Skip to main content
Erschienen in: Malaria Journal 1/2021

Open Access 01.12.2021 | Research

Genomic analysis reveals independent evolution of Plasmodium falciparum populations in Ethiopia

verfasst von: Deriba Abera, Caleb K. Kibet, Teshome Degefa, Lucas Amenga-Etego, Joel L. Bargul, Lemu Golassa

Erschienen in: Malaria Journal | Ausgabe 1/2021

Abstract

Background

Plasmodium falciparum parasite populations in Ethiopia have been experiencing local selective pressures from drugs and immunity, leading to evolutionary adaptation. However, there was a paucity of data on genomic characterization and evolutionary adaptations of P. falciparum isolates from the central area of Ethiopia.

Methods

Whole-genome analysis of 25 P. falciparum isolates from central Ethiopia, specifically from West Arsi, were studied to determine their genetic diversity, population structures, and signatures of selection in known drug resistance alleles against global isolates from Cambodia, Thailand, DR Congo, and Malawi.

Results

A total of 18,517 high-quality single-nucleotide polymorphisms (SNPs) were identified in Ethiopian P. falciparum isolates. About 84% of the Ethiopian P. falciparum isolates had a FWS value > 0.95 showing a dominant single genotype infection in most isolates at the time of collection with little potential for out-crossing as expected in areas with low transmission intensity. Within-host diversity of Ethiopian infections was significantly different from East African (p < 0.001), but not Southeast Asian infections (P > 0.05). A significant population structure has been observed by PCA and population differentiation between Ethiopian parasites and East African (Fst ~ 10%) and Southeast Asian populations (Fst ~ 18%), suggesting limited gene flow and the independent evolution of the Ethiopian parasite population. Moreover, a total of 125 genes under balancing selection was found that include ama1, trap, eba175, and lsa3, previously identified as targets of human host immunity. Recent directional selection analysis using integrated standardized haplotype score (IHS) did not detect any selection signatures in the Pfcrt, Pfdhfr, Pfdhps, Pfmdr1, and PfK13 genes. However, known drug resistance-conferring mutations analysis showed that at least one SNP marker was fixed in these genes, but not in Pfdhps and PfK13.

Conclusion

Plasmodium falciparum populations in the central region of Ethiopia was structurally diverged from both Southeast Asian and other East African populations. Malaria infections in Ethiopia had low within-host diversity, and parasites carry fixed chloroquine resistance markers despite the withdrawal of this drug for the treatment of P. falciparum.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12936-021-03660-y.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ACT
Artemisinin-based combination therapy
AL
Artemether–lumefantrine
ART
Artemisinin
CQ
Chloroquine
FWS
Within infection diversity fixation index
FST
Population differentiation fixation index
HW
Heterozygosity within infection
HS
Heterozygosity within a local population
IHS
Standardized integrated haplotype score
IRS
Indoor Residual Spraying
ITN
Insecticide-treated nets
Pfcrt
Plasmodium falciparum chloroquine
Pfdhfr
Plasmodium falciparum dihydrofolatereductase
Pfdhps
Plasmodium falciparum pteroate synthase
PfK13
Plasmodium falciparum kelch-13
SNP
Single nucleotide polymorphisms
SP
Sulfadoxine/pyrimethamine

Background

Plasmodium falciparum malaria remains one of the major public health problems worldwide accounting for 228 million cases in 2018 compared to 231 million in 2017, while the number of deaths due to malaria decreased by just 2.5%, from 415,000 to 405,000 during the same period [1]. Sub-Saharan Africa (sSA) still accounts for 94% of global death. In Ethiopia, more than 75% of the total area is malarious, and P. falciparum and Plasmodium vivax co-exist [2] making malaria control more complicated than in other African countries.
Across malaria-endemic regions, large-scale deployment of anti-malarial drugs has led to the emergence of drug resistance to chloroquine (CQ) and sulfadoxine/pyrimethamine (SP) antifolate drugs [35]. Like many other countries, Ethiopia has switched from CQ to SP in 1998 and from SP to artemether–lumefantrine (AL) in 2004 [6] for the treatment of uncomplicated P. falciparum malaria in response to the development of parasite resistance. However, CQ remained the first-line drug for P. vivax treatment in the country [7], leading to a continued selection of CQ-resistance markers in P. falciparum as the result of indirect pressure from CQ and the presence of mixed infections of P. falciparum and P. vivax. Similar to CQ and SP, P. falciparum developed resistance to AL first at the Thai-Cambodian border [8] and recently in East Africa [9]. The rapid development of resistance in P. falciparum to series of the first-line anti-malarial hinders malaria prevention, control, and elimination efforts.
Anti-malarial drugs are known to pose tremendous selective pressure on P. falciparum leading to the worldwide spread of resistant parasites [10]. It was well noted that P. falciparum resistance to the two conventional anti-malarial drugs, CQ and SP, has resulted in increased malaria morbidity and mortality across endemic settings. Apart from increased morbidity and mortality, selective sweeps of drug resistance mutations have reduced levels of polymorphism in P. falciparum as these resistant and sensitive strains continue to recombine in mosquitoes [11, 12], with perhaps a reduced diversity around the selected loci. However, the greatly reduced level of diversity across the entire P. falciparum genome most likely resulted from a severe population bottleneck as has been observed in gorilla-to-human cross-species transmission [13].
Based on the analysis made on 12 strains collected from different countries in Africa and Asia, the average diversity of P. falciparum at fourfold degenerate sites was estimated to be 8 × 10−4 per site [13]. However, published mutation rates for P. falciparum were in the range of 1–10 × 10−9 mutations per site per replication cycle [14, 15]. Depending on P. falciparum life cycle and assuming varying lengths of time that the parasites spend either in the vector or in the mammalian host, the parasites are likely to undergo at least 200 replication cycles per year suggesting that the observed level of genetic diversity in P. falciparum could have readily accumulated within the past 10,000 years [10].
Plasmodium falciparum parasite change and select its new genetic variants owing to drug exposure to cause disease and overcome challenges from host immunity and therapeutic interventions [16]. Indeed, high pressure from immunity and drugs are known to select adaptive parasite strains that maintain transmission [17] and, therefore, many P. falciparum genes encoding immune and drug targets are under natural selection and show signatures of balancing or directional selection [4, 1721]. This selection may vary due to differences in innate susceptibility of human populations, variations in ecological transmission, resulting in varying degrees of acquired immunity and/or drug pressure. Malaria parasites from low and high endemic regions have a distinct opportunity for transmission and host acquired immune responses [22]. For effective management of malaria control and intervention strategies, it is important to determine genetic variation patterns due to parasite adaptation to host environments and drug interventions. Balancing selection brings the favoured alleles of parasites to an intermediate equilibrium where they are maintained as genetic polymorphisms, while the directional selection forces cause the parasite’s genetic variants to increase in frequency and facilitate the occurrence of selective sweeps around the affected loci [23].
Plasmodium falciparum population genomics has been highly studied in West African populations and showed signatures of balancing selection on multiple candidate vaccine antigens and strong directional selection around known drug resistance genes [19, 24]. In contrast, there is little information about the genomic variations of P. falciparum populations in the horn of Africa, including Ethiopia, where P. falciparum and P. vivax malaria co-exist and are heterogeneously distributed. A recent study reported P. falciparum populations in the horn of Africa, specifically in Ethiopia, are unique and structurally diverged from other West, East, and central African P. falciparum populations [25]. These parasite populations share a chunk of genes with other sub-Saharan African P. falciparum populations across drug and immune targets and facilitate the spread of drug-resistant strains [25]. These studies call for in-depth analysis of Ethiopian parasite genomes to deepen understanding of genome diversity and natural selection in Ethiopia’s unique human populations with co-species transmission dynamics.
Understanding the population genetic diversity of P. falciparum strains circulating in the specific region of central Ethiopia is very important to monitor the effectiveness of control schemes and provide baseline information for making informed decisions by the national malaria control programme [26]. This study aimed to characterize the P. falciparum populations in West Arsi, in central Ethiopia, using whole-genome analysis of data generated by Illumina next-generation sequencing.

