Skip to main content
Erschienen in: Virology Journal 1/2018

Open Access 01.12.2018 | Research

High risk human papillomavirus prevalence and genotype distribution among women infected with HIV in Manaus, Amazonas

Erschienen in: Virology Journal | Ausgabe 1/2018

Abstract

Background

Human immunodeficiency virus (HIV)-positive women have a high prevalence of human papillomavirus (HPV), and are infected with a broader range of HPV types than HIV-negative women. We aimed to determine the prevalence of cervical cytologic abnormalities, high-risk (HR)-HPV prevalence, type distribution according to the severity of cervical lesions and CD4 cell count and identify factors associated with HR-HPV infection among women living with HIV in Manaus, Amazonas.

Methods

We enrolled 325 women living with HIV that attended an infectious diseases referral hospital. Each woman underwent a gynecological exam, cervical cytology, HR-HPV detection by Polymerase chain Reaction (PCR) using the BD Onclarity™ HPV Assay, colposcopy and biopsy, when necessary. We assessed the associations between potential risk factors and HR-HPV infection.

Results

Overall, 299 (92.0%) women had a PCR result. The prevalence of HR-HPV- infection was 31.1%. The most prevalent HR-HPV types were: 56/59/66 (32.2%), 35/39/68 (28.0%), 52 (21.5%), 16 (19.4%), and 45 (12.9%). Among the women with HR-HPV infection (n = 93), 43.0% had multiple infections. Women with HPV infection showed higher prevalence of cervical abnormalities than that HPV-negative (LSIL: 22.6% vs. 1.5%; HSIL: 10.8% vs. 0.0%). The prevalence of HR-HPV among women with cytological abnormalities was 87.5% for LSIL and 100.0% for HSIL. Women with CD4 < 200 cell/mm3 showed the highest HR-HPV prevalence (59.3%) although this trend was not statistically significant (p-value = 0.62). The mean CD4 cell count decreased with increasing severity of cervical lesions (p-value = 0.001). The multivariable analysis showed that increasing age was associated with a decreased risk of HR-HPV infection with an adjusted prevalence odds ratio of 0.9 (95.0% CI: 0.9–1.0, p-value: 0.03) for each additional year. The only factor statistically significant associated with HR-HPV infection was CD4 cell count.

Conclusions

HR-HPV and abnormal cytology prevalence are high among women in the Amazonas. The low CD4 cell count was an important determinant of HPV infection and abnormal cytological findings. HPV quadrivalent vaccination used in Brazil might not offer protection for an important fraction of HPV-related disease burden in women living with HIV. This is partly explained by the high presence of non targeted vaccine HR-HPVs, such as the HPV genotype groups 56/59/66, 35/39/68 and individually HPV-52 and HPV-45, some of which contribute to high-grade lesion.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12985-018-0942-6) contains supplementary material, which is available to authorized users.
Abkürzungen
AOR
Adjusted Odds Ratio
ASC-H
Atypical Squamous Cells of Undetermined Significance, when it is not possible to disregard high degree lesions
ASC-US
Atypical Squamous Cells of Undetermined Significance
CD4
Molecule that is expressed on the surface of some T cells
CI
Confidence Interval
FCECON
Fundação Centro de Controle de Oncologia
HAART
Highly Active Antiretroviral Therapy
HIV
Human Immunodeficiency Virus
HPV
Human Papillomavirus
HR-HPV
High Risk HPV
HSIL
High-grade Squamous Intraepithelial Lesions
ICESP
Instituto de Câncer do Estado do São Paulo
LSIL
Low-grade Squamous Intraepithelial Lesions
OR
Odds Ratio
PCR
Polymerase Chain Reaction
SD
Standard Deviation
STI
Sexually Transmitted Infection

Background

Infection with human papilloma virus (HPV) is the main cause of cervical cancer [1]. In Brazil, it is estimated that approximately 10.7% of women in the general population with normal cytology have cervical HPV infection [2]. In the state of Amazonas, HPV has been shown to be the most prevalent sexually transmitted infection (STI) in the population [3].
Young women are the most affected by HPV and by multiple infections. The prevalence tends to decrease with increasing age [4]. A high viral load and the persistence of oncogenic HPV types are progression factors for precancerous lesions and cervical cancer [5]. Additional factors might influence the development of precursor lesions or cancer, such as those related to immunity, genetics and sexual behaviour. In women over 30 years, HPV infection tends to be more persistent than in younger women [6].
Women living with HIV have a higher prevalence of HPV infection with high-risk oncogenic (HR-HPV) multiple infections. Immunosuppression resulting from HIV increases the risk of developing squamous intraepithelial lesions when compared with the general population [710]. Patients more severely immunocompromised as a result of HIV infection might have a higher incidence and persistence of lesions caused by HPV [8].
It is also possible that adherence to highly active antiretroviral therapy (HAART) is associated with decreased development of precursor lesions of cervical cancer and improved clearance of HPV infection, increasing survival of women living with HIV with a consequent decrease in cases of cervical cancer [11].
In Amazonas, Brazil, there are few data on the epidemiology of HPV and related cancers and the impact of HIV on these conditions. The objective of this study was to estimate the prevalence of cervical HPV infection and the frequency of genotypes, according to the severity of cervical lesions and CD4 cell counts and identify factors associated with HPV infection in women living with HIV/AIDS that attended a reference hospital for HIV/AIDS in Manaus, Amazonas.

Methods

Study design

A cross-sectional study was conducted for HR-HPV screening in women living with HIV/AIDS that attended an outpatient HIV reference service within a tertiary care hospital (FMT-HVD). This teaching hospital attends most of the HIV/AIDS cases in the Amazon state (95.0%). This reference hospital is the unique ART provider in the Amazonas state. The study was performed from May 2014 to February 2015.

Study participants

Women who had a confirmed HIV diagnosis and consecutively sought a gynecological visit to perform routine cytology in the HIV outpatient service of the FMT-HVD hospital were eligible for the study. Women were included if older than 18 years of age, agreed to sign the consent form, were not pregnant and did not have a contraindication for Pap smear examination (i.e., current use of vaginal ovules, menstruation, vaginal clean-up during the last 24 h. In case of contraindication they were rescheduled after conditions were resolved. Hysterectomized women were excluded.
In this study, we aimed to include 323 women living with HIV, based on a prevalence of HPV infection in women living with HIV/AIDS of 65.2%, [12] with 80.0% power and assuming a 5.0% level of significance.

Data and sample collection

After signing the consent form, a nurse interviewed women using a structured questionnaire. The questionnaire included items on sociodemographic, clinical, behavioural, reproductive health and HIV history, including current antiretroviral therapy (ART) use and previous change in ART regimen, and current STI signs and symptoms. Data on CD4 cell counts (cells/mm3) and detectable viral load (copies/mL), and nadir CD4 cell count (cells/mm3) were obtained from electronical medical records of the hospital. However, when the last determination had been undertaken more than three months before enrolment, a blood sample was collected.
The participants underwent a gynecological evaluation and two samples of cervical cells were collected. The first sample was taken for conventional cytology using a long Ayres’s spatula for subsequent processing at the hospital. The second sample was collected with a cervical brush (Rovers Cervex-Brush Combi®, Rovers Medical Devices B.V. Oss, the Netherlands) and introduced into SUREPATH® Preservative Fluid (TriPath Imaging, Burlington, NC). Samples were transported on the same day at room temperature to the Fundação Centro de Controle de Oncologia (FCECON) laboratory, where 1 mL of each sample was stored at − 80 °C until they were shipped for HPV determination.

Cervical cytology

Cervical cytology samples were processed at the Department of Pathology of the FMT-HVD. The smears were stained with the Papanicolaou stains and the 2001 Bethesda system was used for classification of cytology results [13]. Cytology examination was carried out under blinded conditions and independently of HPV detection results in PCR by two cytopathologists. A third cytopathologist evaluated discordant results, and if discordancy persisted, agreement was reached between the three.

