Skip to main content
Erschienen in: Journal of Translational Medicine 1/2022

Open Access 01.12.2022 | Research

How mycobacterium tuberculosis infection could lead to the increasing risks of chronic fatigue syndrome and the potential immunological effects: a population-based retrospective cohort study

verfasst von: Tse-Yen Yang, Cheng-Li Lin, Wei-Cheng Yao, Chon-Fu Lio, Wen-Po Chiang, Kuan Lin, Chien-Feng Kuo, Shin-Yi Tsai

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2022

Abstract

Background

Chronic fatigue syndrome (CFS) has been shown to be associated with infections. Tuberculosis (TB) is a highly prevalent infectious disease. Patients with chronic fatigue syndrome and post-tuberculosis experience similar symptoms. Furthermore, chronic fatigue syndrome and tuberculosis share similar plasma immunosignatures. This study aimed to clarify the risk of chronic fatigue syndrome following the diagnosis of Mycobacterium tuberculosis infection (MTI), by analyzing the National Health Insurance Research Database of Taiwan.

Methods

7666 patients aged 20 years or older with newly diagnosed Mycobacterium tuberculosis infection during 2000–2011 and 30,663 participants without Mycobacterium tuberculosis infection were identified. Both groups were followed up until the diagnoses of chronic fatigue syndrome were made at the end of 2011.

Results

The relationship between Mycobacterium tuberculosis infection and the subsequent risk of chronic fatigue syndrome was estimated through Cox proportional hazards regression analysis, with the incidence density rates being 3.04 and 3.69 per 1000 person‐years among the non‐Mycobacterium tuberculosis infection and Mycobacterium tuberculosis infection populations, respectively (adjusted hazard ratio [HR] = 1.23, with 95% confidence interval [CI] 1.03–1.47). In the stratified analysis, the Mycobacterium tuberculosis infection group were consistently associated with a higher risk of chronic fatigue syndrome in the male sex (HR = 1.27, 95% CI 1.02–1.58) and age group of ≥ 65 years old (HR = 2.50, 95% CI 1.86–3.38).

Conclusions

The data from this population‐based retrospective cohort study revealed that Mycobacterium tuberculosis infection is associated with an elevated risk of subsequent chronic fatigue syndrome.
Hinweise
Tse-Yen Yang, Cheng-Li Lin and Wei-Cheng Yao contributed equally to this work

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CFS
Chronic fatigue syndrome
TB
Tuberculosis
MTI
Mycobacterium tuberculosis infection
HADS
Hospital Anxiety and Depression Scale
IFN
Interferon
TNF
Tumour necrosis factor
IL
Interleukin
NHIRD
National Health Insurance Research Database
NF
Nuclear factor

Background

Chronic fatigue syndrome (CFS) is conventionally defined as the presence of unexplainable fatigue lasting > 6 months and accompanied by at least four of the following symptoms: substantial impairment in short-term memory, tender lymph nodes, sore throat, muscle pain, multiple joint pain without swelling or redness, headache, unrefreshing sleep, and postexertional malaise lasting > 24 h [1]. CFS affects not only physical but mental status with profound disability. It was considered a psychiatric disorder due to a lack of a consistent physiological marker or physical finding [2, 3]. Psychiatric conditions such as anxiety, sleep disorders, and depression are strongly related to CFS [4, 5]. It can lead to impairment in simple and complex information processing speed and tasks requiring working memory [6], and imposes huge economic costs on society [7]. The etiologies of chronic fatigue syndrome involve multiple factors. Current studies revealed the etiologies are related to infection [8], immune system differences [9], endocrine-metabolic dysfunction [10], or some specific disease such as peptic ulcer disease [11]. Multiple infectious agents have been linked to CFS, such as the varicella zoster virus [9]. Identifying potential patients with CFS from among post-infectious patients is crucial for early diagnosis and prevention. With every third person on the Earth having Mycobacterium tuberculosis infection (MTI), tuberculosis (TB) is a highly prevalent infectious disease that continues to pose a serious challenge to public health. Patients with CFS and post-TB experience similar symptoms, such as fatigue, lassitude, and articular symptoms. TB arthritis commonly presents with chronic joint pain and insidious onset of only minimal signs of inflammation. Moreover, 72% of the patients with TB have moderate-to-severe anxiety and depression according to Hospital Anxiety and Depression Scale (HADS) [12], which considers some of the somatic symptoms. In addition, patients with CFS or with TB share similar plasma immunosignatures. Cytokine alterations are correlated with duration of illness, suggesting that CFS immunopathology is “not static” [13]. Abnormal cytokine profiles such as increased production of interferon (IFN) γ were observed in patients with CFS [14] and latent MTI [15]. Other immune activation markers of CFS include higher levels of the proinflammatory cytokines, tumour necrosis factor (TNF) α, interleukin (IL) 6, and IL-1β. Thus, the chronical activation and high dysregulation of the immune system may play an essential role in CFS development [16]. TB is chronic and remains latent in the human body for a lifetime. In this study, we investigated the association of TB and CFS by using retrospective cohort data from Taiwan National Health Insurance (NHI) Research Database (NHIRD).

