Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2020

Open Access 01.12.2020 | Editorial

HMGB1 in inflammation and cancer

verfasst von: Shumin Wang, Yi Zhang

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2020

Abstract

High mobility group box 1 (HMGB1) is a non-histone chromatin-associated protein widely distributed in eukaryotic cells and is involved in DNA damage repair and genomic stability maintenance. In response to stimulus like bacteria or chemoradiotherapy, HMGB1 can translocate to extracellular context as a danger alarmin, activate the immune response, and participate in the regulation of inflammation and cancer progression.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
HMGB1
High mobility group box 1
RAGE
The receptor for advanced glycation end products
TLR
Toll-like receptors
DAMP
Damage associated molecular pattern
IRI
Ischemia-reperfusion injury
LPS
Lipopolysaccharide
GA
Glycyrrhizinic acid
COVID-19
Coronavirus disease-19
MAPK
Mitogen-activated protein kinase
MyD88
Myeloid differential protein-88
NF-κB
Nuclear factor kappa-light-chain-enhancer of activated B cells
EMT
Epithelial-mesenchymal transition
DCs
Dendritic cells
High mobility group box 1 (HMGB1) is a highly conservative nucleoprotein and belongs to the group of non-histone chromatin-associated protein. It was first extracted from calf-thymus chromatin in 1973 and named for its high mobility in gel electrophoresis [1]. Subsequent investigations found that HMGB1 could translocate from the nucleus to the cytoplasm after posttranslational modifications, including acetylation, phosphorylation, and methylation. HMGB1 can be expressed at the neuron membrane as well. In response to chemoradiotherapy or hypoxia, HMGB1 could be transferred to the extracellular context mainly through two ways: active secretion from immunocompetent cells or passive release from apoptotic or necrotic cells. Extracellular HMGB1 transmits danger signals to surrounding cells by interacting with its classical receptors, such as the receptor for advanced glycation end products (RAGE) and Toll-like receptors 2/4/9 (TLR-2/4/9) [2]. In-depth studies implicated that HMGB1 was a multifunctional protein involved in a variety of cellular biological properties, depending on its subcellular localization, post-transcriptional modification, and binding receptors (Fig. 1).
In the nucleus, HMGB1 plays a key role in the process of DNA replication, transcription, chromatin remodeling, and V(D)J recombination, thus regulating DNA damage repair and the maintenance of genome stability as a DNA chaperone. Cytoplasmic HMGB1 is involved in immune responses by increasing autophagy, inhibiting apoptosis, and regulating mitochondrial function [3]. At the membrane, HMGB1 promotes axonal sprouting and neurite growth, activates platelets, and induces cell migration. As a typical damage associated molecular pattern (DAMP), extracellular HMGB1 is involved in many immune responses by promoting immune cell maturation, activation and cytokine production [4]. Extracellular HMGB1 can also interact with chemokines such as CXCL11 to enhance immune responses [5]. As a multifunctional protein, HMGB1 exerts different biological effects under different stimuli. The deregulation of HMGB1 is associated with many diseases, especially inflammatory disorders and cancer.

HMGB1 in inflammation

HMGB1 plays a critical role in the regulation of both innate and adaptive immune responses to promote immune response to sterile or infectious stimulus [6]. In sterile inflammation during ischemia-reperfusion injury (IRI), HMGB1 becomes disulfide-bonded to increase macrophage production of pro-inflammation cytokines in a TLR-4 dependent manner, indicating that disulfide-bonded HMGB1 can be identified as a diagnosis and treatment biomarker for IRI. When initially secreted by innate immune cells like macrophages, HMGB1 is pro-inflammatory during the early stages of sepsis. However, the extracellular HMGB1 could also induce immune tolerance and immunosuppression when released by other somatic cells. In contrast, intracellular HMGB1 can induce protective autophagy and contribute to cell survival. By delivering lipopolysaccharide (LPS) and promoting endocytosis, HMGB1 activates the noncanonical inflammasome pathway and induces pyroptosis [7]. Pyroptotic macrophage death may accelerate undesirable immune hyperactivity and immunosuppression, which is a potential mechanism associated with late mortality from sepsis [8]. In hepatic infectious disease, the release and activity of HMGB1 as a cytokine could be suppressed by glycyrrhizinic acid (GA) [9]. By binding with TLR4, HMGB1 regulates the hepatitis viruses-induced immunological axis, providing a new therapy strategy for the treatment of acute viral hepatitis in the clinical practice [10].
In severe pulmonary inflammatory diseases including COVID-19, HMGB1 can be secreted in abundance by necrotic pulmonary epithelial cells and innate immune cells. Disulfide-HMGB1 triggers pro-inflammatory cytokine release and further exacerbates severe inflammation [11]. Therefore, HMGB1 might be a potential target for the treatment of inflammation.