HPV detection and typing

Samples for HR-HPV determination were shipped to the Instituto de Câncer do Estado do São Paulo (ICESP). They were processed using the BD Onclarity™ HPV Assay (BD Diagnostics, Sparks, MD), which can detect 14 HR-HPV genotypes by simultaneous identification of the HR types 16, 18, 31, 45, 51, 52, and due to the limits of this test, other HR genotypes reported by genotype group (33/58; 56/59/66; 35/39/68). The BD Onclarity™ HPV Assay has shown good performance when compared with Hybrid Capture 2, with specificity ranging from 50.3 to 95.2% and sensitivity from 95.2 to 98.0% [14, 15]. Molecular testing was performed using the automated BD Viper™ LT System (BD Diagnostics, Sparks, MD). HR-HPV detection was carried out under blinded conditions with regard to subjects’ characteristics and cytology results.

Data analysis

Data were analyzed using Stata 10.0 (StataCorp LP, College Station, TX). Data were described using percentages and medians with interquartile ranges (IQR), as appropriate. Prevalence and 95.0% confidence interval (CI) were calculated. The results were categorized according to CD4 cell counts (< 200; 200–499; ≥500 cells/mm3). Comparisons between HR-HPV infected and non-infected women were formally carried out using for categorical variables the X2 test, and for continuous variables, the student-t test or the Fisher exact test (when expected frequencies were less than 5), or the U-Mann Whitney test (for non-parametric variables). To ascertain associations between potential risk factors and HR-HPV infection, prevalence odds ratios (pOR) were calculated with their corresponding 95.0% CI. For the multivariate analysis, pOR were calculated by multiple logistic regression modelling that included covariates for potential confounders, and for factors that were statistically significant (p < 0.1) at univariate analysis. All tests were two-tailed and the p-value less than 0.05 was considered statistically significant.
The agreement for the blinded and independently cytology reading was measured through the percentage of overall agreement, the percentage of positive agreement, percentage of negative agreement, and the prevalence-adjusted bias-adjusted (PABA)-kappa coefficient, by lesion severity.

Ethics

The study was approved by the Ethical Institutional Review Board of FMT-HVD (number: 466/2012). Patients gave their signed consent to participate. All women were informed about conventional cytology and HR-HPV detection results. Colposcopy and biopsy were performed following recommendations of the Brazilian Ministry of Health [16]. The study is reported following the STROBE statement and using its checklist for cross-sectional studies [17].

Results

Study population description

A total of 331 women were pre-screened and all agreed to participate in the study. Among these, six were excluded because no HIV positive result could be documented in the medical record. Thus, the total number of participants available for analysis was 325. Their median age was 40.7 years (IQR: 33.1–46.2). A total of 299 women living with HIV had a valid PCR result and 324 a valid result in conventional cytology. The median CD4 cell count with IQR among ART users and ART-naïve when HIV was diagnosed was 321 (173–487) and 620 (422–739). The median (IQR) CD4+ cell count among ART users and patients not on ART was 257 (133–283) and 197.5 (88–314.5), respectively.
Table 1 shows the socio-demographic, risk behaviour, reproductive health and HIV history, and current sexually transmitted infections signs and symptoms. Women living with HIV with an HR-HPV-positive result were younger than those with HR-HPV-negative results (median in years: 38.8 vs. 41.1, p-value= 0.3). A higher proportion of those with an HR-HPV-positive result had not performed previously cervical cytologies than those with an HR-HPV-negative result (75.0% vs. 25.0%, p-value= 0.02), and most frequently had CD4 cells with counts< 200 cells/mm3 than women with HP-HPV-negative result (40.7% vs. 59.3, p-value=0.001). In general, in each age group, women with a CD4 cell count < 200 cells/mm3 had a higher HR-HPV prevalence than women with higher CD4 cell counts, although 95.0% CI was large, suggesting a small number In the CD4 cell count < 200 cells/mm3 category.
Table 1
Description of population characteristics and results of bivariable and multivariable analysis for risk factors related to HR-HPV infection among women living with HIV in Manaus, Amazonas
Variables
HR-HPV negative n = 206 N (%)
Median (IQR)
HR-HPV positive n = 93 N (%)
Median (IQR)
Crude pOR
(95.0% CI)
p-value
Adjusted pOR (95.0% CI)
p-value
Sociodemographic
      
Age in years (N = 299)
41.1 (45.9–33.5)
38.8 (31.2–44.4)
0.9 (0.9–1.0)
0.03
0.9 (0.9–1.0)
0.03
  ≤ 34
56 (27.2)
35 (37.6)
1
   
 35–39
30 (14.6)
18 (19.3)
1.0 (0.5–2.0)
0.91
 40–44
55 (26.7)
18 (19.4)
0.5 (0.3–1.0)
0.27
  ≥ 45
65 (31.5)
22 (23.7)
0.5 (0.3–1.0)
0.06
Civil status (N = 299)
      
 Married/cohabitating
133 (64.6)
50 (53.8)
1
   
 Single/not cohabitating
73 (35.4)
43 (46.2)
1.5 (0.9–2.5)
0.08
Level of education (N = 299)
  < Primary school
42 (20.4)
25 (26.8)
1
   
  At least primary school
164 (79.6)
68 (73.2)
1.4 (0.8–2.5)
0.21
Currently working (N = 299)
 Yes
83 (40.3)
31 (33.3)
1
   
 No
123 (59.7)
62 (66.7)
1.3 (0.8–2.2)
0.25
Sexual behaviour and other risk behaviour
Current smokers (N = 299)
 No
191 (92.7)
88 (94.6)
1
   
 Yes
15 (7.3)
5 (5.4)
0.7 (0.2–2.0)
0.54
Age at first sex (years) (N = 297)
  ≤ 15
108 (52.4)
44 (48.4)
0.8 (0.5–1.3)
0.52
  > 15
98 (47.6)
47 (51.6)
1
   
Sexual partners in life to date (N = 297)
  < 4
60 (29.3)
28 (30.4)
1
   
 4 to 7
65 (31.7)
32 (34.8)
1.0 (0.5–1.9)
0.87
  ≥ 8
80 (39.0)
32 (34.6)
0.8 (0.4–1.5)
0.62
Regular partner currently (N = 299)
 Yes
148 (71.8)
62 (66.7)
1
   
 No
58 (28.2)
31 (33.3)
1.2 (0.7–2.1)
0.37
Condom use at last sex with regular partner (N = 210)
 Yes
107 (72.3)
45 (72.6)
1
   
 No
41 (27.7)
17 (27.4)
0.9 (0.5–1.9)
0.97
Occasional sex partner currently (N = 299)
 No
184 (89.3)
82 (88.2)
1
   
 Yes
22 (10.7)
11 (11.8)
1.1 (0.5–2.4)
0.78
Condom use at last sex with occasional partner (N = 33)
 Yes
16 (72.7)
8 (72.7)
1
   
 No
6 (27.3)
3 (27.3)
1.0 (0.2–5.0)
1.00
Reproductive and sexual health
Current oral contraceptive use (N = 299)
 Yes
202 (98.1)
90 (96.7)
1
   
 No
4 (1.9)
3 (3.3)
1.6 (0.3–7.6)
0.50
Previous cervical cytology (N = 299)
 Yes
204 (99.0)
87 (93.6)
1
   
 No
2 (1.0)
6 (6.4)
7.0 (1.3–35.5)
0.02
Ever had an STI (N = 299)
 No
146 (70.9)
65 (69.9)
1
   
 Yes
60 (29.1)
28 (30.1)
1.0 (0.6–1.7)
0.86
Parity (N = 299)
      
