Skip to main content
Erschienen in: Clinical and Experimental Nephrology 3/2012

Open Access 01.06.2012 | Original Article

Home systolic blood pressure on the morning of dialysis days has prognostic impact for hypertensive hemodialysis patients

verfasst von: Makoto Ogura, Yukiko Yamada, Hiroyuki Terawaki, Akihiko Hamaguchi, Yasuo Kimura, Tatsuo Hosoya

Erschienen in: Clinical and Experimental Nephrology | Ausgabe 3/2012

Abstract

Background

Hypertension is a leading cause of cardiovascular (CV) disease in the general population. Although hypertension is very common in maintenance hemodialysis (HD) patients, adequate blood pressure (BP) values and measurement timing have not been defined.

Methods

A total of 49 hypertensive HD patients were recruited. Average age was 63 ± 11 years, and duration of dialysis therapy was 6.2 ± 4.2 years. Dialysis unit BPs and various types of home BPs were separately measured, and which BPs were the most critical markers in evaluating the effect of hypertension on left ventricular hypertrophy and CV events was investigated.

Results

Predialysis systolic BPs were not correlated with any home BPs. Left ventricular mass index (LVMI) had a significant positive correlation with home BPs, especially morning systolic BPs on HD days (P < 0.01) and non-HD days (P < 0.05), on univariate and multivariate analysis. In contrast, predialysis BPs did not correlate with LVMI. During the follow-up period (47 ± 18 months), it was demonstrated that diabetes and home BPs, especially systolic BPs on the morning of HD days, were significant predictors of CV events on multivariate Cox regression analysis. A 10 mmHg increase in BP had a significantly elevated relative risk for CV events.

Conclusions

Home BP, especially systolic BPs in the morning on HD days, can provide pivotal information for management of HD patients.

Introduction

Hypertension is very common in patients undergoing regular hemodialysis (HD) treatment. Using various definitions of hypertension, the prevalence of hypertension in HD patients is estimated to be 60–90% [16]; for example, in a study of 2,535 clinically stable adult HD patients, 86% were found to be hypertensive [6]. In that study, hypertension was controlled adequately in only 30% of hypertensive patients. In the remaining patients, hypertension was either untreated (12%) or was poorly controlled (58%). Cardiovascular (CV) disease is the leading cause of death in patients receiving maintenance HD. Hypertension of HD patients is a risk factor for development and progression of left ventricular hypertrophy (LVH), CV, and total mortality [7]. Although Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines suggest that pre-HD and post-HD blood pressure (BP) should be <140/90 and <130/80 mmHg, respectively [8], the optimum BP goals for HD patients have not yet been defined. A meta-analysis showed that dialysis unit BP (pre- and post-HD) have poor agreement with interdialytic ambulatory BP [9]. BP obtained outside the dialysis unit, whether by interdialytic ambulatory BP measurement or self-measurement of BP at home, is useful in diagnosing LVH [10]. More recently, home BP and ambulatory BP have been found to provide superior prognostic value for all-cause mortality compared with dialysis unit BP among HD patients [11].
In this study, dialysis unit BP and various types of home BPs were separately measured, and which BPs were the most critical markers in evaluating the effect of hypertension on LVH and CV events in hypertensive HD patients was investigated.

Subjects and methods

Protocol

The protocol was in conformity with the ethical guidelines of our institutions, and informed consent was obtained from each participant.

Subjects

Forty-nine patients with end-stage renal disease (ESRD) (28 men and 21 women) who had been on regular dialysis treatment for at least 6 months at The Jikei University Kashiwa Hospital and Shin-Kashiwa Clinic were eligible for the study. All patients had been prescribed antihypertensive agents with diagnosis of hypertension. Patients with significant cardiac valvular disease, congestive heart failure with ventricular ejection fraction below 40%, or malignant disorders were excluded. No patients had experienced previous CV diseases. All patients underwent standard 3-times-a-week bicarbonate dialysis. All patients were on antihypertensive treatment [49 on calcium channel blockers (CCBs), 28 on angiotensin II receptor blockers (ARBs), 15 on alpha blockers, and 3 on beta blockers] with various combinations.
After the initial assessment, patients were followed for 56 months. During the follow-up period, CV events (fatal and nonfatal coronary heart disease diagnosed by coronary angiography, fatal arrhythmia, peripheral artery disease, transient ischemic attacks, stroke, and aortic dissection) and death were evaluated. To assess CV events and death accurately, two physicians checked the patients’ medical records. Coronary heart diseases were suspected by chest symptoms and electrocardiographic findings, and diagnosed by coronary angiography. Arrhythmias were diagnosed based on a standard 12-lead electrocardiogram. Cerebral stroke and transient ischemic attacks were diagnosed by neurological signs and symptoms together with computed tomography (CT) or magnetic resonance imaging. Peripheral artery disease and aortic dissection were diagnosed by clinical symptoms and enhanced CT findings.