The dual effects of HMGB1 in cancer

According to the alterations of the subcellular locations, receptors, and expression levels, HMGB1 is associated with the hallmarks of cancer proposed by Hanahan and Weinberg [12]. HMGB1 appears to play paradoxical roles during the development and therapy of cancer. On the one hand, HMGB1 can contribute to tumorigenesis. Excessive HMGB1 production caused by chronic inflammatory response seems to be associated with tumorigenesis. For example, by combining with RAGE, HMGB1 plays an important role in regulating oval cells activation and inflammation-associated liver carcinogenesis in mice [13]. In established cancers, HMGB1 produced by tumor cells may exacerbate inflammation-related immunosuppression. For instance, previous research indicated that LPS induced the release of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in a HMGB1-dependent manner to improve colon cancer progression [14]. However, the underlying mechanism of HMGB1 in the transformation of inflammation and cancer needs to be further studied. It has been reported that HMGB1 can be released to extracellular context by necrotic cells under hypoxia in growing solid tumor. Extracellular HMGB1 promotes the release of cytokines such as IL-6 and IL-8 by activating MAPK- and MyD88-dependent NF-κB pathways, which in turn stimulates tumor cells proliferation, angiogenesis, EMT, invasion, and metastasis. Nucleus and cytoplasmic HMGB1 promotes autophagy and inhibits apoptosis of tumor cells to induce chemotherapy resistance [15]. On the other hand, HMGB1 plays a protective role in the suppression of tumor and tumor chemoradiotherapy and immunotherapy. Nucleus HMGB1 assists in the regulation of telomere and maintenance of genome stability. Loss of HMGB1 results in the instability of genome and leads to tumorigenesis. Thus, the roles of HMGB1 in regulation of DNA damage repair and cancer etiology indicate that targeting chromosomal architectural HMGB1 may provide a new perspective for cancer therapy [16]. HMGB1 located in the cytosol or mitochondria may bind to autophagy associated genes like Beclin 1 to regulate cell autophagy and mitophagy. Absence of HMGB1 results in autophagy deficiency and increased apoptosis, leading to tumorigenesis. Intracellular HMGB1 functions as a tumor suppressor by binding tumor suppressor proteins like Rb. But it remains to be studied whether HMGB1 interacts with other tumor suppressors or oncoproteins. Extracellular HMGB1 enhances chemotherapy efficacy by transforming tumor cells from apoptosis to senescence [15]. In addition, HMGB1 can mediate immunogenic cell death during chemoradiotherapy and enhance anti-tumor immunity. In response to chemotherapy like anthracycline or radiotherapy, HMGB1 can be rapidly released from dead cells as an alarming molecule. Upon release from necrotic cells or secreted by activated macrophages, HMGB1 can recruit inflammatory cells and mediate interactions between NK cells, dendritic cells (DCs), and macrophages. Activated NK cells provide an additional source of HMGB1, which is released into the immunological synapse between NK cells and immature DCs, promoting the maturation of DCs and the induction of Th1 response [17]. In addition, HMGB1 produced from NSCLC cells induced by docetaxel can stimulate T cells for anti-tumor immune response and improve immunotherapy effects like CAR-T cells [5]. Therefore, modulating HMGB1 may provide a potential combination strategy for cancer chemoradiotherapy and immunotherapy.

Conclusion

HMGB1 is a multifunctional molecule that plays a major role in homeostasis as DAMP molecule. HMGB1 plays the complex roles in various biological processes and is involved in the development of many diseases such as autoimmune diseases and cancers. HMGB1-targeted agents including antibodies and inhibitors have shown beneficial results in preclinical inflammatory models such as sepsis. These agents await clinical development.