 Nulliparous
11 (5.3)
10 (10.8)
1
   
 1 to 3
97 (47.0)
39 (41.9)
0.4 (0.1–1.1)
0.09
  ≥ 4
98 (47.7)
44 (47.3)
0.4 (0.2–1.2)
0.14
Ever had an abortion (N = 278)
 No
90 (46.2)
44 (53.0)
1
   
 Yes
105 (53.8)
39 (47.0)
0.7 (0.4–1.2)
0.30
HIV history
 Time since HIV diagnosis in years (N = 298)
6 (3–10)
5 (2–10)
0.9 (0.9–1.0)
0.53
 CD4 cell count nadirb (N = 294)
195 (83–317)
221 (86–357)
1.0 (0.9–1.0)
0.90
CD4 cells/mm3a (N = 298)
348 (197–550)
322 (162–491)
0.9 (0.9–1.0)
0.30
  
 ≥500
115 (56.1)
36 (38.7)
1
 
1
 
 200–499
79 (38.5)
41 (44.1)
1.6 (0.9–2.8)
0.06
1.6 (0.9–2.8)
0.06
 < 200
11 (5.4)
16 (17.2)
4.7 (2.0–11.3)
< 0.001
4.7 (2.0–11.3)
< 0.001
 Detectable viral load (copies/mL)a (N = 298)
6049 (390–32,000)
11,112.5 (1070–43,258.5)
1.0 (0.9–1.0)
0.60
  
Current ART (N = 299)
 Yes
185 (89.8)
78 (83.9)
1
   
 No
21 (10.2)
15 (16.1)
1.6 (0.8–3.4)
0.14
Previous change in ART regimen (N = 270)
 No
119 (62.9)
44 (54.3)
1
   
 Yes
70 (37.1)
37 (45.7)
1.4 (0.8–2.4)
0.18
ART Antiretroviral therapy, CI Confidence interval, IQR Interquartile range, pOR Prevalence odds ratio, SD Standard deviation, STI Sexually transmitted infection, p-value < 0.05: statistically significant
aMost recent blood test collected within 3 months before enrolment
bIt is the lowest CD4 cell count of the patient

HR-HPV prevalence, associated factors, and genotype distribution by age and CD4 cell count category

The results of the PCR screening showed that 93 out of 299 women were infected with HR-HPV, resulting in a prevalence of 31.1% (95.0% CI: 25.8–36.4). The distribution of age specific HR-HPV prevalence ranged from 25.4% in the age group 31–35 years to 43.5% in those aged > 50 years. The proportion seemed to increase from 36 years onwards, peaking at older women (Fig. 1) although this pattern was not statistically significant (p-value = 0.07). HR-HPV prevalence by CD4 cell group was 23.8% in those with CD4 > 500 cell/mm3, 34.2% in 200–499 cell/mm3 and 59.3% in < 200 cell/mm3. The proportion increased with decreasing CD4 cell count, although this pattern was not statistically significant (p-value = 0.62).
The most prevalent HR-HPV types among 93 HR-HPV-positive and HIV positive women were HPV pool-56/59/66 (32.3%), HPV-35/39/68 (28.0%) and isolated HPV-52 (21.5%), HPV-58 (20.4%), HPV-16 (19.4%), HPV-45 (12.9%), HPV-31 (11.8%), and HPV-18 (2.2%) (Fig. 2). Multiple infections (range: 2–4 types) were identified in 40 of 93 women (43.0%). The prevalence of women with multiple HR-HPV infections was 13.4% (40/299) (95.0% CI: 9.5%–17.3). Among cases of multiple infection (N = 40), the prevalence of HPV-16 was 27.5% (n = 11), of HPV-18 was 5.0% (n = 2) and of HPV-52 was 35.0% (n = 14). Multiple infections had a higher HR-HPV prevalence in older age groups (41–45 years: 18.9%; 46–50 years: 18.9%; > 50 years: 17.4%) than in younger age groups (< 26 years: 7.3%; 26–30 years: 13.2%; 31–35 years: 11.9%) but no trend with age was found (p-value = 0.10).
When compared with HR-HPV-negative women, those with a HR-HPV-positive result were younger, a lower proportion had undertaken a cervical cytology ever, had a lower median CD4 cell count at last determination, and a higher proportion had CD4 cell count < 200 cell/mm3 (Table 1). Results from the multivariable analysis showed that increasing age was associated with a decreased risk of HR-HPV infection with an adjusted pOR of 0.9 (95.0% CI: 0.9–1.0, p-value= 0.03) for each additional year. The only factor statistically significant associated with HR-HPV infection was CD4 cell count: women with CD4 cell count < 200 cell/mm3 had an pOR of having HR-HPV that was 4.7 (95.0% CI: 2.0–11.3, p-value < 0.001) times greater than that of women with CD4 cell count ≥500 cells/mm3.

Relationship between HR-HPV infection, conventional cytology results, and CD4 cell counts

Overall, 84.2% (275) of women had a normal cytology, 2.7% (9) ASCUS, 1.7% (5) ASC-H, 8.1% (25) LSIL, 3.4% (10) HSIL, and no cancer cases. The proportion of cytological abnormalities was higher in women with HR-HPV-positive than in women with a negative HR-HPV-result. (Additional file 1: Table S1).
By cytological grade, the prevalence of HR-HPV was 37.5% in ASC-US, 80.0% in ASC-H, 87.5% in LSIL, and 100.0% in HSIL. The prevalence of HR-HPV increased with the degree of cytological abnormalities, ranging from 21.9% among women with normal cytology to 100.0% among women with HSIL (p-value for trend < 0.0001). The same pattern was observed by decreasing CD4 cell count groups (Table 2).
Table 2
HR-HPV prevalence as determined by PCR, according to the cytological findings and HIV viral load among women living with HIV in Manaus, Amazonas
HR-HPV Prevalence
Cytology
General
CD4 ≥ 500 cell/mm3
CD4 200–499 cell/mm3
CD4 < 200 cell/mm3
Unsatisfactory
0
0
0
0
Normal
55/251 (21.9)
27/139 (19.4)
20/94 (21.3)
8/17 (47.1)
ASC-US
3/8 (37.5)
1/1 (100)
1/4 (25)
1/3 (33.3)
ASC-H
4/5 (80.0)
2/2 (100)
2/3 (66.7)
0
LSIL
21/24 (87.5)
4/6 (66.7)
13/14 (92.9)
4/4 (100)
HSIL
10/10 (100)
2/2 (100)
5/5 (100)
3/3 (100)
ASC-H Atypical Squamous Cells of Undetermined Significance, when it is not possible to disregard high degree lesions; ASC-US Atypical Squamous Cells of Undetermined Significance, LSIL Low-grade Squamous Intraepithelial Lesions, HSIL High-grade Squamous Intraepithelial Lesions, HR-HPV High Risk Human Papillomavirus
HPV- 56/59/66 (either 56, 59, 66 or any combination of these three types) was the most prevalent genotype (52.3%) among 21 HR-HPV-positive women with LSIL and the most prevalent one (60.0%) among 10 HR-HPV-positive women with HSIL in a total of 93 women coinfected with HR-HPV and HIV (Table 3). The second most common genotypes for LSIL were HPV-16 (23.8%) and HPV-35/39/68 (23.8%), whereas for HSIL HPV-16 was found in half (50.0%) of these women. None of the women with LSIL and HSIL were infected with HPV-18. The prevalence of HR HPV genotype increased by cytological grade in HPV-16, HPV-31, HPV-45, HPV-33/58, and HPV- single infection and multiple infection (p-value for trend <0.001), and in HPV-52 (p-value for trend = 0.04).
Table 3
Distribution of HR-HPV genotype according to cytology results in 93 HPV-HIV positive women in Manaus, Amazonas
 
