Skip to main content
Erschienen in: Annals of Nuclear Medicine 1/2012

01.01.2012 | Original Article

High resolution SPECT imaging for visualization of intratumoral heterogeneity using a SPECT/CT scanner dedicated for small animal imaging

verfasst von: Izumi O. Umeda, Kotaro Tani, Keisuke Tsuda, Masamitsu Kobayashi, Mayumi Ogata, Sadaaki Kimura, Mitsuyoshi Yoshimoto, Shuji Kojima, Kunikazu Moribe, Keiji Yamamoto, Noriyuki Moriyama, Hirofumi Fujii

Erschienen in: Annals of Nuclear Medicine | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Tumor interiors are never homogeneous and in vivo visualization of intratumoral heterogeneity would be an innovation that contributes to improved cancer therapy. But, conventional nuclear medicine tests have failed to visualize heterogeneity in vivo because of limited spatial resolution. Recently developed single photon emission computed tomographic (SPECT) scanners dedicated for small animal imaging are of interest due to their excellent spatial resolution of <1 mm, but few studies have focused on the evaluation of intratumoral heterogeneity. We investigated the optimal conditions related to high resolution imaging of heterogeneous tumor interiors using a small animal SPECT scanner.

Methods

The conditions related to SPECT/CT visualization of heterogeneous tumor interiors were investigated using phantoms with 111In and simulations of actual small animal imaging. The optimal conditions obtained were validated by in vivo imaging of sarcoma 180-bearing mice.

Results

Larger number of counts must be obtained within limited acquisition time to visualize tumor heterogeneity in vivo in animal imaging, compared to cases that simply detect tumors. At an acquisition time of 30 min, better image quality was obtained with pinhole apertures diameter of 1.4 mm than of 1.0 mm. The obtained best spatial resolution was 1.3 mm, it was acceptable for our purpose, though a little worse than the best possible performance of the scanner (1.0 mm). Additionally, the reconstruction parameters, such as noise suppression, voxel size, and iteration/subset number, needed to be optimized under the limited conditions and were different from those found under the ideal condition. The minimal radioactivity concentration for visualization of heterogeneous tumor interiors was estimated to be as high as 0.2–0.5 MBq/mL. Liposomes containing 111In met this requirement and were administered to tumor-bearing mice. SPECT imaging successfully showed heterogeneous 111In distribution within the tumors in vivo with good spatial resolution. A threshold of 0.2 MBq/g for clear visualization of tumor heterogeneity was validated. Autoradiograms obtained ex vivo of excised tumors confirmed that the in vivo SPECT images accurately depicted the heterogeneous intratumoral accumulation of liposomes.