Acknowledgements

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids[J]. FEBS J. 1973;38(1):14–9. Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids[J]. FEBS J. 1973;38(1):14–9.
2.
Zurück zum Zitat Paudel YN, Angelopoulou E, Piperi C, Balasubramaniam VRMT, Othman I. Shaikh mf. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: updates on receptor signalling[J]. Eur J Pharmacol. 2019;858:172487.PubMedCrossRef Paudel YN, Angelopoulou E, Piperi C, Balasubramaniam VRMT, Othman I. Shaikh mf. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: updates on receptor signalling[J]. Eur J Pharmacol. 2019;858:172487.PubMedCrossRef
3.
Zurück zum Zitat Huebener P, Gwak GY, Pradere JP, et al. High-mobility group box 1 is dispensable for autophagy, mitochondrial quality control, and organ function in vivo[J]. Cell Metab. 2014;19(3):539–47.PubMedPubMedCentralCrossRef Huebener P, Gwak GY, Pradere JP, et al. High-mobility group box 1 is dispensable for autophagy, mitochondrial quality control, and organ function in vivo[J]. Cell Metab. 2014;19(3):539–47.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Rivera Vargas T, Apetoh L. Danger signals: chemotherapy enhancers?[J]. Immunol Rev. 2017;280(1):175–93.PubMedCrossRef Rivera Vargas T, Apetoh L. Danger signals: chemotherapy enhancers?[J]. Immunol Rev. 2017;280(1):175–93.PubMedCrossRef
5.
Zurück zum Zitat Gao Q, Wang SM, Chen XF, et al. Cancer-cell-secreted CXCL11 promoted CD8 T cells infiltration through docetaxel-induced-release of HMGB1 in NSCLC[J]. Journal for Immunotherapy of Cancer. 2019;7(1):42.PubMedPubMedCentralCrossRef Gao Q, Wang SM, Chen XF, et al. Cancer-cell-secreted CXCL11 promoted CD8 T cells infiltration through docetaxel-induced-release of HMGB1 in NSCLC[J]. Journal for Immunotherapy of Cancer. 2019;7(1):42.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Kim HM, Kim YM. HMGB1: LPS delivery vehicle for caspase-11-mediated pyroptosis[J]. Immunity. 2018;49(4):582–4.PubMedCrossRef Kim HM, Kim YM. HMGB1: LPS delivery vehicle for caspase-11-mediated pyroptosis[J]. Immunity. 2018;49(4):582–4.PubMedCrossRef
8.
Zurück zum Zitat Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis[J]. Immunity. 2018;49(4):740–753.e747.PubMedPubMedCentralCrossRef Deng M, Tang Y, Li W, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis[J]. Immunity. 2018;49(4):740–753.e747.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Shi XD, Yu LJ, Zhang YL, et al. Glycyrrhetinic acid alleviates hepatic inflammation injury in viral hepatitis disease via a HMGB1-TLR4 signaling pathway[J]. Int Immunopharmacol. 2020;84:106578.PubMedPubMedCentralCrossRef Shi XD, Yu LJ, Zhang YL, et al. Glycyrrhetinic acid alleviates hepatic inflammation injury in viral hepatitis disease via a HMGB1-TLR4 signaling pathway[J]. Int Immunopharmacol. 2020;84:106578.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Saha B, Tornai D, Kodys K, et al. Biomarkers of macrophage activation and immune danger signals predict clinical outcomes in alcoholic hepatitis[J]. Hepatology (Baltimore, Md). 2019;70(4):1134–49.CrossRef Saha B, Tornai D, Kodys K, et al. Biomarkers of macrophage activation and immune danger signals predict clinical outcomes in alcoholic hepatitis[J]. Hepatology (Baltimore, Md). 2019;70(4):1134–49.CrossRef
11.
Zurück zum Zitat Andersson U, Ottestad W, Tracey KJ. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19?[J]. Molecular Medicine (Cambridge, Mass). 2020;26(1):42.CrossRef Andersson U, Ottestad W, Tracey KJ. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19?[J]. Molecular Medicine (Cambridge, Mass). 2020;26(1):42.CrossRef
12.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell. 2011;144(5):646–74.CrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell. 2011;144(5):646–74.CrossRef
13.
Zurück zum Zitat Pusterla T, Nèmeth J, Stein I, et al. Receptor for advanced glycation endproducts (RAGE) is a key regulator of oval cell activation and inflammation-associated liver carcinogenesis in mice[J]. Hepatology (Baltimore, Md). 2013;58(1):363–73.CrossRef Pusterla T, Nèmeth J, Stein I, et al. Receptor for advanced glycation endproducts (RAGE) is a key regulator of oval cell activation and inflammation-associated liver carcinogenesis in mice[J]. Hepatology (Baltimore, Md). 2013;58(1):363–73.CrossRef
14.
Zurück zum Zitat Yang Y, Yang L, Jiang S, et al. HMGB1 mediates lipopolysaccharide-induced inflammation via interacting with GPX4 in colon cancer cells[J]. Cancer Cell Int. 2020;20:205.PubMedPubMedCentralCrossRef Yang Y, Yang L, Jiang S, et al. HMGB1 mediates lipopolysaccharide-induced inflammation via interacting with GPX4 in colon cancer cells[J]. Cancer Cell Int. 2020;20:205.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Yuan S, Liu Z, Xu Z, et al. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies[J]. J Hematol Oncol. 2020;13(1):91.PubMedPubMedCentralCrossRef Yuan S, Liu Z, Xu Z, et al. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies[J]. J Hematol Oncol. 2020;13(1):91.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Mukherjee A, Vasquez KM. Targeting chromosomal architectural HMGB proteins could be the next frontier in cancer therapy[J]. Cancer Res. 2020. Mukherjee A, Vasquez KM. Targeting chromosomal architectural HMGB proteins could be the next frontier in cancer therapy[J]. Cancer Res. 2020.
17.
Metadaten
Titel
HMGB1 in inflammation and cancer
verfasst von
Shumin Wang
Yi Zhang
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2020
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-020-00950-x

Weitere Artikel der Ausgabe 1/2020

Journal of Hematology & Oncology 1/2020 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.