Skip to main content
Erschienen in: Current HIV/AIDS Reports 1/2022

28.01.2022 | The Global Epidemic (S Vermund, Section Editor)

HIV and SARS-CoV-2: Tracing a Path of Vaccine Research and Development

verfasst von: Brittany Ober Shepherd, David Chang, Sandhya Vasan, Julie Ake, Kayvon Modjarrad

Erschienen in: Current HIV/AIDS Reports | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

This review examines the major advances and obstacles in the field of HIV vaccine research as they pertain to informing the development of vaccines against SARS-CoV-2.

Recent Findings

Although the field of HIV research has yet to deliver a licensed vaccine, the technologies developed and knowledge gained in basic scientific disciplines, translational research, and community engagement have positively impacted the development of vaccines for other viruses, most notably and recently for SARS-CoV-2. These advances include the advent of viral vectors and mRNA as vaccine delivery platforms; the use of structural biology for immunogen design; an emergence of novel adjuvant formulations; a more sophisticated understanding of viral phylogenetics; improvements in the development and harmonization of accurate assays for vaccine immunogenicity; and maturation of the fields of bioethics and community engagement for clinical trials conducted in diverse populations.

Summary

Decades of foundational research and investments into HIV biology, though yet to yield an authorized or approved vaccine for HIV/AIDS, have now paid dividends in the rapid development of safe and effective SARS-CoV-2 vaccines. This latter success presents an opportunity for feedback on improved pathways for development of safe and efficacious vaccines against HIV and other pathogens.
Literatur
1.
Zurück zum Zitat Wolff JA, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–8.PubMedCrossRef Wolff JA, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–8.PubMedCrossRef
2.
Zurück zum Zitat Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80.PubMedCrossRef Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80.PubMedCrossRef
3.
Zurück zum Zitat Coughlan L, et al. Heterologous two-dose vaccination with Simian adenovirus and poxvirus vectors elicits long-lasting cellular immunity to influenza virus A in healthy adults. EBioMedicine. 2018;29:146–54.PubMedPubMedCentralCrossRef Coughlan L, et al. Heterologous two-dose vaccination with Simian adenovirus and poxvirus vectors elicits long-lasting cellular immunity to influenza virus A in healthy adults. EBioMedicine. 2018;29:146–54.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Dicks MD, et al., A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One, 2012. 7(7): e40385. Dicks MD, et al., A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One, 2012. 7(7): e40385.
5.
Zurück zum Zitat Barouch DH, et al. Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13–19). Lancet. 2018;392(10143):232–43.PubMedPubMedCentralCrossRef Barouch DH, et al. Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13–19). Lancet. 2018;392(10143):232–43.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Sadoff J, et al., Interim Results of a Phase 1–2a Trial of Ad26.COV2.S Covid-19 Vaccine. New England Journal of Medicine, 2021. Sadoff J, et al., Interim Results of a Phase 1–2a Trial of Ad26.COV2.S Covid-19 Vaccine. New England Journal of Medicine, 2021.
7.
Zurück zum Zitat Folegatti PM, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet. 2020;396(10249):467–78.CrossRef Folegatti PM, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet. 2020;396(10249):467–78.CrossRef
9.
Zurück zum Zitat Polack FP, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15.PubMedCrossRef Polack FP, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15.PubMedCrossRef
10.
Zurück zum Zitat Baden LR, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2020;384(5):403–16.PubMedCrossRef Baden LR, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2020;384(5):403–16.PubMedCrossRef