Methods

Study area and population

The study was conducted in West Arsi, Oromia (07′ 17′′ 34.2 S, 038′ 21″ 46.3 W) located about 251 km from Addis Ababa, Ethiopia. This region with distinct wet and dry seasons has an altitude of about 1500–2300 m above sea level with the human population of 176,671. The inhabitants of this malarious region have high levels of poverty worsened by the malaria diseases caused predominantly by P. falciparum and P. vivax with a seasonal and unstable pattern of transmission [7].

Sample collection and processing

Venous blood (2–5 mL) was collected from July 2012 to December 2013 from consented P. falciparum malaria patients following standard procedures. Sequencing of 34 P. falciparum samples from leukocyte-depleted infected whole blood was done as described by Auburn et al. [27], at the Welcome Sanger Institute as part of the MalariaGEN P. falciparum Community Project (www.​malariagen.​net/​projects). Freely available P. falciparum sequence data were accessed via the Pf3K project (https://​www.​malariagen.​net/​data/​pf3k-5) for Southeast Asian and East African samples. Among East Africa, samples are available only in DR Congo and Malawi from East Africa and randomly took Cambodia and Thailand. Sample collection site with the number of samples greater or equal to Ethiopian samples with closer/similar P. falciparum samples collection year to Ethiopian sample were randomly selected. Then, 50 samples were randomly selected from each country.
Short sequence reads were generated on the IlluminaHiSeq platform and aligned to Pf3D7 reference (version 3) by burrows-wheeler-aligners (BWA). SNP calling was done following a customized genome analysis tool kit (GATK) pipeline. Each sample was genotyped for polymorphic coding SNPs across the genome, ensuring a minimum of 5× paired-end coverage across each variant per sample. Polymorphic sites within hyper-variable, telomeric, and repetitive sequence regions were excluded. Biallelic high-quality SNPs with mapping quality (MQ) > 20 and Variant Quality Score (VQSLOD) ≥ 3 in the core region loci with a minor allele frequency of at least 2% and individual sample with less than 10% missing data and SNP-site missing less than 10% across the isolate was extracted and used for downstream analysis. After quality filtering, 46, 50, 25, 50, 49 samples of Cambodia, DR Congo, Ethiopia, Malawi, and Thailand were left, respectively.

Analysis of population genetic diversity and within-host infection diversity

The genome-wide FWS (inbreeding coefficient within a population) metric was used to calculate within-host diversity as described by Manske et al. [21]. To derive FWS (= 1 − HW/HS), within isolate, expected heterozygosity (HW) was calculated from the relative allele frequencies for all genic SNPs, averaged across the genome and compared with the heterozygosity of local population (HS). FWS value ranged from zero to one, where zero indicates high diversity of infection, and one represents a single infection within the sample as compared to local population diversity. For this analysis, individual alleles with coverage of less than < 5 reads and positions with total coverage of < 20 reads were classified as undermined (missing). Isolates with greater than > 10% missing SNP data and SNPs with > 10% missing isolate data were discarded. Isolates with FWS scores of > 0.95 were classified as single predominant genotype infections.

Population structure and admixture analysis

Principal component analysis (PCA) was used to estimate population structure using the glPCA function in the open-source R statistical software version 3.6.2. The first 10 principal components axis (PCs) were calculated and the first three PCs which explained the majority of the variation in the data were retained. The data was thinned downed by pruning SNPs with pairwise linkage disequilibrium (LD) by r2 greater than 0.05 for determining the PCs. The pruned SNP loci employed in the glPCA function was used to calculate an allele sharing matrix in custom Rscripts. This function use variance between and within groups to determine population genetic structure. A discriminant analysis of principal components (DAPC) [28] was used to transform the PCA data, and perform discriminant analysis on the retained principal components using the adegenet package in the R software version 3.6.2. Population admixture was determined based on spatial modelling of allele sharing among geographical coordinates of sampling sites. DAPC determines ancestry proportions and membership probability modelled on genetic variation across space to determine admixtures as described by Jombart et al. [28].

