Skip to main content
Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases 4/2018

02.12.2017 | Review

Gut microbiome production of short-chain fatty acids and obesity in children

verfasst von: Selvasankar Murugesan, Khemlal Nirmalkar, Carlos Hoyo-Vadillo, Matilde García-Espitia, Daniela Ramírez-Sánchez, Jaime García-Mena

Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Obesity has been a worldwide multifactorial epidemic malady for the last 2 decades. Changes in gut microbiota composition and its metabolites — short-chain fatty acids (SCFAs) — have been associated with obesity. Recent evidence suggests that SCFAs made by the gut microbiota may regulate directly or indirectly physiological and pathological processes in relation to obesity. We review the influence of gut microbiota in energy, glucose, and lipid homeostasis control via their metabolites. Gut microbial disturbances in obese children may have a role in their metabolism. At first glance, excessive short-chain fatty acids produced by a particular gut microbiota represent an additional energy source, and should cause an imbalance in energy regulation, contributing to obesity. However, simultaneously, SCFA participates in glucose-stimulated insulin secretion from the pancreatic β-cells through interaction with the FFA2 and FFA3 receptors, and release of peptide hormones which control appetite. This apparent contradictory situation may indicate the involvement of additional particular bacteria or bacterial components or metabolites that may trigger regulatory cascades by interaction with some G-protein-coupled membrane receptors.
Literatur
3.
Zurück zum Zitat Hartstra AV, Bouter KE, Bäckhed F, Nieuwdorp M (2015) Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38:159–165CrossRefPubMed Hartstra AV, Bouter KE, Bäckhed F, Nieuwdorp M (2015) Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38:159–165CrossRefPubMed
4.
Zurück zum Zitat Aceves-Martins M, Llauradó E, Tarro L et al (2016) Obesity-promoting factors in Mexican children and adolescents: challenges and opportunities. Glob Health Action 9:29625CrossRefPubMed Aceves-Martins M, Llauradó E, Tarro L et al (2016) Obesity-promoting factors in Mexican children and adolescents: challenges and opportunities. Glob Health Action 9:29625CrossRefPubMed
5.
Zurück zum Zitat Murugesan S, Nirmalkar K, García-Espitia M et al (2017) Current insight into the role of gut microbiota in Mexican childhood obesity. SOJ Pharm Pharm Sci 4:1–5CrossRef Murugesan S, Nirmalkar K, García-Espitia M et al (2017) Current insight into the role of gut microbiota in Mexican childhood obesity. SOJ Pharm Pharm Sci 4:1–5CrossRef
7.
Zurück zum Zitat Freedman DS, Zuguo M, Srinivasan SR et al (2007) Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa heart study. J Pediatr 150(1):12–17CrossRefPubMed Freedman DS, Zuguo M, Srinivasan SR et al (2007) Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa heart study. J Pediatr 150(1):12–17CrossRefPubMed
8.
Zurück zum Zitat Bruzzese E, Volpicelli M, Squaglia M et al (2006) Impact of prebiotics on human health. Dig Liver Dis 38(Suppl 2):S283–S287CrossRefPubMed Bruzzese E, Volpicelli M, Squaglia M et al (2006) Impact of prebiotics on human health. Dig Liver Dis 38(Suppl 2):S283–S287CrossRefPubMed
9.
Zurück zum Zitat Rodriguez JM, Murphy K, Stanton C et al (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050PubMed Rodriguez JM, Murphy K, Stanton C et al (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050PubMed
10.
Zurück zum Zitat Marchesi JR, Adams DH, Fava F et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339CrossRefPubMed Marchesi JR, Adams DH, Fava F et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339CrossRefPubMed
12.
Zurück zum Zitat Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95:50–60CrossRefPubMed Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95:50–60CrossRefPubMed
13.