Normal (n = 55)
ASC-US (n = 3)
ASC-H (n = 4)
LSIL (n = 21)
HSIL (n = 10)
p-test for trends
HPV-16
6 (10.9)
1 (33.3)
1 (25.0)
5 (23.8)
5 (50.0)
< 0.001
HPV-18
1 (1.8)
0 (0.0)
1 (25.0)
0 (0.0)
0 (0.0)
0.30
HPV-31
4 (7.3)
0 (0.0)
1 (25.0)
4 (19.0)
2 (20.0)
< 0.001
HPV-45
4 (7.3)
0 (0.0)
1 (25.0)
4 (19.0)
3 (30.0)
< 0.001
HPV-51
6 (10.9)
1 (33.3)
0 (0.0)
2 (9.5)
0 (0.0)
0.17
HPV-52
13 (23.6)
0 (0.0)
1 (25.0)
3 (14.3)
3 (30.0)
0.04
HPV-33/58
9 (16.4)
2 (66.7)
1 (25.0)
4 (19.0)
3 (30.0)
< 0.001
HPV-35/39/68
17 (30.9)
1 (33.3)
0 (0.0)
5 (23.8)
3 (30.0)
0.05
HPV-56/59/66
18 (32.7)
0 (0.0)
0 (0.0)
11 (52.3)
6 (60.0)
0.05
HPV-16 only
4 (7.3)
0 (0.0)
1 (25.0)
0 (0.0)
2 (20.0)
0.44
HPV-18 only
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
0.30
HPV-16 or − 18
7 (12.7)
1 (33.3)
2 (50.0)
5 (23.8)
5 (50.0)
0.40
HPV- single infection
38 (69.1)
1 (33.3)
3 (75.0)
9 (42.9)
2 (20.0)
< 0.001
HPV- multiple infection
17 (30.9)
2 (66.7)
1 (25.0)
12 (57.1)
8 (80.0)
< 0.001
2 types
13 (23.6)
2 (66.7)
1 (25.0)
9 (42.9)
5 (50.0)
3 types
2 (3.6)
0 (0.0)
0 (0.0)
1 (4.8)
3 (30.0)
4 types
2 (3.6)
0 (0.0)
0 (0.0)
2 (9.5)
0 (0.0)
p-value < 0.05: statistically significant
Compared to those with single infections, women with multiple HR-HPV infections had a higher prevalence of LSIL (42.9% vs. 57.1%, p < 0.001) and HSIL (20.0% vs. 80.0%, p < 0.001). In women with multiple HR-HPV infections, the degree of severity of cytological lesions was strongly correlated with a decreased CD4 cell count (Additional file 1: Table S2).
Figure 3 shows that in the HSIL category, women with CD4 counts ≥ 500 cell/mm3 had a lower proportion of multiple HR-HPV-infections (50.0%) than those with CD4 200–499 cell/mm3 (80.0%) and those with CD4 < 200 cell/mm3 (100.0%).
The overall agreement for conventional cytology observed between the blinded first and second evaluators was 89.0%. By type of lesion, it was > 90.0% and the PABA-kappa statistic ranged from 0.82–0.97 (Additional file 1: Table S3).

Discussion

This study provides evidence about the prevalence of HR-PV infection, their associations, and cervical lesions among women living with HIV, an area of research with scarce literature from the Amazonas.
The prevalence of HR-HPV infection found, 31.1%, is approximately half of that found in another study in HIV positive women in Amazonas (61.6%) [18]. This discrepancy could be explained because in the latter study women were younger (median age: 32 years [IQR]: 27–38, vs. 40.7 years [IQR]: 33.1–46.2) and a peak among younger women has been described in a number of countries [19]. In the same study, women had a lower median CD4 cell count at enrolment (338.5 [IQR: 211.5–513.3] cells/mm3 vs. 504.0 [IQR: 321.0–676.5), which can limit the clearance of the virus, and 16.0% of women were commercial sex workers, which is a highly HPV exposed population [20]. Other studies in Brazil involving HIV positive women have found higher prevalence of HR-HPV from 35.7% to 98.0% [12, 2124]. The differences with the results from other studies might be partly explained by information bias. Indeed, the study design used does not allow to differentiate between prevalent, incident and persistent HR-HPV infection leading to misclassification of the infection status and limiting comparability of our estimates with those from other studies.
We found that 43.0% of HR-HPV-infected women had multiple infections, which is in agreement with other Brazilian, ranging from 32.2% to 64.8% [2427] and ranged from 52.0% to 64.3% in international studies [28, 29]. Women living with HIV are more likely to harbor multiple HPV infection than immunocompetent women [30] which is associated with an increased risk of intraepithelial neoplasia and of cancer [31, 32]. This probably reflects the effect of HIV-induced immunosuppression [33] rather than sexual risk behaviour [34].
In the present study, we found a wide diversity regarding HR-HPV types and their distribution, with HPV-52, HPV-16 and HPV-45 being the most frequent individual types. However, this needs to be taken with caution because the PCR method used did not allow the measurement for all individual genotypes and the various groupings of HPV types difficult the interpretation. As an example, the high prevalence of HPV-35/39/68 might be driven by HPV-35 alone and this type has been implicated in HSIL and invasive cervical cancer in women living with HIV [35, 36]. Women living with HIV are characterized by a wide variation of HPV genotypes, probably related to their sexual behaviour and the reactivation of latent infections, which can facilitate infection by different HPV genotypes. Contrary to what most studies suggest,[10, 12, 21, 28, 30, 3739] HPV-16 was not the most common HPV type. This is in line with the results from other studies among indigenous populations in the Amazonas, [40] among women living with HIV in Brazil, [26] in the USA [29] and in Africa, [41] that corroborate our findings and place HPV-16 as not the most common type detected. It has been suggested that the contribution of HPV-16 correlates inversely with the overall HPV prevalence [42]. This pattern is explained by a higher prevalence of other HPV types in areas where HPV is extremely common, and the increase is not explained by the contribution of any other single type. Nevertheless, HPV-16 was the most prevalent individual HPV type among HSIL lesions, which is consistent with the results of a meta-analysis that included 19,883 women living with HIV from 86 studies worldwide [36]. This meta-analysis reported that HPV-16 positivity tended to increase with severity of cervical lesions. In Africa, HPV-16 accounts for 31.1% of HSIL and 46.6% of invasive cervical cancers. In Latin America, HPV-16 accounts for 37.5% of HSIL with no data available for invasive cervical cancers [36].
A low number of cases of HPV-18 were detected although it ranks amongst the top positions in most regions [37, 39]. In addition, HPV-18 accounts for a high proportion of HPV-positive in HSIL and invasive cervical cancers among women living with HIV [36]. Likewise, in other studies involving women living with HIV the HPV-18 contribution has been low [21, 24, 4345]. It has either not been commonly detected in Brazilian studies [46, 47] or has shown a prevalence below 1.0% in asymptomatic women [4850]. In two studies conducted in the Amazon region HPV-18 was not detected [37, 39]. It is unlikely that the low prevalence of HPV-18 found is related with the PCR method used. The BD Onclarity assay used showed good performance when compared with standard genotyping test [14, 15]. For HPV-18 (single or multiple infection), the agreement with the GP5+/6+ LMNX assay was high, with a kappa of 0.93 (95.0% CI: 0.87–0.99) [51].
Age-specific HR-HPV distribution presented as a unimodal distribution skewed to the left although this pattern was not statistically significant. Although there are studies that indicate a higher prevalence of HPV in younger women,[4, 5255] we observed a higher prevalence of HR-HPV prevalence among older women (> 50 years) which has also been described in some other studies [10, 19, 32, 5658]. It has been suggested that the increase in the perimenopause period may be due to higher rates of HPV persistence and recurrence at older ages rather than new HPV acquisition, [59] and that viral characteristics such as HPV type and variants, [60] weakened immune system, changes in sexual behaviour during middle age (both for men and women [61]), or previous individual screening practices, may play a role [56]. The association between younger age and higher prevalence of HR-HPV is probably due to the presence of transient infections in this group of women; however, this association is generally observed in non-HIV infected women but is not consistent in women living with HIV/AIDS [62].
In multivariable analysis, increasing age presented only borderline association with an increasing risk of presenting HR-HPV. We did not observe a peak of prevalence among young women (< 26 years) which might be explained because only 13.0% in our sample were < 26 years and among them, only 11 (27.0%) were infected with HR-HPV.
In the present study we found a clear association between weakened immune status and infection by HR-HPV. In most studies of HIV and HPV, the magnitude of increased HPV prevalence was proportional to the severity of immunosuppression [10, 18, 38, 6365]. While many HPV infections are transient, women living with HIV are more likely to have persistent HPV infections, [66] and in other studies the frequency of persistence varied inversely with CD4 cell count [62, 65]. These results suggest that HIV induced immunosuppression might cytological findings was 21.9%, higher than the global estimate of 16.1% reported a meta-analysis for women in the general population from Latin America [42]. We found a high prevalence of LSIL (8.1%) and HSIL (3.4%) that reflects long-term persistent infections, in concordance with the high rates of multiple infections observed among HPV infected with these lesions [10, 25, 55]. Our results are consistent with other studies in which the presence of HPV in cytology with abnormal results ranged from 71.0% to 90.0% for LSIL [10, 67], and between 80.6% to 100.0% for HSIL [10, 30, 67]. Worsening of immune status was correlated with severity of lesions, as previously described [68].
We found high diversity of HR-HPV types in women with abnormal cytology results. In our study, most cytological alterations were related to types 16, 31 and 45. HPV-16 was the most common type in HSIL, which has been reported in a meta-analysis of HIV positive women with HSIL, [30] and in women from the general population [32]. Half of the HSIL cases presented HPV-16, which has high oncogenic potential and its presence is affected by the immunology status of the patient. The high prevalence of HR-HPV non-targeted by current vaccines does not reduce the importance of vaccination against HPV-16 and -18, proven genotypes with the highest carcinogenic potential. Furthermore, cross-protection has been described for HPV-45 and HPV-31 [69]. However, newer vaccines such as the nonavalent HPV vaccine present the possibility of better coverage for women [7072].
This study has some limitations. It did not include a truly population-based design, as study participants were recruited from a reference hospital. However, this hospital attends to 95.0% of HIV patients from the Amazonas. Our sample included women who had a prolonged history of HIV infection (median 6 years), most were taking HAART (87.9%), had previously cytology (97.2%), had a relatively immune competence status (median CD4 cell count 504.0 cell/mm3), and median age was 40.7 years. These women could have a higher self-care standard, higher accessibility to health care and better health, which would result in underestimating the true HR-HPV prevalence in the population. In addition, we did not measure variables such as nutrition and behaviour of male partners that can influence HPV DNA detection [7375]. The BD Onclarity ™ HPV Assay used for PCR does not allow a measurement for all individual genotypes. The various groupings of HPV types are difficult to interpret. It was not possible to investigate associations of duration of ART and the results of HR-HPV and cervical lesion, since the duration of ART would not be accurate given that treatment interruptions was not collected. Regarding the study size, the background estimate used was based on Brazilian studies [12, 22, 23] (ranging from 63.0% to 98.0%) but was higher than those reported in international studies. In addition, the statistical power was low at 80.0%. These reasons might have influenced the accuracy of the estimates measured and the strength of the association in the multivariable model. This study has a cross sectional design which allows only for presentation of baseline information.