11.
Zurück zum Zitat Gaschen B, et al. Diversity considerations in HIV-1 vaccine selection. Science. 2002;296(5577):2354–60.PubMedCrossRef Gaschen B, et al. Diversity considerations in HIV-1 vaccine selection. Science. 2002;296(5577):2354–60.PubMedCrossRef
14.
Zurück zum Zitat Kwong PD, What are the most powerful immunogen design vaccine strategies? A structural biologist's perspective. Cold Spring Harb Perspect Biol, 2017. 9(11). Kwong PD, What are the most powerful immunogen design vaccine strategies? A structural biologist's perspective. Cold Spring Harb Perspect Biol, 2017. 9(11).
15.
Zurück zum Zitat Ward AB, Wilson IA. Innovations in structure-based antigen design and immune monitoring for next generation vaccines. Curr Opin Immunol. 2020;65:50–6.PubMedPubMedCentralCrossRef Ward AB, Wilson IA. Innovations in structure-based antigen design and immune monitoring for next generation vaccines. Curr Opin Immunol. 2020;65:50–6.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Liu H, et al. The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects. Protein Cell. 2018;9(7):596–615.PubMedPubMedCentralCrossRef Liu H, et al. The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects. Protein Cell. 2018;9(7):596–615.PubMedPubMedCentralCrossRef
17.
18.
Zurück zum Zitat Julien JP, et al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science. 2013;342(6165):1477–83.PubMedCrossRef Julien JP, et al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science. 2013;342(6165):1477–83.PubMedCrossRef
21.
Zurück zum Zitat Sanders RW, et al., HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015. 349(6244): p. aac4223. Sanders RW, et al., HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015. 349(6244): p. aac4223.
22.
Zurück zum Zitat Scheid JF, et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science. 2011;333(6049):1633–7.PubMedPubMedCentralCrossRef Scheid JF, et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science. 2011;333(6049):1633–7.PubMedPubMedCentralCrossRef
23.
24.
Zurück zum Zitat McLellan JS, et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science. 2013;340(6136):1113–7.PubMedPubMedCentralCrossRef McLellan JS, et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science. 2013;340(6136):1113–7.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Stewart-Jones GB, et al., A cysteine zipper stabilizes a pre-fusion f glycoprotein vaccine for respiratory syncytial virus. PLoS One, 2015. 10(6): e0128779. Stewart-Jones GB, et al., A cysteine zipper stabilizes a pre-fusion f glycoprotein vaccine for respiratory syncytial virus. PLoS One, 2015. 10(6): e0128779.
26.
27.
Zurück zum Zitat Krarup A, et al. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat Commun. 2015;6:8143.PubMedCrossRef Krarup A, et al. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat Commun. 2015;6:8143.PubMedCrossRef
29.
Zurück zum Zitat Pitisuttithum P, et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok Thailand. J Infect Dis. 2006;194(12):1661–71.PubMedCrossRef Pitisuttithum P, et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok Thailand. J Infect Dis. 2006;194(12):1661–71.PubMedCrossRef
30.
Zurück zum Zitat Rerks-Ngarm S, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009;361(23):2209–20.PubMedCrossRef Rerks-Ngarm S, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009;361(23):2209–20.PubMedCrossRef
31.
Zurück zum Zitat O’Connell RJ, et al. Safety and Immunogenicity of a Randomized Phase 1 Prime-Boost Trial With ALVAC-HIV (vCP205) and Oligomeric Glycoprotein 160 From HIV-1 Strains MN and LAI-2 Adjuvanted in Alum or Polyphosphazene. J Infect Dis. 2016;213(12):1946–54.PubMedPubMedCentralCrossRef O’Connell RJ, et al. Safety and Immunogenicity of a Randomized Phase 1 Prime-Boost Trial With ALVAC-HIV (vCP205) and Oligomeric Glycoprotein 160 From HIV-1 Strains MN and LAI-2 Adjuvanted in Alum or Polyphosphazene. J Infect Dis. 2016;213(12):1946–54.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Weissburg RP, et al. Characterization of the MN gp120 HIV-1 vaccine: antigen binding to alum. Pharm Res. 1995;12(10):1439–46.PubMedCrossRef Weissburg RP, et al. Characterization of the MN gp120 HIV-1 vaccine: antigen binding to alum. Pharm Res. 1995;12(10):1439–46.PubMedCrossRef