Conclusion

Intratumoral heterogeneity was successfully visualized under the optimized conditions using a SPECT/CT scanner.
Literatur
1.
Zurück zum Zitat Saga T, Koizumi M, Furukawa T, Yoshikawa K, Fujibayashi Y. Molecular imaging of cancer: evaluating characters of individual cancer by PET/SPECT imaging. Cancer Sci. 2009;100(3):375–81.PubMedCrossRef Saga T, Koizumi M, Furukawa T, Yoshikawa K, Fujibayashi Y. Molecular imaging of cancer: evaluating characters of individual cancer by PET/SPECT imaging. Cancer Sci. 2009;100(3):375–81.PubMedCrossRef
2.
Zurück zum Zitat Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJ, van Rijk PP, Burbach JP, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med. 2005;46(7):1194–200.PubMed Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJ, van Rijk PP, Burbach JP, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med. 2005;46(7):1194–200.PubMed
3.
Zurück zum Zitat Rowland DJ, Cherry SR. Small-animal preclinical nuclear medicine instrumentation and methodology. Semin Nucl Med. 2008;38(3):209–22.PubMedCrossRef Rowland DJ, Cherry SR. Small-animal preclinical nuclear medicine instrumentation and methodology. Semin Nucl Med. 2008;38(3):209–22.PubMedCrossRef
4.
Zurück zum Zitat Franc BL, Acton PD, Mari C, Hasegawa BH. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med. 2008;49(10):1651–63.PubMedCrossRef Franc BL, Acton PD, Mari C, Hasegawa BH. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med. 2008;49(10):1651–63.PubMedCrossRef
5.
Zurück zum Zitat Branderhorst W, Vastenhouw B, van der Have F, Blezer EL, Bleeker WK, Beekman FJ. Targeted multi-pinhole SPECT. Eur J Nucl Med Mol Imaging. 2011;38(3):552–61.PubMedCrossRef Branderhorst W, Vastenhouw B, van der Have F, Blezer EL, Bleeker WK, Beekman FJ. Targeted multi-pinhole SPECT. Eur J Nucl Med Mol Imaging. 2011;38(3):552–61.PubMedCrossRef
6.
Zurück zum Zitat Hwang AB, Franc BL, Gullberg GT, Hasegawa BH. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals. Phys Med Biol. 2008;53(9):2233–52.PubMedCrossRef Hwang AB, Franc BL, Gullberg GT, Hasegawa BH. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals. Phys Med Biol. 2008;53(9):2233–52.PubMedCrossRef
7.
Zurück zum Zitat Nuyts J, Vunckx K, Defrise M, Vanhove C. Small animal imaging with multi-pinhole SPECT. Methods. 2009;48(2):83–91.PubMedCrossRef Nuyts J, Vunckx K, Defrise M, Vanhove C. Small animal imaging with multi-pinhole SPECT. Methods. 2009;48(2):83–91.PubMedCrossRef
8.
Zurück zum Zitat Magota K, Kubo N, Kuge Y, Nishijima K, Zhao S, Tamaki N. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur J Nucl Med Mol Imaging. 2011;38(4):742–52.PubMedCrossRef Magota K, Kubo N, Kuge Y, Nishijima K, Zhao S, Tamaki N. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur J Nucl Med Mol Imaging. 2011;38(4):742–52.PubMedCrossRef
9.
Zurück zum Zitat Acton PD, Kung HF. Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol. 2003;30(8):889–95.PubMedCrossRef Acton PD, Kung HF. Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol. 2003;30(8):889–95.PubMedCrossRef
10.
Zurück zum Zitat Funk T, Sun M, Hasegawa BH. Radiation dose estimate in small animal SPECT and PET. Med Phys. 2004;31(9):2680–6.PubMedCrossRef Funk T, Sun M, Hasegawa BH. Radiation dose estimate in small animal SPECT and PET. Med Phys. 2004;31(9):2680–6.PubMedCrossRef
11.
Zurück zum Zitat Muller C, Forrer F, Schibli R, Krenning EP, de Jong M. SPECT study of folate receptor-positive malignant and normal tissues in mice using a novel 99mTc-radiofolate. J Nucl Med. 2008;49(2):310–7.PubMedCrossRef Muller C, Forrer F, Schibli R, Krenning EP, de Jong M. SPECT study of folate receptor-positive malignant and normal tissues in mice using a novel 99mTc-radiofolate. J Nucl Med. 2008;49(2):310–7.PubMedCrossRef
12.