Conclusions

In conclusion, we found a high prevalence of HR-HPV infection and cervical lesions among women living with HIV in Amazonas. We found a wide diversity of HR-HPV genotypes, being the most common ones individually HPV-52, HPV-16 and HPV-45, although the highest prevalence was found in the genotype groups 56/59/66 and 35/39/68. HPV-16 and HPV-18 were less common than other HPV types but 50.0% of women with HSIL had HPV-16. The most important determinant of HPV infection was a low CD4 cell count. Most abnormal cytological findings were observed in women with poor immunological status. HPV quadrivalent vaccination used in Brazil might not offer protection for an important fraction of HPV-related disease burden in women living with HIV given the high prevalence of non-targeted vaccine HR-HPV, some of which (eg. 35, 39, 45, 56) contribute to high-grade lesions. Newer vaccines such as the nonavalent HPV vaccine [7072] present the possibility of better coverage for women and will need to be evaluated. Strengthening preventive efforts is necessary to improve early detection through increasing accessibility to screening programs, adherence to follow-up among those with lesions, and intensifying health education for women living with HIV.

Acknowledgments

The authors would like to thank Dr. Luiz Carlos de Lima Ferreira, Dr. José de Ribamar Araújo, Dra. Rosilene Viana Andrade, Dr. Edson de Freitas Gomes, Dra. Ivanete de Lima Sampaio and Dra. Francisca Andrade de Queiroz, the team of pathology that read the cytology results, and Dra. Rosieny Santos Batalha, the gynecologist at FMT-HVD, Dr. José Eduardo Levi and Dr. Toni Ricardo Martins who performed the molecular analyzes, Heidy Halanna de Melo Farah Rondon and Vanessa Santarém who prepared the slides for liquid cytology, Jeana Rodrigues Benezar, Klyssia Godinho Silva and Elaine Cristina Anselmo Pedreno for the assistance during the inclusion of subjects in the study and all the women living with HIV that agreed to participate in the study.

Funding

This study had funding approved in the edict 009/2011 PRONEM of FAPEAM.