Allele frequency and differentiation analysis

Analyses of allele frequency distributions between-population FST values [29] were calculated using Vcftools or hierfstat package from adegenet in Rafter excluding SNPs with greater than 10% missing data. For FST analysis, missing data were excluded on the SNP basis with the size of each population corrected to account for FST value difference due to population size variation.

Detection of signatures of natural selection

Within-population Tajima’s D index [30] was calculated using Vcf tools. Tajima D values were determined for each SNP and the average value for each gene was calculated. Genes with at least five SNP and positive Tajima D values > 1 were considered as genes under balancing selection.
The standardized integrated haplotype score (IHS) analysis was used to identify positive directional selection signatures by using phased SNP data with allele frequency > 5%. IHS was determined using the rehh package in R software with default parameters [31] after imputing missing SNP data using Beagle version 5.2. The |IHS| > 2.5 (top 1% of the expected distribution) was used as cut off value [32] to report genes under recent directional selection as reported for genome analysis of West African P. falciparum [17].

Results

Sequencing of P. falciparum and analysis of allele frequency

High-quality sequence data obtained from 25 P. falciparum clinical isolates (Additional file 1) collected from the West Arsi of Ethiopia enabled the identification of 672,956 biallelic SNPs with less than 10% missing SNPs data and < 10% sample missing data in the individual isolate. All isolates had 95.95% (645,715/672,956) SNPs call. Sequences from the intergenic regions had lower read coverage compared to those sequences in the coding regions, and as a result, 78.92% (531,120/672,956) of all SNPs called were located within genes. Of 5058 genes analysed, 3370 genes had at least one SNP (Table 1, Additional file 2: Fig. S1A). About 18,517 SNPs were polymorphic marker in at least one sample in Ethiopian (n = 25) samples of which 43.4% (8037/18,517) were non-synonymous coding SNPs, 22.8% (4222/18,517) synonymous coding SNPs, 26.6% (4932/18,517) in intergenic regions, 3.6% (666/18,517) other intragenic regions and 3.5% (656/18,517) SNPs in intron region. Similarly, P. falciparum populations from Cambodia (n = 46), DR Congo (n = 50), Malawi (n = 50), and Thailand (n = 49) had 32,854, 68,476, 79,250 and 30,427 biallelic polymorphic SNPs marker in at least one sample, respectively (Table 1, Additional file 2: Fig. S1B). The proportion of non-synonymous coding to synonymous coding and the intragenic to intergenic SNPs were ~ 2 or above in all populations (Table 1).
Table 1
Distribution of polymorphic SNP marker effects and their relative proportion in each P. falciparum population
Country of origin
Non-synonymous coding
Synonymous coding
Intergenic
Intron
Other intragenic
Proportion of non-synonymous to synonymous coding
Proportion of intragenic to intergenic
Total
SNP in Cambodia
13,271
6063
11,059
1494
806
2.19
1.96
32,693
SNP in DR Congo
29,762
14,450
19,685
3034
1255
2.06
2.46
68,186
SNP in Ethiopia
8037
4226
4932
656
666
1.90
2.75
18,517
SNP in Malawi
31,756
15,623
26,538
3608
1384
2.03
1.97
78,909
SNP in Thailand
12,194
5489
10,466
1342
792
2.22
1.89
30,283
In general, all populations had a high percentage of non-synonymous coding SNPs at polymorphic marker consistent with previous findings [17]. SNPs with minor allele frequency (MAF) < 5% were common in all analysed P. falciparum populations following the exclusion of monomorphic SNPs in each population. Further, SNPs with minor allele frequency of < 5% occurred more frequently in samples from Malawi than in Ethiopian isolates (Additional file 2: Fig. S2).

Genomic diversity of P. falciparum infections

FWS scores ranged from 0.837 to 0.997 (mean = 0.97, median = 0.99) for Ethiopian P. falciparum infections whereas the FWS values in Cambodia ranged from 0.702 to 0.999 (mean = 0.962, median = 0.995), from 0.483 to 0.998 (mean = 0.94, median = 0.994) in Thailand, from 0.321 to 0.998 (mean = 0.94, median = 0.994) in DR Congo and from 0.194 to 0.997 (mean = 0.747, median = 0.762) in Malawi (Fig. 1; Additional file 3).
The FWS value of > 0.95 suggests that the individual samples predominantly contained a single genotype and could have other additional genotypes in lower proportions. In this study, FWS values of > 0.95 were observed in 84%, 79.6%, 78%, 50%, and 36% of samples from Ethiopia, Thailand, Cambodia, DR Congo, and Malawi, respectively.
The mean FWS scores of the Ethiopian P. falciparum population were not significantly different from Cambodia’s (Welch two Sample t-test, P = 0.42) and Thailand’s (Welch two-sample t-test, p = 0.083) at 95% confidence intervals. However, mean FWS was significantly higher in Ethiopia compared to DR Congo (Welch two-sample t-test, p = 5.603e−06) and Malawi (Welch two-sample t-test, p = 3.242e−08) at 95% confidence intervals.

Population structure and admixtures

Analysis using PCA revealed the presence of four clear major population groups of isolates, which were coincident with their geographical origins (Fig. 2a–c). Similarly, the findings from admixture analysis were consistent with the PCA clustering. The isolates from the three regions were distinguished. This admixture analysis showed that four major components could be differentiated with a cluster value of K = 5. Multiple parasite subpopulations were observed in Malawi and DR Congo parasite populations suggestive of gene flow between these two populations (Fig. 3). There was no detectable gene flow between the isolates from Ethiopia and East African or Southeast Asia.
The clustering of Ethiopian P. falciparum isolates was consistent with the fixation index (FST) values with or without correcting for sample size. The FST values of Ethiopian isolates versus those from the two other East African regions (DR Congo and Malawi) ranged from 0.08 to 0.09, while the FST value of Ethiopian P. falciparum versus the two southeast Asian regions (Thailand and Cambodia) was 0.18 (Table 2).
Table 2
Pairwise population divergence (measured by FST) among P. falciparum populations
Country
Cambodia
DR Congo
Ethiopia
Malawi
Thailand
Cambodia
0
0.16
0.18
0.17
0.06
DR Congo
0.16
0
0.08
0.02
0.16
Ethiopia
0.18
0.08
0
0.09
0.18
Malawi
0.17
0.02
0.09
0
0.17
Thailand
0.06
0.16
0.18
0.17
0
Ethiopian P. falciparum highly diverged from both Southeast Asian and East African P. falciparum populations