Zurück zum Zitat Cummings JH, Pomare EW, Branch WJ et al (1987) short-chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227CrossRefPubMedPubMedCentral Cummings JH, Pomare EW, Branch WJ et al (1987) short-chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Ríos-Covián D, Ruas-Madiedo P, Margolles A et al (2016) Intestinal short-chain fatty acids and their link with diet and human health. Front Microbiol 7:185CrossRefPubMedPubMedCentral Ríos-Covián D, Ruas-Madiedo P, Margolles A et al (2016) Intestinal short-chain fatty acids and their link with diet and human health. Front Microbiol 7:185CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Wall R, Ross RP, Shanahan F et al (2009) Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89:1393–1401CrossRefPubMed Wall R, Ross RP, Shanahan F et al (2009) Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89:1393–1401CrossRefPubMed
16.
Zurück zum Zitat Russell SL, Gold MJ, Hartmann M et al (2012) Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 13:440–447CrossRefPubMedPubMedCentral Russell SL, Gold MJ, Hartmann M et al (2012) Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 13:440–447CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Smith EA, Macfarlane GT (1997) Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 3:327–337CrossRefPubMed Smith EA, Macfarlane GT (1997) Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 3:327–337CrossRefPubMed
18.
Zurück zum Zitat Sanchez JI, Marzorati M, Grootaert C et al (2009) Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the simulator of human intestinal microbial ecosystem. Microb Biotechnol 2:101–113CrossRefPubMed Sanchez JI, Marzorati M, Grootaert C et al (2009) Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the simulator of human intestinal microbial ecosystem. Microb Biotechnol 2:101–113CrossRefPubMed
19.
Zurück zum Zitat Louis P, Young P, Holtrop G et al (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 12:304–314CrossRefPubMed Louis P, Young P, Holtrop G et al (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 12:304–314CrossRefPubMed
20.
21.
Zurück zum Zitat Scott KP, Martin JC, Campbell G et al (2006) Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. J Bacteriol 188:4340–4349CrossRefPubMedPubMedCentral Scott KP, Martin JC, Campbell G et al (2006) Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. J Bacteriol 188:4340–4349CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Duncan SH, Barcenilla A, Stewart CS et al (2002) Acetate utilization and butyryl coenzyme a (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 68:5186–5190CrossRefPubMedPubMedCentral Duncan SH, Barcenilla A, Stewart CS et al (2002) Acetate utilization and butyryl coenzyme a (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 68:5186–5190CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Dagher PC, Egnor RW, Taglietta-Kohlbrecteri A et al (1996) Short-chain fatty acids inhibit cAMP-mediated chloride secretion in rat colon. Am J Phys 271:C1853–C1860CrossRef Dagher PC, Egnor RW, Taglietta-Kohlbrecteri A et al (1996) Short-chain fatty acids inhibit cAMP-mediated chloride secretion in rat colon. Am J Phys 271:C1853–C1860CrossRef
24.
Zurück zum Zitat Hamer HM, Jonkers D, Venema K et al (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119CrossRefPubMed Hamer HM, Jonkers D, Venema K et al (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119CrossRefPubMed
25.
Zurück zum Zitat Krautkramer KA, Kreznar JH, Romano KA et al (2016) Diet–microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 64(5):982–992CrossRefPubMedPubMedCentral Krautkramer KA, Kreznar JH, Romano KA et al (2016) Diet–microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 64(5):982–992CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Al-Lahham SH, Peppelenbosch MP, Roelofsen H et al (2010) Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta 1:1175–1183CrossRef Al-Lahham SH, Peppelenbosch MP, Roelofsen H et al (2010) Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta 1:1175–1183CrossRef
27.
Zurück zum Zitat Vogt JA, Wolever TMS (2003) Fecal acetate is inversely related to acetate absorption from the human rectum and distal colon. J Nutr 133:3145–3148CrossRefPubMed Vogt JA, Wolever TMS (2003) Fecal acetate is inversely related to acetate absorption from the human rectum and distal colon. J Nutr 133:3145–3148CrossRefPubMed
28.