Measurement of left ventricular mass

Echocardiographic measurements were performed with a digital cardiac ultrasound machine on a midweek nondialysis day. M-mode echocardiogram measurements of interventricular septal thickness (IVSTd), posterior wall thickness (PWTd), and left ventricular internal diameter (LVIDd) were performed at end diastole according to established standards of the American Society of Echocardiography (ASE). Left ventricular mass (LVM) was calculated using the formula by Devereux et al. [12] according to the ASE guidelines:
$$ {\text{LV}}\;{\text{mass}}\;({\text{g)}} = 0.8(1.04( [ {\text{IVSTd}} + {\text{PWTd}} + {\text{LVIDd]}}^{3} - [{\text{LVIDd}}]^{3} )) + 0.06. $$
Echocardiography was performed by the same technician, and all measurements were performed in duplicate by the same cardiologist, who was unaware of the subject’s BP. Left ventricular mass index (LVMI) was derived by dividing LVM in grams by the body surface area.

Predialysis BPs

A single predialysis BP measurement was taken by a dialysis unit staff member with patients in sitting position, within 30 min prior to the dialysis session using an automated sphygmometer on the nonfistula arm. Predialysis BP was calculated as the average value of 9 recordings over 3 weeks.

Home BPs

Home BP monitoring was performed 2 times daily for 3 weeks. Patients were asked to record their BP on waking up and before going to bed in sitting position using a validated self-inflating automatic oscillometric device. Four home BP values (morning BP and night BP on HD and non-HD days) were separately evaluated.

Statistical analysis

Subject characteristics are presented as mean ± standard deviation (SD) or median and interquartile range for continuous variables as appropriate, and number (percent) for categorical data. All BP measurements are reported as mean ± SD. Univariate and multivariate analyses were performed to evaluate the correlations between LVMI and several factors. The prognostic value for CV event of predialytic and home BPs was analyzed by multivariate Cox regression analysis. As potential confounders, a set of well-established risk factors in dialysis patients was considered: age, gender, HD duration, diabetes, antihypertensive (especially ARB) therapy, and clinical data. Hazard ratios (HR) and their 95% confidence intervals (CI) were calculated with the use of the estimated regression coefficients and their standard errors in the Cox regression analysis. All analyses were conducted using SPSS software version 17.0 (SPSS, Chicago, IL, USA) for Windows. The P values reported are two sided and taken to be significant at <0.05.

Results

Clinical characteristics of the patients are presented in Table 1. Average age was 63 ± 11 years (range 37–84 years), and duration of dialysis therapy was 6.2 ± 4.2 years (range 1–16 years). Interdialytic body weight (BW) gain was 3.9% per dry weight, and post-HD cardiothoracic ratio (CTR) was 48.4%. Intradialytic hypotension episodes were not found in any patient during the week in which the measurements were performed. All of the patients had been treated with antihypertensive drugs: 49 (100%) were on CCBs, 28 (57.1%) were on ARBs, 15 (30.6%) were on alpha blockers, and 3 (6.1%) were on beta blockers, with various combinations.
Table 1
Clinical characteristics and antihypertensive agents of study subjects
Clinical characteristic
n = 49
Male (%)
28 (57.1)
Age (years)
63 ± 11 (37–84)
HD duration (years)
6.2 ± 4.2 (1–16)
Diabetes mellitus (%)
16 (32.6)
Post-HD CTR (%)
48.4 ± 4.2 (41.3–59.8)
Interdialytic body weight gain
 /dry weight (%)
3.99 ± 0.99
BUN (mg/dl)
65.9 ± 14.7
Cr (mg/dl)
11.6 ± 2.5
Alb (g/dl)
3.9 ± 0.3
Ca (mg/dl)
8.9 ± 0.8
P (mg/dl)
4.4 ± 1.1
Hb (g/dl)
10.0 ± 0.9
Antihypertensive agents
 CCB (%)
49 (100)
 ARB (%)
28 (57.1)
 α Blocker (%)
15 (30.6)
 β Blocker (%)
3 (6.1)
CTR cardiothoracic ratio, BUN blood urea nitrogen, Cr creatinine, Alb albumin, Ca calcium, P phosphate, Hb hemoglobin, CCB calcium channel blockers, ARB angiotensin receptor blockers
Table 2 presents the values of predialysis BPs and each home BP. Predialysis mean systolic BP was 152.8 ± 19.0 mmHg. Each mean systolic home BP was as follows: mornings on HD days 155.8 ± 17.8 mmHg, nights on HD days 152.3 ± 19.6 mmHg, mornings on non-HD days 150.9 ± 18.4 mmHg, and nights on non-HD days 156.1 ± 17.1 mmHg. The value of BP in the morning on HD days was significantly higher than BP in the morning on non-HD days (P < 0.05). There were no differences between diastolic BPs. Predialysis systolic BPs were not correlated with any home BPs. The difference between HD morning and non-HD morning BPs was weakly correlated with % interdialytic BW gain (P = 0.05, data not shown).
Table 2
Predialysis and home BP measurements
BPs
mmHg
Clinic
 Predialysis
  Systolic
152.8 ± 19.0
  Diastolic
80.2 ± 13.4
Home
 Mornings on HD days
  Systolic
155.8 ± 17.8a
  Diastolic
80.9 ± 14.5
 Nights on HD days
  Systolic
152.3 ± 19.6
  Diastolic
81.7 ± 14.4
 Mornings on non-HD days
  Systolic
150.9 ± 18.4a
  Diastolic
80.6 ± 12.4
 Nights on non-HD days
  Systolic
156.1 ± 17.1
  Diastolic
81.1 ± 12.9
aBP in the morning on HD days versus BP in the morning on non-HD days, P < 0.05