33.
Zurück zum Zitat Flynn NM, et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis. 2005;191(5):654–65.PubMedCrossRef Flynn NM, et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis. 2005;191(5):654–65.PubMedCrossRef
34.
Zurück zum Zitat Pegu P, et al. Antibodies with high avidity to the gp120 envelope protein in protection from simian immunodeficiency virus SIV(mac251) acquisition in an immunization regimen that mimics the RV-144 Thai trial. J Virol. 2013;87(3):1708–19.PubMedPubMedCentralCrossRef Pegu P, et al. Antibodies with high avidity to the gp120 envelope protein in protection from simian immunodeficiency virus SIV(mac251) acquisition in an immunization regimen that mimics the RV-144 Thai trial. J Virol. 2013;87(3):1708–19.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Tuero I, et al., Mucosal B cells are associated with delayed SIV acquisition in vaccinated female but not male rhesus macaques following SIVmac251 rectal challenge. PLoS Pathog, 2015. 11(8): e1005101. Tuero I, et al., Mucosal B cells are associated with delayed SIV acquisition in vaccinated female but not male rhesus macaques following SIVmac251 rectal challenge. PLoS Pathog, 2015. 11(8): e1005101.
36.
Zurück zum Zitat Fouts TR, et al. Balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection. Proc Natl Acad Sci U S A. 2015;112(9):E992–9.PubMedPubMedCentralCrossRef Fouts TR, et al. Balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection. Proc Natl Acad Sci U S A. 2015;112(9):E992–9.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Iyer SS, et al. Codelivery of envelope protein in alum with MVA vaccine induces CXCR3-Biased CXCR5+ and CXCR5- CD4 T Cell Responses in Rhesus Macaques. J Immunol. 2015;195(3):994–1005.PubMedCrossRef Iyer SS, et al. Codelivery of envelope protein in alum with MVA vaccine induces CXCR3-Biased CXCR5+ and CXCR5- CD4 T Cell Responses in Rhesus Macaques. J Immunol. 2015;195(3):994–1005.PubMedCrossRef
38.
39.
Zurück zum Zitat Apostólico Jde S, et al., HIV envelope trimer specific immune response is influenced by different adjuvant formulations and heterologous prime-boost. PLoS One, 2016. 11(1): e0145637. Apostólico Jde S, et al., HIV envelope trimer specific immune response is influenced by different adjuvant formulations and heterologous prime-boost. PLoS One, 2016. 11(1): e0145637.
40.
Zurück zum Zitat Leroux-Roels I, et al. Strong and persistent CD4+ T-cell response in healthy adults immunized with a candidate HIV-1 vaccine containing gp120, Nef and Tat antigens formulated in three Adjuvant Systems. Vaccine. 2010;28(43):7016–24.PubMedCrossRef Leroux-Roels I, et al. Strong and persistent CD4+ T-cell response in healthy adults immunized with a candidate HIV-1 vaccine containing gp120, Nef and Tat antigens formulated in three Adjuvant Systems. Vaccine. 2010;28(43):7016–24.PubMedCrossRef
41.
Zurück zum Zitat Alving CR, et al. Liposomal adjuvants for human vaccines. Expert Opin Drug Deliv. 2016;13(6):807–16.PubMedCrossRef Alving CR, et al. Liposomal adjuvants for human vaccines. Expert Opin Drug Deliv. 2016;13(6):807–16.PubMedCrossRef
42.
Zurück zum Zitat Beck Z, Matyas GR, Alving CR. Detection of liposomal cholesterol and monophosphoryl lipid A by QS-21 saponin and Limulus polyphemus amebocyte lysate. Biochim Biophys Acta. 2015;1848(3):775–80.PubMedCrossRef Beck Z, Matyas GR, Alving CR. Detection of liposomal cholesterol and monophosphoryl lipid A by QS-21 saponin and Limulus polyphemus amebocyte lysate. Biochim Biophys Acta. 2015;1848(3):775–80.PubMedCrossRef
43.