Signatures of selection in the P. falciparum isolates

The Ethiopian isolates had the average Tajima’s D value of 0.18 across the entire genome (one sample t-test, p < 2 × 10–16). 1,450 genes had at least one SNP with Tajima D value > 1 of which 125 genes had at least five SNPs with Tajima D values > 1 of which 125 genes had at least five SNPs with Tajima D values > 1 (Additional file 4). These genes include apical membrane antigen-1 (ama1), erythrocyte binding antigen-175 (eba175), merozoites surface protein-1 (msp1), thrombospondin-related anonymous protein (trap), duffy binding like merozoites surface protein (dblmsp), and cytoadherence linked asexual protein 2 (clag2), that were previously reported for the balancing selection [24, 33].
The standardized integrated haplotype homozygosity score (IHS) was applied to investigate genome-wide evidence for recent positive directional selection due to drug pressure, immune impact, or other mechanisms. Using |IHS| score of > 2.5 (top 1% of the expected distribution) as a threshold for hits, 36 genes with at least one SNP that could be under significant positive selection were identified, and out of these, 15 genes had at least two SNPs (Table 3).
Table 3
Genes with at least two SNPs that had a recent positive directional selection in P. falciparum of Ethiopia, identified using the integrated haplotype score at a significance threshold of P < 0.01
Chromosomes
Number of SNPs
Genes name or ID
Product description
1
9
PF3D7_0104100
Conserved Plasmodium membrane protein, unknown function
1
3
PF3D7_0113600
Surface-associated interspersed protein 1.2 (SURFIN 1.2)
4
2
PF3D7_0424300
Erythrocyte binding antigen-165
4
14
SURF4.2
Surface-associated interspersed protein 4.2 (SURFIN 4.2)
4
5
PF3D7_0425200
Plasmodium exported protein (hyp15), unknown function
4
4
PF3D7_0425250
Plasmodium exported protein (PHIST), unknown function
7
5
PF3D7_0713900
Conserved Plasmodium protein, unknown function
7
3
CRMP2
Cysteine repeat modular protein 2
8
3
CLAG8
Cytoadherence linked asexual protein 8
10
2
PF3D7_1004800
ADP/ATP carrier protein, putative
12
2
PF3D7_1201400
Plasmodium exported protein, unknown function
13
7
PF3D7_1301800
Surface-associated interspersed protein 13.1 (SURFIN 13.1)
13
3
PF3D7_1308400
Conserved Plasmodium protein, unknown function
14
2
PF3D7_1434500
Dynein-related AAA-type ATPase, putative
14
2
PF3D7_1477500
Plasmodium exported protein (PHISTb), unknown function
SNPs and ID stand for single nucleotide polymorphisms and gene identification numbers, respectively
Thirteen (13) out of the above 15 genes under positive directional selection showed both positive balancing and directional selections (Table 4) and these genes include the vaccine candidate gene SURF4.2 on chromosome 4 and CLAG8 (cytoadherence-linked asexual protein 8) on chromosome 8 [34]. Interestingly, attempts to detect selection signals in drug resistance genes, such as Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps were unsuccessful. The reason could be that IHS may not be suitable for detecting positive selection for those SNPs that have reached or are near fixation in the local P. falciparum population [32].
Table 4
Genes under both recent positive directional selection and positive balancing selections in Ethiopian P. falciparum populations
Chromosomes
Gene name/ID
Product description
1
PF3D7_0104100
Conserved Plasmodium membrane protein, unknown function
1
PF3D7_0113600
Surface-associated interspersed protein 1.2 (SURFIN 1.2)
4
PF3D7_0424300
Erythrocyte binding antigen-165, pseudogene
4
SURF4.2
Surface-associated interspersed protein 4.2 (SURFIN 4.2)
4
PF3D7_0425200
Plasmodium exported protein (hyp15), unknown function
4
PF3D7_0425250
Plasmodium exported protein (PHIST), unknown function
7
PF3D7_0713900
Conserved Plasmodium protein, unknown function
8
CLAG8
Cytoadherence linked asexual protein 8
10
PF3D7_1004800
ADP/ATP carrier protein, putative
12
PF3D7_1201400
Plasmodium exported protein, unknown function
13
PF3D7_1301800
Surface-associated interspersed protein 13.1 (SURFIN 13.1)
13
PF3D7_1308400
Conserved Plasmodium protein, unknown function
14
PF3D7_1434500
Dynein-related AAA-type ATPase, putative
ID stands for a gene identification number

Prevalence of mutations conferring anti-malarial drug resistance in P. falciparum