Methods

Data source

We obtained our data from the Longitudinal Health Insurance Database 2000 (LHID2000) of NHIRD in this population-based retrospective cohort study. NHIRD contains all the reimbursement claims data from the NHI programme, including a beneficiary registry, medical records, a drug prescription registry, and other medical services. The programme is a nationwide single-payer insurance system established in March 1995 covering approximately 99% of Taiwanese residents [17]. LHID2000 contains registration and claims data of 1,000,000 insurants randomly sampled from the 2000 registry of NHIRD beneficiaries. The database renewed the claims data annually. The definition of disease in NHIRD is based on the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). Before releasing LHID2000 for research, the original identification numbers of each insurant are removed through scrambling and linking individual claims data with random numbers.
This study was approved by the Research Ethics Committee of the China Medical University Hospital (CMUH-104-REC2-115) and the Institutional Review Board of Mackay Memorial Hospital (16MMHIS074).

Participants

For the study cohort, we identified patients from LHID2000 aged ≥ 20 years and newly diagnosed as having a MTI (ICD-9-CM 010–018) between 2000 and 2011. The diagnosis date was defined as the index date. Patients aged below 20 years and patients with a history of CFS (ICD-9-CM 780.71) were excluded. The comparison cohort comprised individuals without MTI or CFS history. This cohort was randomly assigned the same index date as the MTI cohort. The comparison cohort was frequency-matched for age (strata of 5 years), sex, and index year at an approximately 4:1 ratio. All participants were followed from the index date until the date of CFS diagnosis, withdrawal from the programme, or the end of 2011, whichever was earliest.

Comorbidities

Baseline comorbidity history of diabetes (ICD-9-CM 250), obesity (ICD-9-CM 278.0), renal disease (ICD-9-CM 580–589), rheumatoid arthritis (RA; ICD-9-CM 714), human immunodeficiency virus infection (ICD-9-CM 042), malignancy (ICD-9-CM 140–149, 150–159, 160–165, 170–172, 174–175, 179–189, 190–199, 200–208, and 235–238), and inflammatory bowel disease (IBD; ICD-9-CM 555–556) were obtained.

Statistical analysis

The differences in demographic characteristics and comorbidities between the MTI and comparison cohorts were assessed using the chi-square test for categorical data and Student’s t test for continuous data. Cumulative incidence curves of CFS were computed using the Kaplan–Meier method, and between-cohort differences in cumulative incidence curves were assessed using the log-rank test. The incidence density of subsequent CFS for each cohort was calculated as the number of CFS events divided by the sum of follow-up duration (per 1000 person-years). Univariate and multivariate Cox proportional hazard regression models were used to examine the effect of MTI on CFS risk. The results are presented as hazard ratios (HRs) with 95% confidence intervals (CIs). The multivariate models were adjusted for age, sex, and comorbidities of diabetes, renal disease, and IBD. All analyses were generated using SAS (version 9.3; SAS Institute Inc., Cary, NC, USA), and a two-sided P value of < 0.05 was considered statistically significant.