Zurück zum Zitat Beck Z, et al. Differential immune responses to HIV-1 envelope protein induced by liposomal adjuvant formulations containing monophosphoryl lipid A with or without QS21. Vaccine. 2015;33(42):5578–87.PubMedCrossRef Beck Z, et al. Differential immune responses to HIV-1 envelope protein induced by liposomal adjuvant formulations containing monophosphoryl lipid A with or without QS21. Vaccine. 2015;33(42):5578–87.PubMedCrossRef
44.
Zurück zum Zitat Wieczorek L, et al. Comparable antigenicity and immunogenicity of oligomeric forms of a novel, acute HIV-1 subtype C gp145 envelope for use in preclinical and clinical vaccine research. J Virol. 2015;89(15):7478–93.PubMedPubMedCentralCrossRef Wieczorek L, et al. Comparable antigenicity and immunogenicity of oligomeric forms of a novel, acute HIV-1 subtype C gp145 envelope for use in preclinical and clinical vaccine research. J Virol. 2015;89(15):7478–93.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Robb ML, et al. Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis of the Thai phase 3 efficacy trial RV 144. Lancet Infect Dis. 2012;12(7):531–7.PubMedPubMedCentralCrossRef Robb ML, et al. Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis of the Thai phase 3 efficacy trial RV 144. Lancet Infect Dis. 2012;12(7):531–7.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Zolla-Pazner S, et al., Analysis of V2 antibody responses induced in vaccinees in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial. PLoS One, 2013. 8(1): p. e53629. Zolla-Pazner S, et al., Analysis of V2 antibody responses induced in vaccinees in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial. PLoS One, 2013. 8(1): p. e53629.
48.
Zurück zum Zitat Rerks-Ngarm S, et al. Randomized, double-blind evaluation of late boost strategies for HIV-Uninfected vaccine recipients in the RV144 HIV vaccine efficacy trial. J Infect Dis. 2017;215(8):1255–63.PubMedPubMedCentralCrossRef Rerks-Ngarm S, et al. Randomized, double-blind evaluation of late boost strategies for HIV-Uninfected vaccine recipients in the RV144 HIV vaccine efficacy trial. J Infect Dis. 2017;215(8):1255–63.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Easterhoff D, et al., Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial. PLoS Pathog, 2017. 13(2): p. e1006182. Easterhoff D, et al., Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial. PLoS Pathog, 2017. 13(2): p. e1006182.
50.
Zurück zum Zitat Easterhoff D, et al. Boosting with AIDSVAX B/E enhances Env constant region 1 and 2 antibody-dependent cellular cytotoxicity breadth and potency. J Virol, 2020. 94(4). Easterhoff D, et al. Boosting with AIDSVAX B/E enhances Env constant region 1 and 2 antibody-dependent cellular cytotoxicity breadth and potency. J Virol, 2020. 94(4).
51.
Zurück zum Zitat Easterhoff D, et al. HIV vaccine delayed boosting increases Env variable region 2-specific antibody effector functions. JCI Insight, 2020. 5(2). Easterhoff D, et al. HIV vaccine delayed boosting increases Env variable region 2-specific antibody effector functions. JCI Insight, 2020. 5(2).
52.
Zurück zum Zitat Atmar RL, et al. Heterologous SARS-CoV-2 booster vaccinations - preliminary report. medRxiv, 2021. Atmar RL, et al. Heterologous SARS-CoV-2 booster vaccinations - preliminary report. medRxiv, 2021.
53.
Zurück zum Zitat Montefiori D, et al. Antibody-based HIV-1 vaccines: recent developments and future directions. PLoS Med, 2007. 4(12): e348. Montefiori D, et al. Antibody-based HIV-1 vaccines: recent developments and future directions. PLoS Med, 2007. 4(12): e348.
54.
Zurück zum Zitat Polonis VR, et al. Recent advances in the characterization of HIV-1 neutralization assays for standardized evaluation of the antibody response to infection and vaccination. Virology. 2008;375(2):315–20.PubMedCrossRef Polonis VR, et al. Recent advances in the characterization of HIV-1 neutralization assays for standardized evaluation of the antibody response to infection and vaccination. Virology. 2008;375(2):315–20.PubMedCrossRef