Predialysis and home BPs and LVMI

As shown in Fig. 1, home BPs, especially morning systolic BPs on HD and non-HD days, had a significant positive correlation with LVMI (r = 0.50, P < 0.01 and r = 0.41, P < 0.01, respectively). On the other hand, predialysis BP did not correlate with LVMI (r = 0.27, NS). Multivariate analysis including various factors (HD vintage, age, gender, diabetes, ARB, and BPs) demonstrated that only morning systolic BPs on HD and non-HD days had significant correlation with LVMI (Table 3).
Table 3
Correlation with LVMI and various factors assessed by multivariate analysis
 
Model 1
Model 2
R
P
R
P
HD duration
0.03
0.83
0.03
0.84
Age
0.02
0.87
0.05
0.76
Gender
−0.22
0.19
−0.26
0.15
DM
−0.15
0.35
−0.05
0.77
ARB
0.12
0.45
0.18
0.30
BPs (mmHg)
 Predialysis
0.27
0.12
0.31
0.09
Home
 Mornings on HD days
0.57
0.008
  
 Nights on HD days
0.20
0.44
−0.12
0.67
 Mornings on non-HD days
  
0.55
0.03
 Nights on non-HD days
−0.32
0.27
−0.15
0.60

Predialysis and home BPs and cardiovascular events

During the follow-up period (47 ± 18 months), 11 (22%) patients had CV events (4 with angina, 4 with stroke, 2 with idiopathic ventricular tachycardia, and 1 with aortic dissection). Among these patients, 3 patients died with stroke. Table 4 presents the relative risks (RR) of CV events in the study population. As assessed by multivariate Cox analysis, the significant predictors of CV events were diabetes and home BPs, especially systolic BPs on the morning of HD days. A 10 mmHg increase in BP had a significantly elevated RR for CV events (RR 2.00, 95% CI 1.07–3.74, P = 0.03).
Table 4
Relative risk of cardiovascular events assessed by multivariate Cox proportional hazards models
 
Relative risk
95% confidence limits
P
HD duration
1.19
0.93–1.52
0.17
Age
1.06
0.97–1.15
0.21
Gender
1.93
0.20–18.9
0.57
DM
8.76
1.30–58.9
0.03
ARB
1.16
0.18–7.50
0.88
Cr
1.20
0.77–1.87
0.41
Alb
1.69
0.09–33.7
0.73
Ca
1.14
0.34–3.79
0.83
P
0.44
0.17–1.18
0.10
Hb
1.10
0.45–2.66
0.84
BPs (10 mmHg)
 Mornings on HD days
2.00
1.07–3.74
0.03