Results

The MTI and comparison cohorts comprised 7666 and 30,663 individuals, respectively, with similar age and sex distribution (Table 1). In the MTI cohort, 47. 8% of the participants were aged ≥ 65 years and 67.9% were men. In the MTI and comparison cohorts, the mean age was 60.5 ± 18.3 and 60.0 ± 18.3 years, respectively. Compared with the comparison cohort, the MTI cohort had significantly higher percentages of comorbidities except for obesity (all P < 0.05). In the MTI and comparison cohorts, the mean follow-up duration was 5.24 and 6.08 years, respectively. Figure 1 demonstrates that the cumulative incidence of CFS was significantly higher in the MTI cohort than in the comparison cohort (P = 0.03). In the MTI and comparison cohorts, the mean CFS incidence was 3.04 and 3.69 per 1000 person-years, respectively (Table 2). The multivariable models were mutually adjusting for age, sex, and comorbidities of diabetes, renal disease, and IBD.
Table 1
Demographic characteristics and comorbidities in cohorts with and without mycobacterium tuberculosis infection patients
Variable
Mycobacterium tuberculosis infection
p-value
No
Yes
N = 30,663
N = 7666
Age, year
  
0.99
 ≤ 34
3668 (12.0)
917 (12.0)
 
 35–49
5356 (17.5)
1339 (17.5)
 
 50–64
6992 (22.8)
1748 (22.8)
 
 65+ 
14,647 (47.8)
3662 (47.8)
 
 Mean ± SD
60.0 (18.3)
60.5 (18.3)
0.01
Sex
  
0.99
 Female
9836 (32.1)
2459 (32.1)
 
 Male
20,827 (67.9)
5207 (67.9)
 
Comorbidity
   
 Diabetes
3473 (11.3)
1413 (18.4)
 < 0.001
 Obesity
294 (0.96)
50 (0.65)
0.01
 Renal disease
2869 (9.36)
1061 (13.8)
 < 0.001
 Rheumatoid arthritis
43 (0.14)
30 (0.39)
 < 0.001
 HIV
13 (0.04)
34 (0.44)
 < 0.001
 Malignancy
1024 (3.34)
385 (5.02)
 < 0.001
 Inflammatory bowel disease
306 (1.00)
99 (1.29)
0.02
Chi-Square Test; : T-Test
Table 2
Incidence and Hazard ratio for chronic fatigue syndrome and chronic fatigue syndrome-associated risk factors
Variable
Event
PY
Rate#
Crude HR (95% CI)
Adjusted HR&
(95% CI)
Mycobacterium tuberculosis infection
 No
567
186,546
3.04
1.00
1.00
 Yes
148
40,159
3.69
1.46 (1.04, 2.04)*
1.23 (1.03, 1.47)*
Age, year
     
 ≤ 34
50
31,553
1.58
1.00
1.00
 35–49
104
45,185
2.30
1.46 (1.04, 2.04)*
1.44 (1.02, 2.01)*
 50–64
174
55,869
3.11
1.99 (1.45, 2.72)***
1.90 (1.38, 1.60)***
 65 + 
387
94,097
4.11
2.71 (2.01, 3.63)***
2.50 (1.86, 3.38)***
Sex
     
 Female
227
75,147
3.02
1.00
1.00
 Male
488
151,558
3.22
1.07 (0.92, 1.25)
Comorbidity
     
 Diabetes
     
 No
610
203,033
3.00
1.00
1.00
 Yes
105
23,672
4.44
1.53 (1.24, 1.88)***
1.20 (0.97, 1.49)
 Obesity
     
  No
710
224,949
3.16
1.00
1.00
  Yes
5
1756
2.85
0.93 (0.39, 2.24)
 Renal disease
     
  No
618
207,626
2.98
1.00
1.00
  Yes
97
19,079
5.08
1.76 (1.42, 2.18)***
1.41 (1.13, 1.76)**
 Rheumatoid arthritis
     
