polyadenylation, a process of adding poly(A) tails to of nearly every fully processed mRNA, is the last key step in mRNA maturation and has been suggested to play critical roles in virtually all aspects of a transcript’s life cycle such as mRNA synthesis, conferring mRNA stability, mRNA transportation from nucleus to the cytoplasm and promoting mRNA’s translational efficiency [2226]. The use of tandem APA sites located on the terminal exons often leads to tandem 3′UTRs with variable lengths, and this 3′UTR-APA event plays important roles in regulating the gene expression network and is globally regulated in response to changes in cell proliferation and differentiation [11].
Global 3′UTR regulation corresponding to the changes of cellular proliferation and differentiation status has been observed in cancer cells. Mayr et al. reported the results of using the 3′RACE assay for the change of APA on oncogene activation [6]. They found the genes with alternative isoforms can be detected in all the tested cancer cell lines (Cyclin D1, DICER1 and RAB10), or in at least a third of the samples (IMP-1, Cyclin D2 and FGF2), and shorter mRNAs were detectable and more prominent in these cancer cell lines compared to normal tissues. In this study, we found that 3′UTR shortening is a common event for cancer-related genes and shorter mRNAs are more frequently detected in tumor tissues compared to corresponding normal tissues. Of note, of the identified 1855 genes (FDR = 0.01) with a significant difference of the 3′UTR length that may link tandem 3′UTR length switching with the pathologic process of lung cancer, we detected alternative isoforms of Cyclin D1, DICER1, RAB10, Cyclin D2, FGF2 in all clinical cancer samples, and alternative isoform of IMP-1 in a remarkable portion of the samples (Additional file 3: Fig. S2). Consistently with Mayr’s study, these genes expressed a higher fraction of shorter APA isoforms in a majority of the cancer tissues comparing to the corresponding normal tissues (Additional file 1: Table S6). In addition to these findings, our results further revealed that these identified genes with shorten 3′UTR were enriched in signaling pathways of mTOR signaling, ubiquitin mediated proteolysis and RNA degradation. These results provide novel insights for the contribution of 3′UTR-APA site-switching events of cancer-related genes to cancer development and for development of novel therapeutic strategies of lung cancer.
We also performed the histological comparison of IVT-SAPAS reads for adenocarcinoma and squamous lung cancer with our data set of the clinical samples. Our results showed that 719 down-regulated and 1045 up-regulated genes were detected in both histological types of cancers. Of interest, 16 genes with APA shortness and only one gene with APA lengthen were detected in both adenocarcinoma and squamous lung cancer tissues (Additional file 4: Fig. S3 and Additional file 1: Table S7). These overlapped gene events may indicate the privilege of certain genes or profile of genes to be involved in the cancer development and disease progression regardless of the histological difference for NSCLC. It is needed to be indicated that, however, the initial results from the IVT-SAPAS data set with clinical samples showing the histological similarity of genes with APA switching for adenocarcinoma and squamous lung cancer needs to be further identified due to the limited number of clinical samples enrolled.
Our data also revealed the potential roles of polyadenylation processing protein, CSTF2, on the shortness of 3′UTR of these cancer-related genes. Processing at the 3′-end is directed by sequence elements in the pre-mRNA (cis elements) and requires a large number of protein factors that functionally and physically interacts each other between the termini of an mRNA. Currently, more than fourteen proteins have been identified in four multi-subunit protein complexes of human polyadenylation machinery for mRNA 3′-end processing, including binding of poly(A) binding protein (PABP), cleavage and polyadenylation specificity factor (CPSF), cleavage stimulation factor (CSTF), cleavage factors I (CF Im) and cleavage factors II (CF IIm) [27, 28]. CSTF is essential for the cleavage reaction [28, 29]. CSTF complex is composed of three subunits of molecular weights 50 (CSTF1), 64 (CSTF2), and 77 (CSTF13) kDa [30]. CSTF-64 (also known as CSTF2) was one of the first proteins identified, based on its strong and specific UV cross-linking to RNAs containing a functional poly(A) signal [31], within the 3′-end processing complex of pre-mRNA. CSTF-64 contains a conserved RNA recognition motif (RRM) RNA binding domain at its N-terminus, with the presence of a UU dinucleotide-specific binding site and highly mobilized protein: RNA interface which allows CstF-64 to form stable complexes with a wide range of GU-rich sequences [27, 31, 32]. Recent study has demonstrated that CstF64 is also important as a regulator for APA [33]. Our data present in this study showed that the expression of CSTF2 correlates to the shortening of 3′UTR of the differentially expressed genes in lung cancer, and the results from this study suggest a clinic potential of CSTF2 as a therapeutic target for lung cancer.

Conclusion

In summary, our data present here demonstrated that APA site-switching of 3′UTRs is prevalent in NSCLC, and APA-mediated regulation of gene expression may play important roles in development and progression of NSCLC. Our results also revealed that regulatory role of CSTF2, a polyadenylation processing protein, on the shortening of 3′UTR of these cancer-related genes, and a potential of CSTF2 as a therapeutic target for lung cancer.