Discussion

The results demonstrated that the median systolic values of predialysis and home BPs were around 150 mmHg, ranging from 151 to 156 mmHg, while the median diastolic values were around 80 mmHg. Predialysis systolic BPs were higher than the K/DOQI guideline (<140/90 mmHg) [8]. All patients in the present study had been diagnosed with hypertension before, and treated with at least one or more antihypertensive agents. Despite aggressive treatment, BP control was considered to be inadequate by the K/DOQI guideline. The 12th annual report of the UK Renal Registry (UKRR) indicated that 43.1% of HD patients achieve predialytic BP of <140/90 mmHg [13]. Strict control of BPs is often difficult, considering the prevention of hypotension during HD. Davenport et al. [14] reported that intradialytic hypotension was significantly greater in centers that achieved better postdialysis BP targeting.
The present data showed that predialysis systolic BPs were not correlated with any home BPs. Agarwal et al. [15] reported that BPs obtained before and after dialysis, even if obtained using standardized methods, agree poorly with interdialytic ambulatory BP. In contrast, home BP served as a useful predictor of hypertension diagnosed by ambulatory BP monitoring. The difference between HD and non-HD morning BPs was weakly correlated with % interdialytic BW gain. This is reasonable because BPs in HD patients, in part, usually depend on an increase in fluid volume between dialysis.
The present study demonstrated that LVMI had a significant positive correlation on univariate analysis with home BP, especially morning systolic BPs on HD and non-HD days. In contrast, predialysis BP did not correlate with LVMI. Multivariate analysis including several factors which could affect LVMI demonstrated that only morning systolic BPs on HD and non-HD days were regarded as independent explanatory factors. LVMI has been reported as a critical indicator to predict mortality and CV outcomes in patients undergoing dialysis [1619]. LVH regression in patients with ESRD has been shown to have a favorable and independent effect on patients’ all-cause and CV survival [20]. Agarwal et al. [10] reported that dialysis unit BPs in 140 HD patients were weak correlates of LVH. On the other hand, systolic BPs outside the dialysis unit (1-week averaged home BP readings) were a stronger correlate of LVH. Diastolic BPs, regardless of the measurement technique, were of little use in detecting LVH. A more recent study reported that weekly averaged BP (WAB) was a useful marker that reflects BP variability during 1 week and correlates with target organ damage such as LVMI and brachial-ankle pulse wave velocity (PWV) [21]. Furthermore, systolic and diastolic WAB are almost completely consistent with BPs taken immediately after waking up on the next day after the middle dialysis session. The present data agree with these previous studies. It should be emphasized that home BPs, especially morning systolic BPs on HD days, play a pivotal role predicting LVMI. This phenomenon is considered to be reasonable because morning BPs on HD days can partly represent maximum volume overload to vasculature, thus affecting LVMI.
The present results also demonstrated that home BPs, especially systolic BPs on the morning of HD days, were the significant predictors of CV events during follow-up period. A 10 mmHg increase in BP had a significantly elevated RR for CV events (RR 2.00). Several studies using ambulatory or home BP monitoring in HD patients support the concepts that ambulatory BP and mortality are strongly related. Amar et al. [22] reported that nocturnal BP and 24-h pulse pressure were independent predictors of CV mortality in 57 treated hypertensive HD patients (34 ± 20 months). Tripepi et al. [23] analyzed the prognostic power of 24-h ambulatory BP monitoring for all-cause and CV mortality in 168 nondiabetic, event-free HD patients (38 ± 22 months). The ratio of the average systolic BP during the night and day (night/day systolic ratio) used to indicate the nocturnal fall in BP was associated with all-cause and CV mortality. Moriya et al. [24] reported that WAB could be a good prognostic marker of the incidence of both CV events and all-cause mortality in 96 HD patients (35 months). Recently, Agarwal [11] evaluated the presence, strength, and shape of the relationship between BP measured using different modalities (home, ambulatory, and dialysis unit) and all-cause mortality among 326 HD patients (32 ± 20 months). Out-of-dialysis unit BP was reported as prognostically more informative than that recorded just before and after dialysis.
The role of hypertension as a risk factor for increased CV events in the general population is indisputable. However, a lot of studies have shown an association between low BP and increased mortality, or have shown a U-shaped relationship, with both low and high BP associated with increased RR of death [2527]. These paradoxical observations have been referred to as “reverse epidemiology” [28]. As the etiology of this inverse association between conventional risk factors and clinical outcome is not clear, presence of malnutrition and inflammation may explain the existence of reverse epidemiology in dialysis patients. In the present study, patients who were recently hospitalized or sick were excluded. All of the patients in the present study had hypertension, nor pre- and postdialysis hypotension. Thus, this study differed in its recruitment criteria compared with previous studies which have analyzed all patients in the dialysis unit regardless of their level of illness.
In the present statistical evaluation, age did not contribute to the onset of CV events. Several reasons are considered to explain this phenomenon. First, the observation period was likely short to evaluate CV events. Second, patients in the present study had not experienced previous CV diseases. Third, few fatal events occurred, probably due to their healthy condition for dialysis patients.
All of the patients in the present study had been prescribed one or more antihypertensive agents: 49 (100%) were on CCBs, 28 (57.1%) were on ARBs, 15 (30.6%) were on alpha blockers, and 3 (6.1%) were on beta blockers. Recent data from the Dialysis Outcomes and Practice Patterns Study II (DOPPS II) showed that prescription of antihypertensive agent classes varied significantly by country, ranging for beta blockers from 9.7% in Japan to 52.7% in Sweden, for ARBs from 5.5% in Italy to 21.3% in Japan, and for CCBs from 19.5% in Belgium to 51.4% in Japan [29]. Therefore, the high proportion of prescribed CCBs and ARBs in the present study in Japan is not so surprising.
The ability to generalize the results of this study may be limited because of the number of patients and clinical characteristics. The number of patients was too small to conclude prognosis of a large variety and complexity of HD patients. Patients included in this study were all hypertensive and were treated with one or more antihypertensive agents. Furthermore, almost all patients were in good health. Recently, diurnal BP variation has been considered important [30]. In the present study, ambulatory BPs were not measured. Ambulatory BP monitoring provides not only static but also dynamic information about BP that should be considered to ensure effective management of hypertension and CV diseases.
In conclusion, the results of the present study are: (1) predialysis systolic BPs were not correlated with any home BPs; (2) LVMI had a significant positive correlation with home BPs, especially morning systolic BPs on HD and non-HD days; and (3) home BPs, especially systolic BPs in the morning on HD days, were significant predictors of CV events during the follow-up period. Prospective intervention studies with large numbers of patients will be needed to clarify the cause–effect relationship between various BPs and CV events.