  No
715
226,313
3.16
1.00
1.00
  Yes
0
392
0.00
 HIV
     
  No
714
226,474
3.15
1.00
1.00
  Yes
1
231
4.32
1.41 (0.20, 10.0)
 Malignancy
     
  No
693
221,075
3.13
1.00
1.00
  Yes
22
5630
3.91
1.30 (0.85, 1.99)
 Inflammatory bowel disease
  No
702
224,623
3.13
1.00
1.00
  Yes
13
2082
6.24
2.05 (1.19, 3.55)*
1.83 (1.06, 3.17)*
Rate#, incidence rate, per 1000 person-years; Crude HR *, relative hazard ratio; Adjusted HR: multivariable analysis including age, sex and comorbidities of diabetes, renal disease, and inflammatory bowel disease
*p < 0.05, **p < 0.01, ***p < 0.001
After mutually adjusted for age, sex, and comorbidities of diabetes, renal disease, and IBD, the risk of CFS had a 1.23-fold greater in the MTI cohort than in the comparison cohort (95% CI = 1.03–1.47). After mutually adjusting for CFS, sex, and comorbidities of diabetes, renal disease, and IBD, compared with patients aged 34 years and younger, the risk of CFS development is 2.50-fold higher in those aged 65 and more than 65 years (95% CI = 1.86–3.38), 1.90-fold higher in those aged 50–64 years and 1.44-fold higher in those aged 35–49 years (95% CI = 1.02–2.01). Patients with renal disease and IBD had 1.41 (95% CI = 1.13–1.76) and 1.83 (95% CI = 1.06–3.17) times higher CFS risk, respectively. Compared with the participants without MTI, participants aged ≤ 49 years in the MTI cohort had 1.5 (95% CI = 1.05–2.15) times higher CFS risk (Table 3, Fig. 2). Men had 1.27 (95% CI = 1.02–1.58) times higher CFS risk in the MTI cohort than in the comparison cohort. After > 1 year of follow-up, CFS risk remained 1.22 (95% CI = 1.01–1.49) times higher in the MTI cohort than in the comparison cohort. Table 4 presents the data on the effects of CFS-associated comorbidities on CFS risk. The data showed that compared with participants without either condition, participants with MTI and diabetes disease had 1.61 (95% CI = 1.12–2.31) times increased CFS risk.
Table 3
Incidence of chronic fatigue syndrome by age, sex and comorbidity and Cox model measured hazards ratio for patients with mycobacterium tuberculosis infection compared those without mycobacterium tuberculosis infection
Variables
Mycobacterium tuberculosis infection
Crude HR*
(95% CI)
Adjusted HR&
(95% CI)
No
Yes
Event
PY
Rate#
Event
PY
Rate#
Age, years
 ≤ 49
113
62,036
1.82
41
14,703
2.79
1.54 (1.08, 2.20)*
1.50 (1.05, 2.15)*
 ≥ 50
454
124,510
3.65
107
25,456
4.20
1.17 (0.95, 1.45)
1.15 (0.93, 1.42)
Sex
 Female
181
61,227
2.96
46
13,920
3.30
1.12 (0.81, 1.55)
1.14 (0.83, 1.58)
 Male
386
125,319
3.08
102
26,239
3.89
1.28 (1.03, 1.59)*
1.27 (1.02, 1.58)*
Comorbidity
 No
417
152,391
2.74
92
29,475
3.12
1.15 (0.92, 1.44)
1.18 (0.94, 1.48)
 Yes
150
34,155
4.39
56
10,684
5.24
1.20 (0.88, 1.63)
1.31 (0.96, 1.78)
Follow-up period
 < 1 years
72
30,136
2.39
22
7156
3.07
1.29 (0.80, 2.08)
1.26 (0.78, 2.04)
 > 1 years
495
156,410
3.16
126
33,002
3.82
1.21 (1.00, 1.48)*
1.22 (1.01, 1.49)*
Rate#, incidence rate, per 1000 person-years; Crude HR *, relative hazard ratio; Adjusted HR: multivariable analysis including age, sex, and comorbidities of diabetes, renal disease, and inflammatory bowel disease;
*p < 0.05, **p < 0.01, ***p < 0.001
Table 4
Cox Proportional Hazard Regression Analysis for the risk of chronic fatigue syndrome-associated mycobacterium tuberculosis infection with joint effects of comorbidities
Variables
N
Event
Adjusted HR (95% CI)
Mycobacterium tuberculosis infection
Diabetes
   
 No
No
27,190
494
1 (Reference)
 No
Yes
3473
73
1.16 (0.90, 1.49)
 Yes
No
6253
116
1.19 (0.98, 1.46)
 Yes
Yes
1413
32
1.61 (1.12, 2.31)**
Mycobacterium tuberculosis infection
Renal disease
   