Zurück zum Zitat Frost G, Sleeth ML, Sahuri-Arisoylu M et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611CrossRefPubMedPubMedCentral Frost G, Sleeth ML, Sahuri-Arisoylu M et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Kotzampassi K, Giamarellos-Bourboulis EJ, Stavrou G (2014) Obesity as a consequence of gut bacteria and diet interactions. ISRN Obes 2014:651895PubMedPubMedCentral Kotzampassi K, Giamarellos-Bourboulis EJ, Stavrou G (2014) Obesity as a consequence of gut bacteria and diet interactions. ISRN Obes 2014:651895PubMedPubMedCentral
30.
Zurück zum Zitat Hong YH, Nishimura Y, Hishikawa D et al (2005) Acetate and propionate short-chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146(12):5092–5099CrossRefPubMed Hong YH, Nishimura Y, Hishikawa D et al (2005) Acetate and propionate short-chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146(12):5092–5099CrossRefPubMed
32.
Zurück zum Zitat den Besten G, van Eunen K, Groen AK et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340CrossRef den Besten G, van Eunen K, Groen AK et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340CrossRef
34.
Zurück zum Zitat Backhed F, Ley RE, Sonnenburg JL et al (2005) Host–bacterial mutualism in the human intestine. Science 307(5717):1915–1920CrossRefPubMed Backhed F, Ley RE, Sonnenburg JL et al (2005) Host–bacterial mutualism in the human intestine. Science 307(5717):1915–1920CrossRefPubMed
35.
Zurück zum Zitat Devaraj S, Hemarajata P, Versalovic J (2013) The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem 59(4):617–628CrossRefPubMedPubMedCentral Devaraj S, Hemarajata P, Versalovic J (2013) The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem 59(4):617–628CrossRefPubMedPubMedCentral
37.
38.
Zurück zum Zitat Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723CrossRefPubMedPubMedCentral Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat DiBaise JK, Zhang H, Crowell MD et al (2008) Gut microbiota and its possible relationship with obesity. Mayo Clin Proc 83(4):460–469CrossRefPubMed DiBaise JK, Zhang H, Crowell MD et al (2008) Gut microbiota and its possible relationship with obesity. Mayo Clin Proc 83(4):460–469CrossRefPubMed
40.
41.
Zurück zum Zitat Ley R, Turnbaugh P, Klein S et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023CrossRefPubMed Ley R, Turnbaugh P, Klein S et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023CrossRefPubMed
42.
Zurück zum Zitat Schwiertz A, Taras D, Schäfer K et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–195CrossRefPubMed Schwiertz A, Taras D, Schäfer K et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–195CrossRefPubMed
43.
Zurück zum Zitat Kalliomäki M, Collado MC, Salminen S et al (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87:534–538CrossRefPubMed Kalliomäki M, Collado MC, Salminen S et al (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87:534–538CrossRefPubMed
45.
Zurück zum Zitat Murugesan S, Ulloa-Martínez M, Martínez-Rojano H et al (2015) Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur J Clin Microbiol Infect Dis 34:1337–1346CrossRefPubMed Murugesan S, Ulloa-Martínez M, Martínez-Rojano H et al (2015) Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur J Clin Microbiol Infect Dis 34:1337–1346CrossRefPubMed
46.
Zurück zum Zitat Nirmalkar K, Murugesan S, Pizano-Zárate ML et al (2016) Endothelial dysfunction in Mexican obese children, is there a role of the gut microbiota? Obes Control Ther 3(1):1–4 Nirmalkar K, Murugesan S, Pizano-Zárate ML et al (2016) Endothelial dysfunction in Mexican obese children, is there a role of the gut microbiota? Obes Control Ther 3(1):1–4
48.
Zurück zum Zitat Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826CrossRefPubMed Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826CrossRefPubMed
51.
Zurück zum Zitat Leurs R, Bakker RA, Timmerman H, de Esch IJ (2005) The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nat Rev Drug Discov 4(2):107–120CrossRefPubMed Leurs R, Bakker RA, Timmerman H, de Esch IJ (2005) The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nat Rev Drug Discov 4(2):107–120CrossRefPubMed
52.