55.
Zurück zum Zitat Joyce MG, et al. Efficacy of a broadly neutralizing SARS-CoV-2 ferritin nanoparticle vaccine in nonhuman primates. bioRxiv, 2021: p. 2021.03.24.436523. Joyce MG, et al. Efficacy of a broadly neutralizing SARS-CoV-2 ferritin nanoparticle vaccine in nonhuman primates. bioRxiv, 2021: p. 2021.03.24.436523.
56.
Zurück zum Zitat Weissman D, et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe. 2021;29(1):23-31.e4.PubMedCrossRef Weissman D, et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe. 2021;29(1):23-31.e4.PubMedCrossRef
57.
Zurück zum Zitat Sholukh AM, et al. Evaluation of SARS-CoV-2 neutralization assays for antibody monitoring in natural infection and vaccine trials. medRxiv, 2020. Sholukh AM, et al. Evaluation of SARS-CoV-2 neutralization assays for antibody monitoring in natural infection and vaccine trials. medRxiv, 2020.
59.
Zurück zum Zitat Gilbert PB, et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science, 2021: p. eab3435. Gilbert PB, et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science, 2021: p. eab3435.
60.
Zurück zum Zitat Khoury DS, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205–11.PubMedCrossRef Khoury DS, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205–11.PubMedCrossRef
61.
Zurück zum Zitat Dearlove B, et al. A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants. Proc Natl Acad Sci U S A. 2020;117(38):23652–62.PubMedPubMedCentralCrossRef Dearlove B, et al. A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants. Proc Natl Acad Sci U S A. 2020;117(38):23652–62.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Wu K, et al. Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. bioRxiv, 2021: p. 2021.04.13.439482. Wu K, et al. Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. bioRxiv, 2021: p. 2021.04.13.439482.
65.
Zurück zum Zitat Webb Hooper M, Nápoles AM, Pérez-Stable EJ, COVID-19 and racial/ethnic disparities. JAMA, 2020. 323(24): p. 2466–2467. Webb Hooper M, Nápoles AM, Pérez-Stable EJ, COVID-19 and racial/ethnic disparities. JAMA, 2020. 323(24): p. 2466–2467.
66.
Zurück zum Zitat Weintraub RL, et al. COVID-19 vaccine to vaccination: why leaders must invest in delivery strategies now. Health Aff (Millwood). 2021;40(1):33–41.CrossRef Weintraub RL, et al. COVID-19 vaccine to vaccination: why leaders must invest in delivery strategies now. Health Aff (Millwood). 2021;40(1):33–41.CrossRef
67.
Zurück zum Zitat Katz IT, et al. From vaccine nationalism to vaccine equity - finding a path forward. N Engl J Med. 2021;384(14):1281–3.PubMedCrossRef Katz IT, et al. From vaccine nationalism to vaccine equity - finding a path forward. N Engl J Med. 2021;384(14):1281–3.PubMedCrossRef
69.
Zurück zum Zitat Killen J, Harrington M, Fauci AS. MSM, AIDS research activism, and HAART. Lancet. 2012;380(9839):314–6.PubMedCrossRef Killen J, Harrington M, Fauci AS. MSM, AIDS research activism, and HAART. Lancet. 2012;380(9839):314–6.PubMedCrossRef
Metadaten
Titel
HIV and SARS-CoV-2: Tracing a Path of Vaccine Research and Development
verfasst von
Brittany Ober Shepherd
David Chang
Sandhya Vasan
Julie Ake
Kayvon Modjarrad
Publikationsdatum
28.01.2022
Verlag
Springer US
Erschienen in
Current HIV/AIDS Reports / Ausgabe 1/2022
Print ISSN: 1548-3568
Elektronische ISSN: 1548-3576
DOI
https://doi.org/10.1007/s11904-021-00597-4

Weitere Artikel der Ausgabe 1/2022

Current HIV/AIDS Reports 1/2022 Zur Ausgabe

Central Nervous System and Cognition (SS Spudich, Section Editor)

Central Nervous System Impact of Perinatally Acquired HIV in Adolescents and Adults: an Update

The Global Epidemic (S Vermund, Section Editor)

Adventures in COVID-19 Policy Modeling: Education Edition

The Global Epidemic (S Vermund, Section Editor)

HIV and COVID-19 in Latin America and the Caribbean

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.