Availability of data and materials

Please contact author for data requests.
Name of Ethics Committee: Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD).
Researcher: Monique Figueiredo Teixeira.
Research Title: HPV: HPV: Qual a melhor método diagnóstico laboratorial para mulheres com HIV/Aids? (What is the best laboratory diagnostic method for women with HIV/AIDS?)
Proposed Institution: Diretoria de Ensino e Pesquisa - DENPE Version: 1.
CAAE: 26,652,314.9.0000.0005.
Opinion Number: 625.561.
Date of the Rapporteur: 04/11/2014.
Main Sponsor: Fundação de Amparo à Pesquisa do Estado do Amazonas – FAPEAM.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
7.
Zurück zum Zitat Kobayashi A, Greenblatt RM, Anastos K, Minkoff H, Massad LS, Young M, et al. Functional attributes of mucosal immunity in cervical intraepithelial neoplasia and effects of HIV infection functional attributes of mucosal immunity in cervical intraepithelial neoplasia and effects of HIV infection. Am Assoc Cancer Res. 2004:6766–74. Kobayashi A, Greenblatt RM, Anastos K, Minkoff H, Massad LS, Young M, et al. Functional attributes of mucosal immunity in cervical intraepithelial neoplasia and effects of HIV infection functional attributes of mucosal immunity in cervical intraepithelial neoplasia and effects of HIV infection. Am Assoc Cancer Res. 2004:6766–74.
8.
Zurück zum Zitat Zimmermmann JB, Melo VH, de Castro LPF, Alves MJM, Zimmermmann SG, Del Castillo DM. Associação entre a contagem de linfócitos T CD4 + e a gravidade da neoplasia intra-epitelial cervical diagnosticada pela histopatologia em mulheres infectadas pelo HIV. Rev Bras Ginecol Obs. 2006;28(6):345–51. Zimmermmann JB, Melo VH, de Castro LPF, Alves MJM, Zimmermmann SG, Del Castillo DM. Associação entre a contagem de linfócitos T CD4 + e a gravidade da neoplasia intra-epitelial cervical diagnosticada pela histopatologia em mulheres infectadas pelo HIV. Rev Bras Ginecol Obs. 2006;28(6):345–51.
9.
Zurück zum Zitat Corrêa CM, Melo VH, Mendez D, Castillo D. Coinfecção HIV-HPV : prevalência e multiplicidade de genótipos do HPV no colo uterino co-infection of HIV-HPV : prevalence and multiplicity of HPV genotypes in the cervix uterine. Femina. 2009;37(6):2–7. Corrêa CM, Melo VH, Mendez D, Castillo D. Coinfecção HIV-HPV : prevalência e multiplicidade de genótipos do HPV no colo uterino co-infection of HIV-HPV : prevalence and multiplicity of HPV genotypes in the cervix uterine. Femina. 2009;37(6):2–7.
12.
Zurück zum Zitat Entiauspe LG, Teixeira LO, Mendoza-sassi RA, Gonçalves CV, Gonçalves P, Barral M. Papilomavírus humano : prevalência e genótipos encontrados em mulheres HIV positivas e negativas, em um centro de referência no extremo Sul do Brasil. Rev Soc Bras Med Trop. 2010;43(3):260–3.CrossRefPubMed Entiauspe LG, Teixeira LO, Mendoza-sassi RA, Gonçalves CV, Gonçalves P, Barral M. Papilomavírus humano : prevalência e genótipos encontrados em mulheres HIV positivas e negativas, em um centro de referência no extremo Sul do Brasil. Rev Soc Bras Med Trop. 2010;43(3):260–3.CrossRefPubMed
15.
Zurück zum Zitat Ejegod D, Bottari F, Pedersen H, Sandri MT, Bonde J. The BD Onclarity HPV assay on SurePath collected samples meets the International Guidelines for Human Papillomavirus Test Requirements for Cervical Screening. J Clin Microbiol. 2016;54(9):2267–72. Available from: http://jcm.asm.org/content/54/9/2267.full. Ejegod D, Bottari F, Pedersen H, Sandri MT, Bonde J. The BD Onclarity HPV assay on SurePath collected samples meets the International Guidelines for Human Papillomavirus Test Requirements for Cervical Screening. J Clin Microbiol. 2016;54(9):2267–72. Available from: http://​jcm.​asm.​org/​content/​54/​9/​2267.​full.
16.
Zurück zum Zitat Brasil. Ministério da Saúde. Instituto Nacional de Câncer. Coordenação Geral de Ações Estratégicas. Divisão de Apoio à Rede de Atenção Oncológica. Diretrizes Brasileiras para o Rastreamento do Câncer do Colo do Útero. INCA. 2016. Brasil. Ministério da Saúde. Instituto Nacional de Câncer. Coordenação Geral de Ações Estratégicas. Divisão de Apoio à Rede de Atenção Oncológica. Diretrizes Brasileiras para o Rastreamento do Câncer do Colo do Útero. INCA. 2016.
19.
Zurück zum Zitat Franceschi S, Herrero R, Clifford GM, Snijders PJF, Arslan A, Anh PTH, et al. Variations in the age-specific curves of human papillomavirus prevalence in women worldwide. Int J Cancer. 2006;119(11):2677–84.CrossRefPubMed Franceschi S, Herrero R, Clifford GM, Snijders PJF, Arslan A, Anh PTH, et al. Variations in the age-specific curves of human papillomavirus prevalence in women worldwide. Int J Cancer. 2006;119(11):2677–84.CrossRefPubMed
20.
Zurück zum Zitat Vallès X, Murga GB, Hernández G, Sabidó M, Chuy A, Lloveras B, et al. High prevalence of human papillomavirus infection in the female population of Guatemala. Int J Cancer. 2009;125(5):1161–7.CrossRefPubMed Vallès X, Murga GB, Hernández G, Sabidó M, Chuy A, Lloveras B, et al. High prevalence of human papillomavirus infection in the female population of Guatemala. Int J Cancer. 2009;125(5):1161–7.CrossRefPubMed
23.
Zurück zum Zitat Levi JE, Kleter B, Quint WG V., Fink MCS, Canto CLM, Matsubara R, et al. High Prevalence of Human Papillomavirus (HPV) Infections and High Frequency of Multiple HPV Genotypes in Human Immunodeficiency Virus-Infected Women in Brazil. J Clin Microbiol [Internet]. 2002 Sep 1 [cited 2013 Dec 17];40(9):3341–5. Available from: http://jcm.asm.org/content/40/9/3341.full. Levi JE, Kleter B, Quint WG V., Fink MCS, Canto CLM, Matsubara R, et al. High Prevalence of Human Papillomavirus (HPV) Infections and High Frequency of Multiple HPV Genotypes in Human Immunodeficiency Virus-Infected Women in Brazil. J Clin Microbiol [Internet]. 2002 Sep 1 [cited 2013 Dec 17];40(9):3341–5. Available from: http://​jcm.​asm.​org/​content/​40/​9/​3341.​full.
25.
Zurück zum Zitat Campos RR, de Melo VH, del Castilho DM, Nogueira CPF. Prevalência do papilomavírus humano e seus genótipos em mulheres portadoras e não-portadoras do vírus da imunodeficiência humana. Rev Bras Ginecol Obs. 2005;27(31):248–56. Campos RR, de Melo VH, del Castilho DM, Nogueira CPF. Prevalência do papilomavírus humano e seus genótipos em mulheres portadoras e não-portadoras do vírus da imunodeficiência humana. Rev Bras Ginecol Obs. 2005;27(31):248–56.
27.
Zurück zum Zitat Levi JE, Fernandes S, Tateno AF, Motta E, Lima LP, Eluf-Neto J, et al. Presence of multiple human papillomavirus types in cervical samples from HIV-infected women. Gynecol Oncol. 2004;92(1):225–31.CrossRefPubMed Levi JE, Fernandes S, Tateno AF, Motta E, Lima LP, Eluf-Neto J, et al. Presence of multiple human papillomavirus types in cervical samples from HIV-infected women. Gynecol Oncol. 2004;92(1):225–31.CrossRefPubMed
29.
Zurück zum Zitat Luque AE, Jabeen M, Messing S, Lane C a, Demeter LM, Rose RC, et al. Prevalence of human papillomavirus genotypes and related abnormalities of cervical cytological results among HIV-1-infected women in Rochester, New York. J Infect Dis 2006;194(4):428–434. Luque AE, Jabeen M, Messing S, Lane C a, Demeter LM, Rose RC, et al. Prevalence of human papillomavirus genotypes and related abnormalities of cervical cytological results among HIV-1-infected women in Rochester, New York. J Infect Dis 2006;194(4):428–434.