Table 5 shows inter-population differences in the prevalence of drug resistance genes observed among the P. falciparum global datasets analysed. In tandem with previous studies [20, 35] that suggest temporal differences in the geographical distribution of anti-malarial drug resistance mutations, in this study CQ-resistance alleles (Pfcrt-K76T, Pfcrt-A220S, and Pfcrt-Q271E) were fixed in Ethiopia, Cambodia, and Thailand, regions where malaria transmission rates are comparably low. In contrast, the prevalence of these same alleles was 0% in Malawi and ranged from 66 to 72% in DR Congo.
Table 5
Drug resistance-conferring allele’s frequency across the 5 P. falciparum populations
Genes
Chromosome
Position
Mutation site
Ethiopia
Cambodia
DR Congo
Malawi
Thailand
DHFR
4
748,577
I164L
0
0.5
0
0
0.84
DHFR
4
748,410
S108N
0
1
1
1
1
DHFR
4
748,262
C59R
0.86
1
0.86
0.99
1
DHFR
4
748,239
N51I
1
0.95
1
1
0.95
MDR1
5
961,625
D1246Y
0
0
0.17
0
0
MDR1
5
958,145
N86Y
0.14
0
0.48
0.03
0
MDR1
5
961,566
F1226Y
0
0.04
0
0
0.59
MDR1
5
958,440
Y184F
1
0.58
0.32
0.35
0.06
CRT
7
405,600
I356T
0
0.52
0.27
0
1
CRT
7
405,362
N326S
0.98
0.51
0
0
1
CRT
7
405,838
R371I
0
0.8
0.71
0
1
CRT
7
404,407
A220S
1
1
0.663
0
1
CRT
7
403,625
K76T
1
1
0.66
0
1
CRT
7
404,836
Q271E
1
1
0.7143
0
1
DHPS
8
549,685
G437A
0.08
0.13
0.08
0.01
0
DHPS
8
549,995
K540N
0
0.4
0
0
0.03
DHPS
8
549,681
S436A
0
0.2
0.11
0.02
0.17
DHPS
8
550,117
A581G
0.02
0.4
0.03
0.02
0.82
K13
13
1,726,432
K189T
0.2
0
0.17
0.13
0
K13
13
1,725,259
C580Y
0
0.36
0
0
0.26
Similarly, drug resistance mutations in Pfmdr1 (Pfmdr1-N86Y and Pfmdr1-Y184F) were also variable among populations. For instance, the Ethiopian parasite population showed the presence of 14% Pfmdr1-N86Y and 100% Pfmdr1-Y184F gene mutations, whereas Pfmdr1-N86Ywas detected in 48% of DR Congo isolates and in 3% of Malawi’s. Also, the Pfmdr1-Y184F drug resistance marker was detected in 58% of the P. falciparum population in Cambodia, 32% in DR Congo, 35% in Malawi, and 6% in Thailand’s parasite isolates.
Sulfadoxine/pyrimethamine drug resistance mutations were also present in Pfdhfr and Pfdhps genes in all analysed P. falciparum populations. The major pyrimethamine resistance-conferring alleles, such as Pfdhfr-N51I and Pfdhfr-C59R, were also identified in all parasite populations with fixed or near fixation in frequency. Pfdhfr-S108N was fixed in other P. falciparum populations, except in Ethiopia. The variable prevalence of drug resistance-conferring alleles were also observed in Pfdhps (Pfdhps-S436A, Pfdhps-G437A, Pfdhps-K540N, and Pfdhps-A581G), for the parent drug sulfadoxine resistance.
In terms of artemisinin resistance, the African population-specific Pfk13-K189T mutation was observed in Ethiopia (in 20% of the samples), DR Congo (17%), and Malawi (13%). This mutation was previously identified in African P. falciparum populations [20, 35]. As previously reported [8], the validated and most characterized artemisinin resistance-conferring mutation PfK13-C580Y was identified in Cambodia (36% of the samples) as well as in Thailand (26%), but not in Africa.

Discussion

The transmission dynamic coupled with the unique history, ecology, and demography of Ethiopia raises interest in the genetics of its parasite population. High-resolution whole-genome SNP data was used to analyse P. falciparum parasite genetic diversity in the central region of Ethiopia and compared with similar parasite data from mainland Africa (DR Congo and Malawi) and Southeast Asian parasites, from Cambodia and Thailand. In this analysis, similar MAF across all five parasite populations with over-representation of low frequency (< 5%) variants was observed as previously reported [19, 21]. Interestingly, mean FWS values were significantly higher in the Ethiopian parasite isolates as compared to the other African populations, but not the Southeast Asian parasite populations. FWS is a genome-wide metric that averages heterozygosity across the genome in comparison with heterozygosity within the local parasite population [21]. Hence, it is a measure of within-host diversity of infections that helps to gauge the potential for inbreeding (or outcrossing). The higher FWS values (> 0.95) in Ethiopia (P. falciparum prevalence of 0.02) [36] and East Asian infections is underscored by the low malaria transmission rates in these settings which supports a higher inbreeding and clonal propagation of infections (Fig. 1; Additional file 3). Unlike the other East African countries (DR Congo and Malawi) where transmission intensities are higher [20, 35], and there was a good distribution of FWS values with the majority of infections being polyclonal with high potential for outcrossing (Fig. 1). These findings are supported by similar studies that link lower FWS values to in west African where transmission is high [18]. However, of note, is the possibility for high FWS values to occur in areas of high transmission intensity if P. falciparum circulates in a geographically isolated community which limits the chance of outcrossing with other genetically distinct P. falciparum parasites as observed in the previous study [21].
An analysis of parasite population structure within and between continents revealed a higher degree of population structure between Ethiopian parasites and other East African parasites and between Southeast Asia and East Africa. However, neither PCA (Fig. 2) nor admixture analysis (Fig. 3) could resolve parasite populations in DR Congo and Malawi. These observations are corroborated by several studies that report regional and inter-continental level structure in global P. falciparum parasite populations [21]. However, the separation of Ethiopian parasites from the two East African populations is worth noting. Notwithstanding the increased human mobility between Addis Ababa and the rest of Africa, particularly East Africa, there remain important barriers to gene flow between parasite populations in central Ethiopia and the rest of the sub-region. Indeed, one possible factors that severely limit gene flow between Ethiopia and its neighbours is the local malaria transmission intensity as a function of poor vectoral capacity determined by the ecological landscape (highlands).
Against the backdrop of this unique eco-epidemiology of P. falciparum malaria in Ethiopia, Tajima D and IHS was used to explore the mechanisms of natural selection in the country. However, identification of many antigenic genes under balancing selection with Tajima D value greater than one were observed in Ethiopia. These genes included known vaccine candidates, such as ama1, trap, msp1, eba175, and clag2 (Additional file 4), which were previously identified in different populations that vary in transmission intensity [24, 33, 37], to be under balancing selection. Besides, 15 genes under positive directional selection by IHS were identified, which includes SURFIN and PHIST families previously suggested to be targets of immunity [24]. It can be hypothesized that the low seasonal transmission in Ethiopia maintains significant immune selection pressure on the infection reservoir than drug pressure due to clinical malaria. Therefore, the candidate vaccine antigen loci under balancing selection may be largely due to immune modulation and not positive adaptive selection influenced by drug pressure. This is supported by our failure to detect selection signatures in known drug target genes such as Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, and Pfkelch-13. The ability of IHS to detect selection in these drug resistance genes in Ethiopia may be because the frequency of polymorphisms in these loci are either fixed or near fixation in the Ethiopian population (Table 5). These findings are supported by a previous study in Ethiopia which showed that the CQ-resistant haplotype (CVIET) was fixed [7]. The continued use of CQ in Ethiopia for the treatment of P. vivax malaria may account for the high prevalence of CQ resistant markers. Also, Pfmdr 1 mutations have been demonstrated to mediate AL resistance. Therefore, the high prevalence of Pfmdr 1 mutations may signal poor efficacy of AL as the first treatment for P. falciparum malaria in Ethiopia. Variable prevalences of CQ-resistant polymorphisms were observed only in DR Congo and not in Malawi, evidence that supports the complete reversal of CQ susceptibility in Malawi as reported by Ochola et al. [20].
Undoubtedly, artemisinin resistance has taken root in Southeast Asia. Despite 36% and 26% prevalence of PfKelch13-C580Y mutation in Cambodia and Thailand samples, respectively, no validated PfKelch13 mutation was found in the African samples. However, an uncharacterized Pfkelch13 mutation (PfK13-K189T) found at prevalence > 10% in all the African datasets and previously reported in other studies [35], may be important, but its role in artemisinin resistance is unknown. One study [8] reported that mutation in Pfkelch13 at amino acid positions less than 441 may not play any role in mediating artemisinin resistance. A validated Pfkelch13-R561H mutation for artemisinin resistance was recently reported in other East African P. falciparum populations [9].