Acknowledgements

Thanks to Dr. Fu Yonggui for his experimental and data help for this project.
This study was conducted under institutional approval from the local research ethical committee (the Internal Review and the Ethics Boards of “Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine”). Informed written consent was provided by all participants.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.CrossRef
2.
Zurück zum Zitat Lantuejoul S, et al. New WHO classification of lung adenocarcinoma and preneoplasia. Ann Pathol. 2016;36(1):5–14.CrossRef Lantuejoul S, et al. New WHO classification of lung adenocarcinoma and preneoplasia. Ann Pathol. 2016;36(1):5–14.CrossRef
3.
Zurück zum Zitat Molina JR, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94.CrossRef Molina JR, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94.CrossRef
4.
Zurück zum Zitat Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288–300.CrossRef Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288–300.CrossRef
5.
Zurück zum Zitat Rowley JD. Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer. 2001;1(3):245–50.CrossRef Rowley JD. Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer. 2001;1(3):245–50.CrossRef
6.
Zurück zum Zitat Mayr C, Bartel DP. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138(4):673–84.CrossRef Mayr C, Bartel DP. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138(4):673–84.CrossRef
7.
Zurück zum Zitat Proudfoot NJ. Ending the message: poly(A) signals then and now. Genes Dev. 2011;25(17):1770–82.CrossRef Proudfoot NJ. Ending the message: poly(A) signals then and now. Genes Dev. 2011;25(17):1770–82.CrossRef
8.
Zurück zum Zitat Chan S, Choi EA, Shi Y. Pre-mRNA 3′-end processing complex assembly and function. Wiley Interdiscip Rev RNA. 2011;2(3):321–35.CrossRef Chan S, Choi EA, Shi Y. Pre-mRNA 3′-end processing complex assembly and function. Wiley Interdiscip Rev RNA. 2011;2(3):321–35.CrossRef
9.
Zurück zum Zitat Danckwardt S, Hentze MW, Kulozik AE. 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J. 2008;27(3):482–98.CrossRef Danckwardt S, Hentze MW, Kulozik AE. 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J. 2008;27(3):482–98.CrossRef
10.
Zurück zum Zitat Yeh HS, Yong J. Alternative polyadenylation of mRNAs: 3′-untranslated region matters in gene expression. Mol Cells. 2016;39(4):281–5.CrossRef Yeh HS, Yong J. Alternative polyadenylation of mRNAs: 3′-untranslated region matters in gene expression. Mol Cells. 2016;39(4):281–5.CrossRef
11.
Zurück zum Zitat Chen W, et al. Alternative polyadenylation: methods, findings, and impacts. Genom Proteom Bioinf. 2017;15(5):287–300.CrossRef Chen W, et al. Alternative polyadenylation: methods, findings, and impacts. Genom Proteom Bioinf. 2017;15(5):287–300.CrossRef
12.
Zurück zum Zitat Fu Y, et al. Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res. 2011;21(5):741–7.CrossRef Fu Y, et al. Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res. 2011;21(5):741–7.CrossRef
13.
Zurück zum Zitat Lembo A, Di Cunto F, Provero P. Shortening of 3′UTRs correlates with poor prognosis in breast and lung cancer. PLoS ONE. 2012;7(2):e31129.CrossRef Lembo A, Di Cunto F, Provero P. Shortening of 3′UTRs correlates with poor prognosis in breast and lung cancer. PLoS ONE. 2012;7(2):e31129.CrossRef
14.
Zurück zum Zitat Ichinose J, et al. Alternative polyadenylation is associated with lower expression of PABPN1 and poor prognosis in non-small cell lung cancer. Cancer Sci. 2014;105(9):1135–41.CrossRef Ichinose J, et al. Alternative polyadenylation is associated with lower expression of PABPN1 and poor prognosis in non-small cell lung cancer. Cancer Sci. 2014;105(9):1135–41.CrossRef
15.
Zurück zum Zitat Fu Y, et al. IVT-SAPAS: low-input and rapid method for sequencing alternative polyadenylation sites. PLoS ONE. 2015;10(12):e0145477.CrossRef Fu Y, et al. IVT-SAPAS: low-input and rapid method for sequencing alternative polyadenylation sites. PLoS ONE. 2015;10(12):e0145477.CrossRef
16.
Zurück zum Zitat Langmead B, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.CrossRef Langmead B, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.CrossRef
17.
Zurück zum Zitat Matoulkova E, et al. The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012;9(5):563–76.CrossRef Matoulkova E, et al. The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012;9(5):563–76.CrossRef
18.
Zurück zum Zitat Erson-Bensan AE, Can T. Alternative polyadenylation: another foe in cancer. Mol Cancer Res. 2016;14(6):507–17.CrossRef Erson-Bensan AE, Can T. Alternative polyadenylation: another foe in cancer. Mol Cancer Res. 2016;14(6):507–17.CrossRef
19.