Conflict of interest

All the authors declare no competing interests.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://​creativecommons.​org/​licenses/​by-nc/​2.​0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Tomita J, Kimura G, Inoue T, Inenaga T, Sanai T, Kawano Y, et al. Role of systolic BP in determining prognosis of hemodialyzed patients. Am J Kidney Dis. 1995;25:405–12.PubMedCrossRef Tomita J, Kimura G, Inoue T, Inenaga T, Sanai T, Kawano Y, et al. Role of systolic BP in determining prognosis of hemodialyzed patients. Am J Kidney Dis. 1995;25:405–12.PubMedCrossRef
2.
Zurück zum Zitat Salem MM. Hypertension in the hemodialysis population: a survey of 649 patients. Am J Kidney Dis. 1995;26:461–8.PubMedCrossRef Salem MM. Hypertension in the hemodialysis population: a survey of 649 patients. Am J Kidney Dis. 1995;26:461–8.PubMedCrossRef
3.
Zurück zum Zitat Mittal SK, Kowalski E, Trenkle J, McDonough B, Halinski D, Devlin K, et al. Prevalence of hypertension in a hemodialysis population. Clin Nephrol. 1999;51:77–82.PubMed Mittal SK, Kowalski E, Trenkle J, McDonough B, Halinski D, Devlin K, et al. Prevalence of hypertension in a hemodialysis population. Clin Nephrol. 1999;51:77–82.PubMed
4.
Zurück zum Zitat Grekas D, Bamichas G, Bacharaki D, Goutzaridis N, Kasimatis E, Tourkantonis A. Hypertension in chronic hemodialysis patients: current view on pathophysiology and treatment. Clin Nephrol. 2000;53:164–8.PubMed Grekas D, Bamichas G, Bacharaki D, Goutzaridis N, Kasimatis E, Tourkantonis A. Hypertension in chronic hemodialysis patients: current view on pathophysiology and treatment. Clin Nephrol. 2000;53:164–8.PubMed
5.
Zurück zum Zitat Rocco MV, Yan G, Heyka RJ, Benz R, Cheung AK, HEMO Study Group. Risk factors for hypertension in chronic hemodialysis patients: Baseline data from the HEMO study. Am J Nephrol. 2001;21:280–8.PubMedCrossRef Rocco MV, Yan G, Heyka RJ, Benz R, Cheung AK, HEMO Study Group. Risk factors for hypertension in chronic hemodialysis patients: Baseline data from the HEMO study. Am J Nephrol. 2001;21:280–8.PubMedCrossRef
6.
Zurück zum Zitat Agarwal R, Nissenson AR, Batlle D, Coyne DW, Trout JR, Warnock DG. Prevalence, treatment, and control of hypertension in chronic hemodialysis patients in the United States. Am J Med. 2003;115:291–7.PubMedCrossRef Agarwal R, Nissenson AR, Batlle D, Coyne DW, Trout JR, Warnock DG. Prevalence, treatment, and control of hypertension in chronic hemodialysis patients in the United States. Am J Med. 2003;115:291–7.PubMedCrossRef
7.
Zurück zum Zitat Agarwal R. Hypertension and survival in chronic hemodialysis patients—past lessons and future opportunities. Kidney Int. 2005;67:1–13.PubMedCrossRef Agarwal R. Hypertension and survival in chronic hemodialysis patients—past lessons and future opportunities. Kidney Int. 2005;67:1–13.PubMedCrossRef
8.
Zurück zum Zitat K/DOQI Workgroup. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis. 2005;45(4 Suppl 3):1–153. K/DOQI Workgroup. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis. 2005;45(4 Suppl 3):1–153.
9.
Zurück zum Zitat Agarwal R, Peixoto AJ, Santos SF, Zoccali C. Pre and post dialysis blood pressures are imprecise estimates of interdialytic ambulatory blood pressure. Clin J Am Soc Nephrol. 2006;1:389–98.PubMedCrossRef Agarwal R, Peixoto AJ, Santos SF, Zoccali C. Pre and post dialysis blood pressures are imprecise estimates of interdialytic ambulatory blood pressure. Clin J Am Soc Nephrol. 2006;1:389–98.PubMedCrossRef