Conclusion

Overall, this study reveals the presence of a comparably low genetic diversity of P. falciparum parasites in Ethiopia. The majority of infections were of low complexity, demonstrated significant population structure with Ethiopian parasites diverged from parasite populations within the sub-region. Based on the analysis made it is suggested the presence of limited gene flow between parasite populations in the East African sub-region and Ethiopia. More importantly, apparent balancing selection in antigenic loci known to be targets of immunity and adaptive positive selection in SURFIN and PHIST gene families that are potential vaccine antigens. Though selection analysis did not pick up any adaptive mutations in known drug-resistant genes, CQ-resistance Pfcrt-K76T genotype seems fixed in Ethiopia like the wild-type genotype (K) in Malawi. In this analysis no PfKelch13 validated mutations were reported in Ethiopia, DR Congo, and Malawi except a PfK13-K189T African specific uncharacterized mutation. Further molecular studies involving deeper sampling of Ethiopian parasite populations are essential to understand the genetic diversity, gene flow, and temporal evolution of drug resistance loci within Ethiopia. Furthermore, such findings can be used to support national malaria control decision-making for optimal impact in further reducing malaria transmission in Ethiopia.

Acknowledgements

Plasmodium falciparum genome sequencing was done at the Wellcome Sanger Institute as part of the MalariaGEN P. falciparum Community Project (www.​malariagen.​net/​projects). We thank the MalariaGEN P. falciparum Community Project and Pf3K Project for allowing access to sequence data. JLB is supported by DELTAS Africa Initiative grant # DEL-15-011 to THRiVE-2. The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS)’s Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust grant # 107742/Z/15/Z and the UK government. The views expressed herein do not necessarily reflect the official opinion of the donors.
The use of human subjects and scientific merit for this study was approved by the institutional Ethical Review Board (IRB) and the scientific committee of Addis Ababa University and AHRI-ALERT (Armauer Hansen Research Institute and the Africa Leprosy Rehabilitation and Training Hospital). Written informed consent was obtained from all adult subjects and the parent or legal guardians of minors.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat WHO. World malaria report 2019. Geneva: World Health Organization; 2019. WHO. World malaria report 2019. Geneva: World Health Organization; 2019.
2.
Zurück zum Zitat Lo E, Hemming-Schroeder E, Yewhalaw D, Nguyen J, Kebede E, Zemene E, et al. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Negl Trop Dis. 2017;11:e0005806. CrossRef Lo E, Hemming-Schroeder E, Yewhalaw D, Nguyen J, Kebede E, Zemene E, et al. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Negl Trop Dis. 2017;11:e0005806. CrossRef
3.
Zurück zum Zitat Abdifatah AJ, Wanna C, Kesara N-B. Plasmodium falciparum drug resistance gene status in the Horn of Africa: a systematic review. Afr J Pharm Pharmacol. 2018;12:361–73.CrossRef Abdifatah AJ, Wanna C, Kesara N-B. Plasmodium falciparum drug resistance gene status in the Horn of Africa: a systematic review. Afr J Pharm Pharmacol. 2018;12:361–73.CrossRef
4.
Zurück zum Zitat Amambua-Ngwa A, Jeffries D, Amato R, Worwui A, Karim M, Ceesay S, et al. Consistent signatures of selection from genomic analysis of pairs of temporal and spatial Plasmodium falciparum populations from The Gambia. Sci Rep. 2018;8:9687.CrossRef Amambua-Ngwa A, Jeffries D, Amato R, Worwui A, Karim M, Ceesay S, et al. Consistent signatures of selection from genomic analysis of pairs of temporal and spatial Plasmodium falciparum populations from The Gambia. Sci Rep. 2018;8:9687.CrossRef
5.
Zurück zum Zitat Mekonnen SK, Aseffa A, Berhe N, Teklehaymanot T, Clouse RM, Gebru T, et al. Return of chloroquine-sensitive Plasmodium falciparum parasites and emergence of chloroquine-resistant Plasmodium vivax in Ethiopia. Malar J. 2014;13:244.CrossRef Mekonnen SK, Aseffa A, Berhe N, Teklehaymanot T, Clouse RM, Gebru T, et al. Return of chloroquine-sensitive Plasmodium falciparum parasites and emergence of chloroquine-resistant Plasmodium vivax in Ethiopia. Malar J. 2014;13:244.CrossRef
7.
Zurück zum Zitat Golassa L, Enweji N, Erko B, Aseffa A, Swedberg G. High prevalence of Pfcrt-CVIET haplotype in isolates from asymptomatic and symptomatic patients in South-Central Oromia, Ethiopia. Malar J. 2014;13:120.CrossRef Golassa L, Enweji N, Erko B, Aseffa A, Swedberg G. High prevalence of Pfcrt-CVIET haplotype in isolates from asymptomatic and symptomatic patients in South-Central Oromia, Ethiopia. Malar J. 2014;13:120.CrossRef
8.
Zurück zum Zitat Ashley E, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRef Ashley E, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.CrossRef
9.