Zurück zum Zitat Hansen AH, Sergeev E, Pandey SK et al (2017) development and characterization of a fluorescent tracer for the free fatty acid receptor 2 (FFA2/GPR43). J Med Chem 60(13):5638–5645CrossRefPubMed Hansen AH, Sergeev E, Pandey SK et al (2017) development and characterization of a fluorescent tracer for the free fatty acid receptor 2 (FFA2/GPR43). J Med Chem 60(13):5638–5645CrossRefPubMed
53.
Zurück zum Zitat Won YJ, Lu VB, Puhl HL, Ikeda SR (2013) β-Hydroxybutyrate modulates N-type calcium channels in rat sympathetic neurons by acting as an agonist for the G-protein-coupled receptor FFA3. J Neurosci 33(49):19314–19325CrossRefPubMedPubMedCentral Won YJ, Lu VB, Puhl HL, Ikeda SR (2013) β-Hydroxybutyrate modulates N-type calcium channels in rat sympathetic neurons by acting as an agonist for the G-protein-coupled receptor FFA3. J Neurosci 33(49):19314–19325CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Muredda L, Kępczyńska MA, Zaibi MS et al (2017) IL-1β and TNFα inhibit GPR120 (FFAR4) and stimulate GPR84 (EX33) and GPR41 (FFAR3) fatty acid receptor expression in human adipocytes: implications for the anti-inflammatory action of n-3 fatty acids. Arch Physiol Biochem 24:1–12CrossRef Muredda L, Kępczyńska MA, Zaibi MS et al (2017) IL-1β and TNFα inhibit GPR120 (FFAR4) and stimulate GPR84 (EX33) and GPR41 (FFAR3) fatty acid receptor expression in human adipocytes: implications for the anti-inflammatory action of n-3 fatty acids. Arch Physiol Biochem 24:1–12CrossRef
55.
Zurück zum Zitat Tang C, Offermanns S (2017) FFA2 and FFA3 in metabolic regulation. Handb Exp Pharmacol 236:205–220CrossRefPubMed Tang C, Offermanns S (2017) FFA2 and FFA3 in metabolic regulation. Handb Exp Pharmacol 236:205–220CrossRefPubMed
56.
Zurück zum Zitat Priyadarshini M, Wicksteed B, Schiltz GE et al (2016) SCFA receptors in pancreatic β cells: novel diabetes targets? Trends Endocrinol Metab 27(9):653–664CrossRefPubMedPubMedCentral Priyadarshini M, Wicksteed B, Schiltz GE et al (2016) SCFA receptors in pancreatic β cells: novel diabetes targets? Trends Endocrinol Metab 27(9):653–664CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Chambers ES, Morrison DJ, Frost G (2015) Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc 74(3):328–336CrossRefPubMed Chambers ES, Morrison DJ, Frost G (2015) Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc 74(3):328–336CrossRefPubMed
59.
60.
Zurück zum Zitat Goffredo M, Mass K, Parks EJ et al (2016) Role of gut microbiota and short-chain fatty acids in modulating energy harvest and fat partitioning in youth. J Clin Endocrinol Metab 101(11):4367–4376CrossRefPubMedPubMedCentral Goffredo M, Mass K, Parks EJ et al (2016) Role of gut microbiota and short-chain fatty acids in modulating energy harvest and fat partitioning in youth. J Clin Endocrinol Metab 101(11):4367–4376CrossRefPubMedPubMedCentral
Metadaten
Titel
Gut microbiome production of short-chain fatty acids and obesity in children
verfasst von
Selvasankar Murugesan
Khemlal Nirmalkar
Carlos Hoyo-Vadillo
Matilde García-Espitia
Daniela Ramírez-Sánchez
Jaime García-Mena
Publikationsdatum
02.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Clinical Microbiology & Infectious Diseases / Ausgabe 4/2018
Print ISSN: 0934-9723
Elektronische ISSN: 1435-4373
DOI
https://doi.org/10.1007/s10096-017-3143-0

Weitere Artikel der Ausgabe 4/2018

European Journal of Clinical Microbiology & Infectious Diseases 4/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.