 No
No
27,794
494
1 (Reference)
 No
Yes
2869
73
1.39 (1.08, 1.78)*
 Yes
No
6605
124
1.23 (1.01, 1.50)*
 Yes
Yes
1061
24
1.69 (1.12, 2.56)*
Mycobacterium tuberculosis infection
Inflammatory bowel disease
   
 No
No
30,357
557
1 (Reference)
 No
Yes
306
10
1.83 (0.98, 3.43)
 Yes
No
7567
145
1.23 (1.02, 1.48)*
 Yes
Yes
99
3
2.13 (0.69, 6.60)

Discussion

The current results indicated that had a significantly higher CFS incidence in the MTI cohort than in the comparison cohort. The subgroup analysis demonstrated that male patients and those aged ≤ 49 years in the MTI cohort had a relatively high HR for CFS. This finding has not been reported previously. In addition, patients with MTI who had CFS-associated comorbidities such as renal disease and diabetes had increased CFS risk.
Our results suggest that men with MTI are more likely to be diagnosed as having CFS. In developed countries, MTI incidence is higher in older individuals than in younger individuals, and it is higher in men than in women [18, 19]. These findings are consistent with those in the present study (Table 1). A meta-analysis reported that older patients with pulmonary TB have lower rates of fever and sweating and lower leukocyte concentrations [20]. The current results suggest that patients with MTI aged ≤ 49 years have an increased CFS risk (Table 3), possibly because of differences in immune response between older and younger individuals [21]. However, these relevant mechanisms and immunomodulating effects of aging require further investigation.
CFS is a multifactorial disease caused by pathogens, including the Epstein–Barr virus, human herpes virus 6, and human parvovirus B19 [22, 23]. Our current findings suggest that TB is correlated with CFS. Studies have proposed possible mechanisms of disease, including immunoinflammatory pathways [14, 16], neuroimmune dysfunction [16], oxidative and nitrosative stress (O&NS) pathways [24, 25], and bacterial translocation [26].
Immunoinflammatory pathway activation is one of the most researched topics related to CFS [14, 16]. Immune activation markers in CFS include increased levels of proinflammatory cytokines such as TNF-α, IL-6, and IL-1β [27, 28]. In patients with TB, the interaction of M. tuberculosis ligands with Toll-like receptors eventually results in immune activation, including activated nuclear factor (NF) κB and TNF-α, IL-1, and IL-12 production through myeloid differentiation primary response protein 88-dependent or -independent pathways [29, 30]. Increased production of NF-κB, a major upstream molecule regulating immunoinflammatory response, is associated with fatigue and a subjective feeling of infection [31].
TNF-α, which is secreted by macrophages, dendritic cells, and T cells, plays a major protective role against MTI and transmits signals regulating immune cell migration to the infection sites [32] and the formation of microbicidal granulomas [33]. IL-1 and TNF-α levels are significantly positively correlated with fatigue, autonomic symptoms, and flu-like symptoms [34]. TNF-α inhibitors, a type of immunomodulator, has also been reported to alleviate fatigue symptoms in some autoimmune diseases [35, 36] and attenuate CFS risk in patients with psoriasis [37].
IFN-γ, which is produced by activated T cells and natural killer cells activated by peripheral macrophages [38], appears in patients with latent MTI and plays a critical defensive role against MTI. IFN-γ synergizes with TNF-α and activates macrophages to kill intracellular bacilli [33]. The production of Th1 cytokines such as IFN-γ in patients with CFS is associated with the extent of fatigue [39]. A recent study observed that individuals with specific genetic polymorphisms of IFN-γ experience more severe fatigue as part of an acute postinfectious sickness [40]. IFN-γ-mediated lesions in kynurenine metabolism may culminate in depression and psychomotor retardation and contribute to disability in some patients with CFS [13].
Increased numbers of reactive oxygen and nitrogen species and activated O&NS pathways may be involved in CFS pathogenesis [24, 25]. This hypothesis is based on reports of increased production of inducible nitric oxide synthase (iNOS) [31] and reduced levels of antioxidants [16]. Macrophages activated by IFN-γ and TNF-α [41] produce nitric oxide and other reactive nitrogen species through iNOS to exert toxic effects on M. tuberculosis. iNOS activity inhibition leads to latent MTI reactivation in mice [41]. Low-grade inflammation, activated O&NS pathways, and impaired oxidative defenses in CFS potentially interact to increase the magnitude of abnormality in each, constituting a vicious cycle [14]. Lactate, an antioxidant that scavenges free radicals and attenuates lipid peroxidation [42], may explain the reason that in patients with CFS, fatigue was significantly reduced and functional capacity and fitness function were significantly improved after exercise treatment compared with after flexibility treatment [43].