Zurück zum Zitat Kowalczuk O, et al. Lymphatics-associated genes are downregulated at transcription level in non-small cell lung cancer. Oncol Lett. 2018;15(5):6752–62.PubMedPubMedCentral Kowalczuk O, et al. Lymphatics-associated genes are downregulated at transcription level in non-small cell lung cancer. Oncol Lett. 2018;15(5):6752–62.PubMedPubMedCentral
20.
Zurück zum Zitat Ugorski M, Dziegiel P, Suchanski J. Podoplanin—a small glycoprotein with many faces. Am J Cancer Res. 2016;6(2):370–86.PubMedPubMedCentral Ugorski M, Dziegiel P, Suchanski J. Podoplanin—a small glycoprotein with many faces. Am J Cancer Res. 2016;6(2):370–86.PubMedPubMedCentral
21.
Zurück zum Zitat Gao X, et al. MAP4K4 is a novel MAPK/ERK pathway regulator required for lung adenocarcinoma maintenance. Mol Oncol. 2017;11(6):628–39.CrossRef Gao X, et al. MAP4K4 is a novel MAPK/ERK pathway regulator required for lung adenocarcinoma maintenance. Mol Oncol. 2017;11(6):628–39.CrossRef
22.
Zurück zum Zitat Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res. 2010;38(9):2757–74.CrossRef Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res. 2010;38(9):2757–74.CrossRef
23.
Zurück zum Zitat Natalizio BJ, Wente SR. Postage for the messenger: designating routes for nuclear mRNA export. Trends Cell Biol. 2013;23(8):365–73.CrossRef Natalizio BJ, Wente SR. Postage for the messenger: designating routes for nuclear mRNA export. Trends Cell Biol. 2013;23(8):365–73.CrossRef
24.
Zurück zum Zitat Jalkanen AL, Coleman SJ, Wilusz J. Determinants and implications of mRNA poly(A) tail size—does this protein make my tail look big? Semin Cell Dev Biol. 2014;34:24–32.CrossRef Jalkanen AL, Coleman SJ, Wilusz J. Determinants and implications of mRNA poly(A) tail size—does this protein make my tail look big? Semin Cell Dev Biol. 2014;34:24–32.CrossRef
25.
Zurück zum Zitat Kumar GR, Glaunsinger BA. Nuclear import of cytoplasmic poly(A) binding protein restricts gene expression via hyperadenylation and nuclear retention of mRNA. Mol Cell Biol. 2010;30(21):4996–5008.CrossRef Kumar GR, Glaunsinger BA. Nuclear import of cytoplasmic poly(A) binding protein restricts gene expression via hyperadenylation and nuclear retention of mRNA. Mol Cell Biol. 2010;30(21):4996–5008.CrossRef
26.
Zurück zum Zitat Bresson SM, Conrad NK. The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet. 2013;9(10):e1003893.CrossRef Bresson SM, Conrad NK. The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet. 2013;9(10):e1003893.CrossRef
27.
Zurück zum Zitat Mandel CR, Bai Y, Tong L. Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci. 2008;65(7–8):1099–122.CrossRef Mandel CR, Bai Y, Tong L. Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci. 2008;65(7–8):1099–122.CrossRef
28.
Zurück zum Zitat Zhao J, Hyman L, Moore C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev. 1999;63(2):405–45.PubMedPubMedCentral Zhao J, Hyman L, Moore C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev. 1999;63(2):405–45.PubMedPubMedCentral
29.
Zurück zum Zitat Wilusz J, Shenk T. A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protein-RNA cross-linking and functionally substitutes for the downstream element of the polyadenylation signal. Mol Cell Biol. 1990;10(12):6397–407.CrossRef Wilusz J, Shenk T. A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protein-RNA cross-linking and functionally substitutes for the downstream element of the polyadenylation signal. Mol Cell Biol. 1990;10(12):6397–407.CrossRef
30.
Zurück zum Zitat Takagaki Y, et al. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 1990;4(12A):2112–20.CrossRef Takagaki Y, et al. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 1990;4(12A):2112–20.CrossRef
31.
Zurück zum Zitat Wilusz J, Shenk T. A 64 kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif. Cell. 1988;52(2):221–8.CrossRef Wilusz J, Shenk T. A 64 kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif. Cell. 1988;52(2):221–8.CrossRef
32.
Zurück zum Zitat Takagaki Y, Manley JL. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol. 2000;20(5):1515–25.CrossRef Takagaki Y, Manley JL. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol. 2000;20(5):1515–25.CrossRef
33.
Zurück zum Zitat Yao C, et al. Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. Proc Natl Acad Sci USA. 2012;109(46):18773–8.CrossRef Yao C, et al. Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. Proc Natl Acad Sci USA. 2012;109(46):18773–8.CrossRef
Metadaten
Titel
Genome-wide profiling reveals alternative polyadenylation of mRNA in human non-small cell lung cancer
verfasst von
Shirong Zhang
Xiaochen Zhang
Wei Lei
Jiafeng Liang
Yasi Xu
Hailiang Liu
Shenglin Ma
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2019
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-1986-0

Weitere Artikel der Ausgabe 1/2019

Journal of Translational Medicine 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.