Zurück zum Zitat Uwimana A, Legrand E, Stokes BH, Ndikumana JM, Warsame M, Umulisa N, et al. Emergence and clonal expansion of in vitro Pfkelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;26:1602–8.CrossRef Uwimana A, Legrand E, Stokes BH, Ndikumana JM, Warsame M, Umulisa N, et al. Emergence and clonal expansion of in vitro Pfkelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;26:1602–8.CrossRef
10.
Zurück zum Zitat Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, et al. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol. 2017;47:87–97.CrossRef Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, et al. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol. 2017;47:87–97.CrossRef
11.
Zurück zum Zitat Nair S, Williams JT, Brockman A, Paiphun L, Mayxay M, Newton PN, et al. A selective sweep driven by pyrimethamine treatment in Southeast Asian malaria parasites. Mol Biol Evol. 2003;20:1526–36.CrossRef Nair S, Williams JT, Brockman A, Paiphun L, Mayxay M, Newton PN, et al. A selective sweep driven by pyrimethamine treatment in Southeast Asian malaria parasites. Mol Biol Evol. 2003;20:1526–36.CrossRef
12.
Zurück zum Zitat Volkman SK, Sabeti PC, Decaprio D, Neafsey DE, Schaffner SF, Milner DA, et al. A genome-wide map of diversity in Plasmodium falciparum. Nat Genet. 2007;39:113–9. CrossRef Volkman SK, Sabeti PC, Decaprio D, Neafsey DE, Schaffner SF, Milner DA, et al. A genome-wide map of diversity in Plasmodium falciparum. Nat Genet. 2007;39:113–9. CrossRef
13.
Zurück zum Zitat Sundararaman SA, Plenderleith LJ, Liu W, Loy DE, Learn GH, Li Y, et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat Commun. 2016;7:11078.CrossRef Sundararaman SA, Plenderleith LJ, Liu W, Loy DE, Learn GH, Li Y, et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat Commun. 2016;7:11078.CrossRef
14.
Zurück zum Zitat Bopp SER, Manary MJ, Bright AT, Johnston GL, Dharia NV, Luna FL, et al. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet. 2013;9:e1003293.CrossRef Bopp SER, Manary MJ, Bright AT, Johnston GL, Dharia NV, Luna FL, et al. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet. 2013;9:e1003293.CrossRef
15.
Zurück zum Zitat Paget-Mcnicol S, Saul A. Mutation rates in the dihydrofolate reductase gene of Plasmodium falciparum. Parasitology. 2001;122:497–505.CrossRef Paget-Mcnicol S, Saul A. Mutation rates in the dihydrofolate reductase gene of Plasmodium falciparum. Parasitology. 2001;122:497–505.CrossRef
16.
Zurück zum Zitat Kidgell C, Volkman SK, Daily J, Borevitz JO, Plouffe D, Zhou Y, et al. Erratum: A systematic map of genetic variation in Plasmodium falciparum. PLoS Pathog. 2006;2:e57.CrossRef Kidgell C, Volkman SK, Daily J, Borevitz JO, Plouffe D, Zhou Y, et al. Erratum: A systematic map of genetic variation in Plasmodium falciparum. PLoS Pathog. 2006;2:e57.CrossRef
17.
Zurück zum Zitat Oyebola KM, Idowu ET, Olukosi YA, Awolola TS, Amambua-Ngwa A. Pooled-DNA sequencing identifies genomic regions of selection in Nigerian isolates of Plasmodium falciparum. Parasites Vectors. 2017;10:320.CrossRef Oyebola KM, Idowu ET, Olukosi YA, Awolola TS, Amambua-Ngwa A. Pooled-DNA sequencing identifies genomic regions of selection in Nigerian isolates of Plasmodium falciparum. Parasites Vectors. 2017;10:320.CrossRef
18.
Zurück zum Zitat Duffy CW, Assefa SA, Abugri J, Amoako N, Owusu-Agyei S, Anyorigiya T, et al. Comparison of genomic signatures of selection on Plasmodium falciparum between different regions of a country with high malaria endemicity. BMC Genom. 2015;16:527.CrossRef Duffy CW, Assefa SA, Abugri J, Amoako N, Owusu-Agyei S, Anyorigiya T, et al. Comparison of genomic signatures of selection on Plasmodium falciparum between different regions of a country with high malaria endemicity. BMC Genom. 2015;16:527.CrossRef
19.
Zurück zum Zitat Mobegi VA, Duffy CW, Amambua-Ngwa A, Loua KM, Laman E, Nwakanma DC, et al. Genome-wide analysis of selection on the malaria parasite Plasmodium falciparum in West African populations of differing infection endemicity. Mol Biol Evol. 2014;31:1490–9.CrossRef Mobegi VA, Duffy CW, Amambua-Ngwa A, Loua KM, Laman E, Nwakanma DC, et al. Genome-wide analysis of selection on the malaria parasite Plasmodium falciparum in West African populations of differing infection endemicity. Mol Biol Evol. 2014;31:1490–9.CrossRef
20.
Zurück zum Zitat Ocholla H, Preston MD, Mipando M, Jensen ATR, Campino S, Macinnis B, et al. Whole-genome scans provide evidence of adaptive evolution in Malawian Plasmodium falciparum isolates. J Infect Dis. 2014;210:1991–2000.CrossRef Ocholla H, Preston MD, Mipando M, Jensen ATR, Campino S, Macinnis B, et al. Whole-genome scans provide evidence of adaptive evolution in Malawian Plasmodium falciparum isolates. J Infect Dis. 2014;210:1991–2000.CrossRef
21.
Zurück zum Zitat Manske M, Miotto O, Campino S, Auburn S, Zongo I, Ouedraogo J, et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature. 2012;487:375–9.CrossRef Manske M, Miotto O, Campino S, Auburn S, Zongo I, Ouedraogo J, et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature. 2012;487:375–9.CrossRef
22.
Zurück zum Zitat Mackinnon MJ, Read AF. Virulence in malaria: an evolutionary viewpoint. Philos Trans R Soc B Biol Sci. 2004;359:965–86.CrossRef Mackinnon MJ, Read AF. Virulence in malaria: an evolutionary viewpoint. Philos Trans R Soc B Biol Sci. 2004;359:965–86.CrossRef