Zurück zum Zitat Phillips WT, Goins BA, Bao A. Radioactive liposomes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(1):69–83.PubMedCrossRef Phillips WT, Goins BA, Bao A. Radioactive liposomes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(1):69–83.PubMedCrossRef
13.
Zurück zum Zitat Chisholm EJ, Vassaux G, Martin-Duque P, Chevre R, Lambert O, Pitard B, et al. Cancer-specific transgene expression mediated by systemic injection of nanoparticles. Cancer Res. 2009;69(6):2655–62.PubMedCrossRef Chisholm EJ, Vassaux G, Martin-Duque P, Chevre R, Lambert O, Pitard B, et al. Cancer-specific transgene expression mediated by systemic injection of nanoparticles. Cancer Res. 2009;69(6):2655–62.PubMedCrossRef
14.
Zurück zum Zitat Cheng D, Wang Y, Liu X, Pretorius PH, Liang M, Rusckowski M, et al. Comparison of 18F PET and 99mTc SPECT imaging in phantoms and in tumored mice. Bioconjug Chem. 2010;21(8):1565–70.PubMedCrossRef Cheng D, Wang Y, Liu X, Pretorius PH, Liang M, Rusckowski M, et al. Comparison of 18F PET and 99mTc SPECT imaging in phantoms and in tumored mice. Bioconjug Chem. 2010;21(8):1565–70.PubMedCrossRef
15.
Zurück zum Zitat Ogihara-Umeda I, Sasaki T, Kojima S, Nishigori H. Optimal radiolabeled liposomes for tumor imaging. J Nucl Med. 1996;37(2):326–32.PubMed Ogihara-Umeda I, Sasaki T, Kojima S, Nishigori H. Optimal radiolabeled liposomes for tumor imaging. J Nucl Med. 1996;37(2):326–32.PubMed
16.
Zurück zum Zitat Ogihara-Umeda I, Nishigori H. Radiolabeled liposomes for diagnostic imaging. In: Arshady R, editor. Radiolabeled and magnetic particulates in medicine and biology. London: Citus; 2001. p. 123–48. Ogihara-Umeda I, Nishigori H. Radiolabeled liposomes for diagnostic imaging. In: Arshady R, editor. Radiolabeled and magnetic particulates in medicine and biology. London: Citus; 2001. p. 123–48.
17.
Zurück zum Zitat Ogihara-Umeda I, Kojima S. Increased delivery of gallium-67 to tumors using serum-stable liposomes. J Nucl Med. 1988;29(4):516–23.PubMed Ogihara-Umeda I, Kojima S. Increased delivery of gallium-67 to tumors using serum-stable liposomes. J Nucl Med. 1988;29(4):516–23.PubMed
18.
Zurück zum Zitat Ogihara-Umeda I, Kojima S. Cholesterol enhances the delivery of liposome-encapsulated gallium-67 to tumors. Eur J Nucl Med. 1989;15(9):612–7.PubMedCrossRef Ogihara-Umeda I, Kojima S. Cholesterol enhances the delivery of liposome-encapsulated gallium-67 to tumors. Eur J Nucl Med. 1989;15(9):612–7.PubMedCrossRef
19.
Zurück zum Zitat Ogihara-Umeda I, Sasaki T, Nishigori H. Development of a liposome-encapsulated radionuclide with preferential tumor accumulation—the choice of radionuclide and chelating ligand. Int J Radiat Appl Instrum B. 1992;19(7):753–7.CrossRef Ogihara-Umeda I, Sasaki T, Nishigori H. Development of a liposome-encapsulated radionuclide with preferential tumor accumulation—the choice of radionuclide and chelating ligand. Int J Radiat Appl Instrum B. 1992;19(7):753–7.CrossRef
20.
Zurück zum Zitat Mok GS, Tsui BM, Beekman FJ. The effects of object activity distribution on multiplexing multi-pinhole SPECT. Phys Med Biol. 2011;56(8):2635–50.PubMedCrossRef Mok GS, Tsui BM, Beekman FJ. The effects of object activity distribution on multiplexing multi-pinhole SPECT. Phys Med Biol. 2011;56(8):2635–50.PubMedCrossRef
21.
Zurück zum Zitat Pissarek M, Meyer-Kirchrath J, Hohlfeld T, Vollmar S, Oros-Peusquens A, Flögel U, et al. Targeting murine heart and brain: visualisation conditions for multi-pinhole SPECT with 99mTc- and 123I-labelled probes. Eur J Nucl Med Mol Imaging. 2009;36(9):1495–509.PubMedCrossRef Pissarek M, Meyer-Kirchrath J, Hohlfeld T, Vollmar S, Oros-Peusquens A, Flögel U, et al. Targeting murine heart and brain: visualisation conditions for multi-pinhole SPECT with 99mTc- and 123I-labelled probes. Eur J Nucl Med Mol Imaging. 2009;36(9):1495–509.PubMedCrossRef
22.