31.
Zurück zum Zitat Moscicki A-B, Ellenberg JH, Crowley-Nowick P, Darragh TM, Xu J, Fahrat S. Risk of high-grade squamous intraepithelial lesion in HIV-infected adolescents. J Infect Dis. 2004;190(8):1413–21.CrossRefPubMed Moscicki A-B, Ellenberg JH, Crowley-Nowick P, Darragh TM, Xu J, Fahrat S. Risk of high-grade squamous intraepithelial lesion in HIV-infected adolescents. J Infect Dis. 2004;190(8):1413–21.CrossRefPubMed
32.
Zurück zum Zitat Herrero R, Castle PE, Schiffman M, Bratti MC, Hildesheim A, Morales J, et al. Epidemiologic profile of type-specific human papillomavirus infection and cervical neoplasia in Guanacaste, Costa Rica. J Infect Dis. 2005;191(11):1796–807.CrossRefPubMed Herrero R, Castle PE, Schiffman M, Bratti MC, Hildesheim A, Morales J, et al. Epidemiologic profile of type-specific human papillomavirus infection and cervical neoplasia in Guanacaste, Costa Rica. J Infect Dis. 2005;191(11):1796–807.CrossRefPubMed
34.
Zurück zum Zitat Strickler HD, Burk RD, Fazzari M, Anastos K, Minkoff H, Massad LS, et al. Natural history and possible reactivation of human papillomavirus in human immunodeficiency virus-positive women. J Natl Cancer Inst. 2005;97(8):577–86.CrossRefPubMed Strickler HD, Burk RD, Fazzari M, Anastos K, Minkoff H, Massad LS, et al. Natural history and possible reactivation of human papillomavirus in human immunodeficiency virus-positive women. J Natl Cancer Inst. 2005;97(8):577–86.CrossRefPubMed
36.
Zurück zum Zitat Clifford GM, Tully S, Franceschi S. Carcinogenicity of human papillomavirus (HPV) types in HIV-positive women: a meta-analysis from HPV infection to cervical cancer. Clin Infect Dis. 2017;64(9):1228–35.CrossRefPubMedPubMedCentral Clifford GM, Tully S, Franceschi S. Carcinogenicity of human papillomavirus (HPV) types in HIV-positive women: a meta-analysis from HPV infection to cervical cancer. Clin Infect Dis. 2017;64(9):1228–35.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Rocha DAP, Barbosa Filho RAA, De Queiroz FA, Dos Santos CMB. High prevalence and genotypic diversity of the human papillomavirus in amazonian women, Brazil. Infect Dis Obstet Gynecol. 2013;(Article ID 514859):5. Rocha DAP, Barbosa Filho RAA, De Queiroz FA, Dos Santos CMB. High prevalence and genotypic diversity of the human papillomavirus in amazonian women, Brazil. Infect Dis Obstet Gynecol. 2013;(Article ID 514859):5.
38.
Zurück zum Zitat Heard I, Tassie JM, Schmitz V, Mandelbrot L, Kazatchkine MD, Orth G. Increased risk of cervical disease among human immunodeficiency virus-infected women with severe immunosuppression and high human papillomavirus load(1). Obstet Gynecol. 2000;96(3):403–9.PubMed Heard I, Tassie JM, Schmitz V, Mandelbrot L, Kazatchkine MD, Orth G. Increased risk of cervical disease among human immunodeficiency virus-infected women with severe immunosuppression and high human papillomavirus load(1). Obstet Gynecol. 2000;96(3):403–9.PubMed
39.
Zurück zum Zitat Castro MM, Farias IP, Borborema-Santos CM, Correia G, Astolfi-Filho S. Prevalence of human papillomavirus (HPV) type 16 variants and rare HPV types in the central Amazon region. Genet Mol Res. 2011;10(1):186–96.CrossRefPubMed Castro MM, Farias IP, Borborema-Santos CM, Correia G, Astolfi-Filho S. Prevalence of human papillomavirus (HPV) type 16 variants and rare HPV types in the central Amazon region. Genet Mol Res. 2011;10(1):186–96.CrossRefPubMed
44.
Zurück zum Zitat Kjaer SK, van den Brule AJ, Bock JE, Poll PA, Engholm G, Sherman ME, et al. Human papillomavirus--the most significant risk determinant of cervical intraepithelial neoplasia. Int J Cancer. 1996;65(5):601–6.CrossRefPubMed Kjaer SK, van den Brule AJ, Bock JE, Poll PA, Engholm G, Sherman ME, et al. Human papillomavirus--the most significant risk determinant of cervical intraepithelial neoplasia. Int J Cancer. 1996;65(5):601–6.CrossRefPubMed
46.
Zurück zum Zitat Krambeck WM, Cadidé RM, Dalmarco EM, CMM DC. HPV Detection and genotyping as an earlier approach in cervical cancer screening of the female genital tract. Clin Exp Obstet Gynecol. 2008;35(3):175–8.PubMed Krambeck WM, Cadidé RM, Dalmarco EM, CMM DC. HPV Detection and genotyping as an earlier approach in cervical cancer screening of the female genital tract. Clin Exp Obstet Gynecol. 2008;35(3):175–8.PubMed
47.
Zurück zum Zitat Ayres ARG, GA e S. Prevalência de infecção do colo do útero pelo HPV no Brasil: revisão sistemática. Rev Saúde Pública. 2010;44(5):963–74.CrossRefPubMed Ayres ARG, GA e S. Prevalência de infecção do colo do útero pelo HPV no Brasil: revisão sistemática. Rev Saúde Pública. 2010;44(5):963–74.CrossRefPubMed
48.
Zurück zum Zitat Da Fonseca AJ, Galvão RS, Miranda AE, LC de L F, Chen Z. Comparison of three human papillomavirus DNA detection methods: next generation sequencing, multiplex-PCR and nested-PCR followed by sanger based sequencing. J Med Virol [Internet]. 2015;30(12):1–7. Available from: http://doi.wiley.com/10.1002/jmv.24413. Da Fonseca AJ, Galvão RS, Miranda AE, LC de L F, Chen Z. Comparison of three human papillomavirus DNA detection methods: next generation sequencing, multiplex-PCR and nested-PCR followed by sanger based sequencing. J Med Virol [Internet]. 2015;30(12):1–7. Available from: http://​doi.​wiley.​com/​10.​1002/​jmv.​24413.
49.
Zurück zum Zitat WHO/ICO. Human Papillomavirus and Related Diseases Report. Hum Papillomavirus Relat Dis Rep [Internet]. 2015;74. Available from: www.hpvcentre.net. WHO/ICO. Human Papillomavirus and Related Diseases Report. Hum Papillomavirus Relat Dis Rep [Internet]. 2015;74. Available from: www.​hpvcentre.​net.
51.
Zurück zum Zitat Cuschieri K, Geraets DT, Moore C, Quint W, Duvall E, Arbyn M. Clinical and analytical performance of the onclarity HPV assay using the valgent framework. J Clin Microbiol. 2015;53(10):3272–9.CrossRefPubMedPubMedCentral Cuschieri K, Geraets DT, Moore C, Quint W, Duvall E, Arbyn M. Clinical and analytical performance of the onclarity HPV assay using the valgent framework. J Clin Microbiol. 2015;53(10):3272–9.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Winer RL, Lee SK, Hughes JP, Adam DE, Kiviat NB, L A K. Genital human papillomavirus infection: incidence and risk factors in a cohort of female university students. Am J Epidemiol. 2003;157(3):218–26.CrossRefPubMed Winer RL, Lee SK, Hughes JP, Adam DE, Kiviat NB, L A K. Genital human papillomavirus infection: incidence and risk factors in a cohort of female university students. Am J Epidemiol. 2003;157(3):218–26.CrossRefPubMed
55.
Zurück zum Zitat Manhart LE, Holmes KK, Koutsky L a, Wood TR, Kenney DL, Feng Q, et al. Human papillomavirus infection among sexually active young women in the United States: implications for developing a vaccination strategy. Sex Transm Dis 2006;33(8):502–508. Manhart LE, Holmes KK, Koutsky L a, Wood TR, Kenney DL, Feng Q, et al. Human papillomavirus infection among sexually active young women in the United States: implications for developing a vaccination strategy. Sex Transm Dis 2006;33(8):502–508.