23.
Zurück zum Zitat Biswas S, Akey JM. Genomic insights into positive selection. Trends Genet. 2006;22:437–46.CrossRef Biswas S, Akey JM. Genomic insights into positive selection. Trends Genet. 2006;22:437–46.CrossRef
24.
Zurück zum Zitat Amambua-Ngwa A, Park DJ, Volkman SK, Barnes KG, Bei AK, Lukens AK, et al. SNP genotyping identifies new signatures of selection in a deep sample of west African Plasmodium falciparum malaria parasites. Mol Biol Evol. 2012;29:3249–53.CrossRef Amambua-Ngwa A, Park DJ, Volkman SK, Barnes KG, Bei AK, Lukens AK, et al. SNP genotyping identifies new signatures of selection in a deep sample of west African Plasmodium falciparum malaria parasites. Mol Biol Evol. 2012;29:3249–53.CrossRef
25.
Zurück zum Zitat Amambua-Ngwa A, Amenga-Etego L, Kamau E, Amato R, Ghansah A, Golassa L, et al. Major subpopulations of Plasmodium falciparum in sub-Saharan Africa. Science. 2019;365:813–6.CrossRef Amambua-Ngwa A, Amenga-Etego L, Kamau E, Amato R, Ghansah A, Golassa L, et al. Major subpopulations of Plasmodium falciparum in sub-Saharan Africa. Science. 2019;365:813–6.CrossRef
26.
Zurück zum Zitat Jalei AA, Chaijaroenkul W, Na-Bangchang K. Plasmodium falciparum drug resistance gene status in the Horn of Africa : a systematic review. Afr J Pharm Pharmacol. 2018;12:361–73.CrossRef Jalei AA, Chaijaroenkul W, Na-Bangchang K. Plasmodium falciparum drug resistance gene status in the Horn of Africa : a systematic review. Afr J Pharm Pharmacol. 2018;12:361–73.CrossRef
27.
Zurück zum Zitat Auburn S, Campino S, Clark TG, Djimde AA, Zongo I, Pinches R, et al. An effective method to purify Plasmodium falciparum DNA directly from clinical blood samples for whole-genome high-throughput sequencing. PLoS ONE. 2011;6:e22213.CrossRef Auburn S, Campino S, Clark TG, Djimde AA, Zongo I, Pinches R, et al. An effective method to purify Plasmodium falciparum DNA directly from clinical blood samples for whole-genome high-throughput sequencing. PLoS ONE. 2011;6:e22213.CrossRef
28.
Zurück zum Zitat Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94.CrossRef Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94.CrossRef
29.
Zurück zum Zitat Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–70. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–70.
30.
Zurück zum Zitat Tajima F. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.CrossRef Tajima F. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.CrossRef
31.
Zurück zum Zitat Gautier M, Vitalis R. Rehh 2.0: a reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol Ecol Resour. 2017;17:78–90.CrossRef Gautier M, Vitalis R. Rehh 2.0: a reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol Ecol Resour. 2017;17:78–90.CrossRef
32.
Zurück zum Zitat Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLos Biol. 2006;4:e72.CrossRef Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLos Biol. 2006;4:e72.CrossRef
33.
Zurück zum Zitat Ye R, Tian Y, Huang Y, Zhang Y, Wang J, Sun X, et al. Genome-wide analysis of genetic diversity in Plasmodium falciparum isolates from China-Myanmar border. Genetics. 2019;10:1065. Ye R, Tian Y, Huang Y, Zhang Y, Wang J, Sun X, et al. Genome-wide analysis of genetic diversity in Plasmodium falciparum isolates from China-Myanmar border. Genetics. 2019;10:1065.
34.
Zurück zum Zitat Iriko H, Kaneko O, Otsuki H, Tsuboi T, Su XZ, Tanabe K, et al. Diversity and evolution of the rhoph1/clag multigene family of Plasmodium falciparum. Mol Biochem Parasitol. 2008;158:11–21.CrossRef Iriko H, Kaneko O, Otsuki H, Tsuboi T, Su XZ, Tanabe K, et al. Diversity and evolution of the rhoph1/clag multigene family of Plasmodium falciparum. Mol Biochem Parasitol. 2008;158:11–21.CrossRef
35.
Zurück zum Zitat Verity R, Aydemir O, Brazeau NF, Watson OJ, Hathaway NJ, Mwandagalirwa MK, et al. The impact of antimalarial resistance on the genetic structure of Plasmodium falciparum in the Democratic Republic of Congo. Nat Commun. 2020;11:2107.CrossRef Verity R, Aydemir O, Brazeau NF, Watson OJ, Hathaway NJ, Mwandagalirwa MK, et al. The impact of antimalarial resistance on the genetic structure of Plasmodium falciparum in the Democratic Republic of Congo. Nat Commun. 2020;11:2107.CrossRef
37.
Zurück zum Zitat Amambua-Ngwa A, Tetteh KKA, Manske M, Gomez-Escobar N, Stewart LB, Deerhake ME, et al. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites. PLoS Genet. 2012;8:e1002992.CrossRef Amambua-Ngwa A, Tetteh KKA, Manske M, Gomez-Escobar N, Stewart LB, Deerhake ME, et al. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites. PLoS Genet. 2012;8:e1002992.CrossRef
Metadaten
Titel
Genomic analysis reveals independent evolution of Plasmodium falciparum populations in Ethiopia
verfasst von
Deriba Abera
Caleb K. Kibet
Teshome Degefa
Lucas Amenga-Etego
Joel L. Bargul
Lemu Golassa
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2021
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03660-y

Weitere Artikel der Ausgabe 1/2021

Malaria Journal 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.