Zurück zum Zitat Forrer F, Valkema R, Bernard B, Schramm NU, Hoppin JW, Rolleman E, et al. In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging. 2006;33(10):1214–7.PubMedCrossRef Forrer F, Valkema R, Bernard B, Schramm NU, Hoppin JW, Rolleman E, et al. In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging. 2006;33(10):1214–7.PubMedCrossRef
23.
Zurück zum Zitat Kung MP, Kung HF. Mass effect of injected dose in small rodent imaging by SPECT and PET. Nucl Med Biol. 2005;32(7):673–8.PubMedCrossRef Kung MP, Kung HF. Mass effect of injected dose in small rodent imaging by SPECT and PET. Nucl Med Biol. 2005;32(7):673–8.PubMedCrossRef
24.
Zurück zum Zitat Gindy ME, Prud’homme RK. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Deliv. 2009;6(8):865–78.PubMedCrossRef Gindy ME, Prud’homme RK. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Deliv. 2009;6(8):865–78.PubMedCrossRef
25.
Zurück zum Zitat Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol. 2009;6(1):43–51.PubMedCrossRef Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol. 2009;6(1):43–51.PubMedCrossRef
26.
Zurück zum Zitat Zhao S, Kuge Y, Mochizuki T, Takahashi T, Nakada K, Sato M, et al. Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J Nucl Med. 2005;46(4):675–82.PubMed Zhao S, Kuge Y, Mochizuki T, Takahashi T, Nakada K, Sato M, et al. Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J Nucl Med. 2005;46(4):675–82.PubMed
27.
Zurück zum Zitat Picchio M, Beck R, Haubner R, Seidl S, Machulla HJ, Johnson TD, et al. Intratumoral spatial distribution of hypoxia and angiogenesis assessed by 18F-FAZA and 125I-Gluco-RGD autoradiography. J Nucl Med. 2008;49(4):597–605.PubMedCrossRef Picchio M, Beck R, Haubner R, Seidl S, Machulla HJ, Johnson TD, et al. Intratumoral spatial distribution of hypoxia and angiogenesis assessed by 18F-FAZA and 125I-Gluco-RGD autoradiography. J Nucl Med. 2008;49(4):597–605.PubMedCrossRef
28.
Zurück zum Zitat Busk M, Horsman MR, Jakobsen S, Keiding S, van der Kogel AJ, Bussink J, et al. Imaging hypoxia in xenografted and murine tumors with 18F-fluoroazomycin arabinoside: a comparative study involving microPET, autoradiography, pO2-polarography, and fluorescence microscopy. Int J Radiat Oncol Biol Phys. 2008;70(4):1202–12.PubMedCrossRef Busk M, Horsman MR, Jakobsen S, Keiding S, van der Kogel AJ, Bussink J, et al. Imaging hypoxia in xenografted and murine tumors with 18F-fluoroazomycin arabinoside: a comparative study involving microPET, autoradiography, pO2-polarography, and fluorescence microscopy. Int J Radiat Oncol Biol Phys. 2008;70(4):1202–12.PubMedCrossRef
29.
Zurück zum Zitat Ueda M, KudoT, Mutou Y, Umeda IO, Miyano A, Ogawa K, et al. Evaluation of [125I]IPOS as a molecular imaging probe for hypoxia-inducible factor-1-active regions in a tumor: comparison among SPECT/CT imaging, autoradiography, and immunohistochemistry. Cancer Sci. 2011. doi:10.1111/j.1349-7006.2011.02057.x. Ueda M, KudoT, Mutou Y, Umeda IO, Miyano A, Ogawa K, et al. Evaluation of [125I]IPOS as a molecular imaging probe for hypoxia-inducible factor-1-active regions in a tumor: comparison among SPECT/CT imaging, autoradiography, and immunohistochemistry. Cancer Sci. 2011. doi:10.​1111/​j.​1349-7006.​2011.​02057.​x.
Metadaten
Titel
High resolution SPECT imaging for visualization of intratumoral heterogeneity using a SPECT/CT scanner dedicated for small animal imaging
verfasst von
Izumi O. Umeda
Kotaro Tani
Keisuke Tsuda
Masamitsu Kobayashi
Mayumi Ogata
Sadaaki Kimura
Mitsuyoshi Yoshimoto
Shuji Kojima
Kunikazu Moribe
Keiji Yamamoto
Noriyuki Moriyama
Hirofumi Fujii
Publikationsdatum
01.01.2012
Verlag
Springer Japan
Erschienen in
Annals of Nuclear Medicine / Ausgabe 1/2012
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-011-0542-7

Weitere Artikel der Ausgabe 1/2012

Annals of Nuclear Medicine 1/2012 Zur Ausgabe