56.
Zurück zum Zitat Sanjosé S, Díaz M, Castellsagué X, Clifford G, Bruni L. Worldwide prevalence and genotype distribution of cervical HPV in women with normal cytology: a meta-analysis. Lancet Infect Dis. 2007;7(July):453–9.CrossRefPubMed Sanjosé S, Díaz M, Castellsagué X, Clifford G, Bruni L. Worldwide prevalence and genotype distribution of cervical HPV in women with normal cytology: a meta-analysis. Lancet Infect Dis. 2007;7(July):453–9.CrossRefPubMed
57.
Zurück zum Zitat Smith JS, Melendy A, Rana RK, Pimenta JM. Age-Specific Prevalence of Infection with Human Papillomavirus in Females: A Global Review. J Adolesc Heal. 2008;43(4 SUPPL) Smith JS, Melendy A, Rana RK, Pimenta JM. Age-Specific Prevalence of Infection with Human Papillomavirus in Females: A Global Review. J Adolesc Heal. 2008;43(4 SUPPL)
59.
Zurück zum Zitat Castle PE, Schiffman M, Herrero R, Hildesheim A, Rodriguez AC, Bratti MC, et al. A prospective study of age trends in cervical human papillomavirus acquisition and persistence in Guanacaste, Costa Rica. J Infect Dis. 2005;191(11):1808–16.CrossRefPubMed Castle PE, Schiffman M, Herrero R, Hildesheim A, Rodriguez AC, Bratti MC, et al. A prospective study of age trends in cervical human papillomavirus acquisition and persistence in Guanacaste, Costa Rica. J Infect Dis. 2005;191(11):1808–16.CrossRefPubMed
60.
Zurück zum Zitat Sichero L, Ferreira S, Trottier H, Duarte-Franco E, Ferenczy A, Franco EL, et al. High grade cervical lesions are caused preferentially by non-European variants of HPVs 16 and 18. Int J Cancer. 2007;120(8):1763–8.CrossRefPubMed Sichero L, Ferreira S, Trottier H, Duarte-Franco E, Ferenczy A, Franco EL, et al. High grade cervical lesions are caused preferentially by non-European variants of HPVs 16 and 18. Int J Cancer. 2007;120(8):1763–8.CrossRefPubMed
61.
Zurück zum Zitat Bosch FX, Burchell AN, Schiffman M, Giuliano AR, de Sanjose S, Bruni L, et al. Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine. 2008;26(SUPPL. 10):K1-16. Bosch FX, Burchell AN, Schiffman M, Giuliano AR, de Sanjose S, Bruni L, et al. Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine. 2008;26(SUPPL. 10):K1-16.
62.
Zurück zum Zitat Delory T, Ngo-Giang-Huong N, Rangdaeng S, Chotivanich N, Limtrakul A, Putiyanun C, et al. Human papillomavirus infection and cervical lesions in HIV infected women on antiretroviral treatment in Thailand. J Inf Secur. 2017;74(5):501–11. Delory T, Ngo-Giang-Huong N, Rangdaeng S, Chotivanich N, Limtrakul A, Putiyanun C, et al. Human papillomavirus infection and cervical lesions in HIV infected women on antiretroviral treatment in Thailand. J Inf Secur. 2017;74(5):501–11.
64.
Zurück zum Zitat Keller MJ, Burk RD, Anastos K, Massad LS, Minkoff H, Watts DH, et al. Risk of cervical Precancer and cancer and no evidence of oncogenic HPV infection. JAMA. 2012;308(4):362–9.CrossRefPubMedPubMedCentral Keller MJ, Burk RD, Anastos K, Massad LS, Minkoff H, Watts DH, et al. Risk of cervical Precancer and cancer and no evidence of oncogenic HPV infection. JAMA. 2012;308(4):362–9.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Piper MA, Severin ST, Wiktor SZ, Unger ER, Ghys PD, Miller DL, et al. Association of human papillomavirus with HIV and CD4 cell count in women with high or low numbers of sex partners. Sex Transm Infect. 1999;75(4):253–7.CrossRefPubMedPubMedCentral Piper MA, Severin ST, Wiktor SZ, Unger ER, Ghys PD, Miller DL, et al. Association of human papillomavirus with HIV and CD4 cell count in women with high or low numbers of sex partners. Sex Transm Infect. 1999;75(4):253–7.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Sun XW, Ellerbrock TV, Lungu O, Chiasson MA, Bush TJ, Wright TC. Human papillomavirus infection in human immunodeficiency virus-seropositive women. Obstet Gynecol. 1995;85(5 I):680–6.CrossRefPubMed Sun XW, Ellerbrock TV, Lungu O, Chiasson MA, Bush TJ, Wright TC. Human papillomavirus infection in human immunodeficiency virus-seropositive women. Obstet Gynecol. 1995;85(5 I):680–6.CrossRefPubMed
67.
Zurück zum Zitat Néli Sueli Teixeira de Souza, Victor Hugo do Melo LPF de C. Diagnóstico da Infecção pelo HPV em Lesões do Colo do Útero em Mulheres HIV + : Acuidade da Histopatologia Pacientes e Métodos. Rev Bras Ginecol Obs. 2001;23(6):355–61. Néli Sueli Teixeira de Souza, Victor Hugo do Melo LPF de C. Diagnóstico da Infecção pelo HPV em Lesões do Colo do Útero em Mulheres HIV + : Acuidade da Histopatologia Pacientes e Métodos. Rev Bras Ginecol Obs. 2001;23(6):355–61.
68.
Zurück zum Zitat Clifford GM, Franceschi S, Keiser O, Schoni-Affolter F, Lise M, Dehler S, et al. Immunodeficiency and the risk of cervical intra-epithelial neoplasia 2/3 and cervical cancer: a nested case-control study in the Swiss HIV cohort study. Int J Cancer. 2016;1740:1732–40. Clifford GM, Franceschi S, Keiser O, Schoni-Affolter F, Lise M, Dehler S, et al. Immunodeficiency and the risk of cervical intra-epithelial neoplasia 2/3 and cervical cancer: a nested case-control study in the Swiss HIV cohort study. Int J Cancer. 2016;1740:1732–40.
69.
Zurück zum Zitat Bonanni P, Boccalini S, Bechini A. Efficacy, duration of immunity and cross protection after HPV vaccination: a review of the evidence. Vaccine. 2009;27(SUPPL. 1):46–53.CrossRef Bonanni P, Boccalini S, Bechini A. Efficacy, duration of immunity and cross protection after HPV vaccination: a review of the evidence. Vaccine. 2009;27(SUPPL. 1):46–53.CrossRef
72.
Zurück zum Zitat Van De Velde N, Boily MC, Drolet M, Franco EL, Mayrand MH, Kliewer EV, et al. Population-level impact of the bivalent, quadrivalent, and nonavalent human papillomavirus vaccines: a model-based analysis. J Natl Cancer Inst. 2012;104(22):1712–23.CrossRefPubMed Van De Velde N, Boily MC, Drolet M, Franco EL, Mayrand MH, Kliewer EV, et al. Population-level impact of the bivalent, quadrivalent, and nonavalent human papillomavirus vaccines: a model-based analysis. J Natl Cancer Inst. 2012;104(22):1712–23.CrossRefPubMed
73.
Zurück zum Zitat Molano M, Posso H, Weiderpass E, AJC v d B, Ronderos M, Franceschi S, et al. Prevalence and determinants of HPV infection among Colombian women with normal cytology. Br J Cancer. 2002;87:324–33.CrossRefPubMedPubMedCentral Molano M, Posso H, Weiderpass E, AJC v d B, Ronderos M, Franceschi S, et al. Prevalence and determinants of HPV infection among Colombian women with normal cytology. Br J Cancer. 2002;87:324–33.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Castellsagué X, Bosch FX, Muñoz N. The male role in cervical cancer. Salud Publica Mex. 2003;45(SUPPL. 3):345–53.CrossRef Castellsagué X, Bosch FX, Muñoz N. The male role in cervical cancer. Salud Publica Mex. 2003;45(SUPPL. 3):345–53.CrossRef
Metadaten
Titel
High risk human papillomavirus prevalence and genotype distribution among women infected with HIV in Manaus, Amazonas
Publikationsdatum
01.12.2018
Erschienen in
Virology Journal / Ausgabe 1/2018
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-0942-6

Weitere Artikel der Ausgabe 1/2018

Virology Journal 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.