10.
Zurück zum Zitat Agarwal R, Brim NJ, Mahenthiran J, Andersen MJ, Saha C. Out-of-hemodialysis-unit blood pressure is a superior determinant of left ventricular hypertrophy. Hypertension. 2006;47:62–8.PubMedCrossRef Agarwal R, Brim NJ, Mahenthiran J, Andersen MJ, Saha C. Out-of-hemodialysis-unit blood pressure is a superior determinant of left ventricular hypertrophy. Hypertension. 2006;47:62–8.PubMedCrossRef
11.
Zurück zum Zitat Agarwal R. Blood pressure and mortality among hemodialysis patients. Hypertension. 2010;55:762–8.PubMedCrossRef Agarwal R. Blood pressure and mortality among hemodialysis patients. Hypertension. 2010;55:762–8.PubMedCrossRef
12.
Zurück zum Zitat Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.PubMedCrossRef Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450–8.PubMedCrossRef
13.
Zurück zum Zitat Harper J, Nicholas J, Webbc L, Casula A, Williams AJ. UK Renal Registry 12th Annual Report (December 2009). Chapter 11: blood pressure profile of prevalent patients receiving dialysis in the UK in 2008: national and centre specific analyses. Nephron Clin Pract. 2010;115:c239–60.PubMedCrossRef Harper J, Nicholas J, Webbc L, Casula A, Williams AJ. UK Renal Registry 12th Annual Report (December 2009). Chapter 11: blood pressure profile of prevalent patients receiving dialysis in the UK in 2008: national and centre specific analyses. Nephron Clin Pract. 2010;115:c239–60.PubMedCrossRef
14.
Zurück zum Zitat Davenport A, Cox C, Thuraisingham R. Achieving blood pressure targets during dialysis improves control but increases intradialytic hypotension. Kidney Int. 2008;73:759–64.PubMedCrossRef Davenport A, Cox C, Thuraisingham R. Achieving blood pressure targets during dialysis improves control but increases intradialytic hypotension. Kidney Int. 2008;73:759–64.PubMedCrossRef
15.
Zurück zum Zitat Agarwal R, Andersen MJ, Bishu K, Saha C. Home blood pressure monitoring improves the diagnosis of hypertension in hemodialysis patients. Kidney Int. 2006;69:900–6.PubMedCrossRef Agarwal R, Andersen MJ, Bishu K, Saha C. Home blood pressure monitoring improves the diagnosis of hypertension in hemodialysis patients. Kidney Int. 2006;69:900–6.PubMedCrossRef
16.
Zurück zum Zitat Silberberg JS, Barre PE, Prichard SS, Sniderman AD. Impact of left ventricular hypertrophy on survival in end-stage renal disease. Kidney Int. 1989;36:286–90.PubMedCrossRef Silberberg JS, Barre PE, Prichard SS, Sniderman AD. Impact of left ventricular hypertrophy on survival in end-stage renal disease. Kidney Int. 1989;36:286–90.PubMedCrossRef
17.
Zurück zum Zitat Harnett JD, Kent GM, Barre PE, Taylor R, Parfrey PS. Risk factors for the development of left ventricular hypertrophy in a prospectively followed cohort of dialysis patients. J Am Soc Nephrol. 1994;4:1486–90.PubMed Harnett JD, Kent GM, Barre PE, Taylor R, Parfrey PS. Risk factors for the development of left ventricular hypertrophy in a prospectively followed cohort of dialysis patients. J Am Soc Nephrol. 1994;4:1486–90.PubMed
18.
Zurück zum Zitat Parfrey PS, Foley RN, Harnett JD, Kent GM, Murray DC, Barre PE. Outcome and risk factors for left ventricular disorders in chronic uremia. Nephrol Dial Transplant. 1996;11:1277–85.PubMedCrossRef Parfrey PS, Foley RN, Harnett JD, Kent GM, Murray DC, Barre PE. Outcome and risk factors for left ventricular disorders in chronic uremia. Nephrol Dial Transplant. 1996;11:1277–85.PubMedCrossRef
19.
Zurück zum Zitat Zoccali C, Benedetto FA, Mallamaci F, Tripepi G, Giacone G, Cataliotti A, CREED Investigators, et al. Prognostic impact of the indexation of left ventricular mass in patients undergoing dialysis. J Am Soc Nephrol. 2001;12:2768–74.PubMed Zoccali C, Benedetto FA, Mallamaci F, Tripepi G, Giacone G, Cataliotti A, CREED Investigators, et al. Prognostic impact of the indexation of left ventricular mass in patients undergoing dialysis. J Am Soc Nephrol. 2001;12:2768–74.PubMed
20.
Zurück zum Zitat London GM, Pannier B, Guerin AP, Blacher J, Marchais SJ, Darne B, et al. Alterations of left ventricular hypertrophy in and survival of patients receiving hemodialysis: follow-up of an interventional study. J Am Soc Nephrol. 2001;12:2759–67.PubMed London GM, Pannier B, Guerin AP, Blacher J, Marchais SJ, Darne B, et al. Alterations of left ventricular hypertrophy in and survival of patients receiving hemodialysis: follow-up of an interventional study. J Am Soc Nephrol. 2001;12:2759–67.PubMed
21.
Zurück zum Zitat Moriya H, Ohtake T, Kobayashi S. Aortic stiffness, left ventricular hypertrophy and weekly averaged blood pressure (WAB) in patients on haemodialysis. Nephrol Dial Transplant. 2007;22:1198–204.PubMedCrossRef Moriya H, Ohtake T, Kobayashi S. Aortic stiffness, left ventricular hypertrophy and weekly averaged blood pressure (WAB) in patients on haemodialysis. Nephrol Dial Transplant. 2007;22:1198–204.PubMedCrossRef
22.
Zurück zum Zitat Amar J, Vernier I, Rossignol E, Bongard V, Arnaud C, Conte JJ, et al. Nocturnal blood pressure and 24-hour pulse pressure are potent indicators of mortality in hemodialysis patients. Kidney Int. 2000;57:2485–91.PubMedCrossRef Amar J, Vernier I, Rossignol E, Bongard V, Arnaud C, Conte JJ, et al. Nocturnal blood pressure and 24-hour pulse pressure are potent indicators of mortality in hemodialysis patients. Kidney Int. 2000;57:2485–91.PubMedCrossRef
23.
Zurück zum Zitat Tripepi G, Fagugli RM, Dattolo P, Parlongo G, Mallamaci F, Buoncristiani U, et al. Prognostic value of 24-hour ambulatory blood pressure monitoring and of night/day ratio in nondiabetic, cardiovascular events-free hemodialysis patients. Kidney Int. 2005;68:1294–302.PubMedCrossRef Tripepi G, Fagugli RM, Dattolo P, Parlongo G, Mallamaci F, Buoncristiani U, et al. Prognostic value of 24-hour ambulatory blood pressure monitoring and of night/day ratio in nondiabetic, cardiovascular events-free hemodialysis patients. Kidney Int. 2005;68:1294–302.PubMedCrossRef
24.
Zurück zum Zitat Moriya H, Oka M, Maesato K, Mano T, Ikee R, Ohtake T, et al. Weekly averaged blood pressure is more important than a single-point blood pressure measurement in the risk stratification of dialysis patients. Clin J Am Soc Nephrol. 2008;3:416–22.PubMedCrossRef Moriya H, Oka M, Maesato K, Mano T, Ikee R, Ohtake T, et al. Weekly averaged blood pressure is more important than a single-point blood pressure measurement in the risk stratification of dialysis patients. Clin J Am Soc Nephrol. 2008;3:416–22.PubMedCrossRef
25.
Zurück zum Zitat Zager PG, Nikolic J, Brown RH, Campbell MA, Hunt WC, Peterson D, et al. “U” curve association of blood pressure and mortality in hemodialysis patients. Kidney Int. 1998;54:561–9.PubMedCrossRef Zager PG, Nikolic J, Brown RH, Campbell MA, Hunt WC, Peterson D, et al. “U” curve association of blood pressure and mortality in hemodialysis patients. Kidney Int. 1998;54:561–9.PubMedCrossRef
26.
Zurück zum Zitat Iseki K, Miyasato F, Tokuyama K, Nishime K, Uehara H, Shiohira Y, et al. Low diastolic blood pressure, hypoalbuminemia and risk of death in a cohort of chronic hemodialysis patients. Kidney Int. 1997;51:1212–7.PubMedCrossRef Iseki K, Miyasato F, Tokuyama K, Nishime K, Uehara H, Shiohira Y, et al. Low diastolic blood pressure, hypoalbuminemia and risk of death in a cohort of chronic hemodialysis patients. Kidney Int. 1997;51:1212–7.PubMedCrossRef
27.
Zurück zum Zitat Port FK, Hulbert-Shearon TE, Wolfe RA, Bloembergen WE, Golper TA, Agodoa LY, et al. Predialysis blood pressure and mortality risk in a national sample of maintenance hemodialysis patients. Am J Kidney Dis. 1999;33:507–17.PubMedCrossRef Port FK, Hulbert-Shearon TE, Wolfe RA, Bloembergen WE, Golper TA, Agodoa LY, et al. Predialysis blood pressure and mortality risk in a national sample of maintenance hemodialysis patients. Am J Kidney Dis. 1999;33:507–17.PubMedCrossRef
28.
Zurück zum Zitat Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003;63:793–808.PubMedCrossRef Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003;63:793–808.PubMedCrossRef
29.
Zurück zum Zitat Lopes AA, Bragg-Gresham JL, Ramirez SP, Andreucci VE, Akiba T, Saito A, et al. Prescription of antihypertensive agents to haemodialysis patients: time trends and associations with patient characteristics, country and survival in the DOPPS. Nephrol Dial Transplant. 2009;24:2809–16.PubMedCrossRef Lopes AA, Bragg-Gresham JL, Ramirez SP, Andreucci VE, Akiba T, Saito A, et al. Prescription of antihypertensive agents to haemodialysis patients: time trends and associations with patient characteristics, country and survival in the DOPPS. Nephrol Dial Transplant. 2009;24:2809–16.PubMedCrossRef
30.
Zurück zum Zitat Metoki H, Ohkubo T, Imai Y. Diurnal blood pressure variation and cardiovascular prognosis in a community-based study of Ohasama, Japan; diurnal variations in blood pressure: clinical implications and pathogenesis. Hypertens Res. 2010;33:652–6.PubMedCrossRef Metoki H, Ohkubo T, Imai Y. Diurnal blood pressure variation and cardiovascular prognosis in a community-based study of Ohasama, Japan; diurnal variations in blood pressure: clinical implications and pathogenesis. Hypertens Res. 2010;33:652–6.PubMedCrossRef
Metadaten
Titel
Home systolic blood pressure on the morning of dialysis days has prognostic impact for hypertensive hemodialysis patients
verfasst von
Makoto Ogura
Yukiko Yamada
Hiroyuki Terawaki
Akihiko Hamaguchi
Yasuo Kimura
Tatsuo Hosoya
Publikationsdatum
01.06.2012
Verlag
Springer Japan
Erschienen in
Clinical and Experimental Nephrology / Ausgabe 3/2012
Print ISSN: 1342-1751
Elektronische ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-011-0575-1

Weitere Artikel der Ausgabe 3/2012

Clinical and Experimental Nephrology 3/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Neue S3-Leitlinie zur unkomplizierten Zystitis: Auf Antibiotika verzichten?

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Intervallfasten zur Regeneration des Herzmuskels?

14.05.2024 Herzinfarkt Nachrichten

Die Nahrungsaufnahme auf wenige Stunden am Tag zu beschränken, hat möglicherweise einen günstigen Einfluss auf die Prognose nach akutem ST-Hebungsinfarkt. Darauf deutet eine Studie an der Uniklinik in Halle an der Saale hin.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.