Pathogens commonly associated with CFS are capable of establishing prolonged infection as a result of developing sophisticated adaptations to the host immune response [16]. For example, the varicella zoster virus [44] migrates along sensory axons to establish latency in neurons within the regional ganglia and only expresses a limited number of viral proteins [45] Similarly, M. tuberculosis has numerous defensive mechanisms to circumvent host immunity, such as disrupting the maturation of bacilli-containing phagosomes into phagolysosomes through the exclusion of vH+-ATPase during phagosomal maturation to prevent their destruction by lysosomal enzymes. Although only 10% of the patients with MTI develop TB, M. tuberculosis will remain in the nonreplicating state within granuloma in the other 90%. A disturbance of the immune system (e.g., old age, malnutrition, or medical conditions [46]), can trigger TB development. Despite reactivation of latent TB, inflammation can occur when M. tuberculosis spreads to a new location through aerosols generated by inspired air because foamy macrophages phagocytose extracellular nonreplicating M. tuberculosis, drain from lung granuloma toward the bronchial tree, and return to a different region of lung parenchyma through air inspiration [47]. These new infection sites may attract immune cells, which induce all the characteristic symptoms of CFS. These reactivation-resolution and migration cycles in TB lead to the mentioned inflammatory responses that may explain the chronic and relapsing–remitting nature of CFS.
A study found administration of the antituberculosis agent, isoniazid (300 mg per day for 30 days) to alleviate CFS symptoms, as demonstrated through improved Multidimensional Fatigue Inventory and the Zung Depression Scale scores [48]. However, the effect was not long-lasting; after 6 months, the TB was reactivated. Patients with latent TB should receive antibiotic therapy with a longer treatment course to prevent TB activation [49].
Our study has several limitations. As our previous study of LHID [50, 51], data on patient history, including symptoms, occupation status, contact history, and disease severity, are unavailable in NHIRD. Furthermore, the study population was mainly composed of East Asian people living in Taiwan, which limits the generalizability of the findings to other ethnicities. Although minor database errors in diagnostic coding can affect the data analysis results, such biases result in considerable penalties for physicians who have been more meticulous when recording codes. In addition, NHIRD enrolls 99.9% of Taiwan’s population, and its reliability and validity for epidemiological investigations have been reported previously [52, 53]. Therefore, the diagnostic coding used in the present study should be reliable.
In conclusion, this is a first paper to prove the novel findings about the association of MTI and CFS. They have common immunoinflammatory pathway and cytokines such as TNF-α, IL-1, IL-6, IFN-γ and NF-κB pathway. In addition, M. tuberculosis has numerous defensive mechanisms and are capable of intracellular persistence to circumvent host Immunity [54]. Although we didn’t explore the direct causality between MTI and CFS, we provide new perceptions for future studies to evaluate the actual mechanisms.

Conclusion

This study is the first population-based study to investigate the risk of CFS in patients with MTI, and its pilot finding is sufficient to provide perceptions for recognizing high-risk people likely to suffer from CFS. Future studies could examine the mechanisms underlying CFS risk following tuberculosis and discover the preventive and personalised medicine to improve the patient’s quality of life.

Acknowledgements

We would like to extend acknowledgment to Yu-Tien Chen's and Kam‐Hang Leong's, Cheng-Han Chou's material support, and the Department of Medical Research at Mackay Memorial Hospital, and Mackay Medical College, Taiwan for funding support.

Declarations

The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. This study was approved by the Research Ethics Committee of the China Medical University Hospital (CMUH-104-REC2-115) and the Institutional Review Board of Mackay Memorial Hospital (16MMHIS074).
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann Intern Med. 1994;121:953–9.PubMedCrossRef Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann Intern Med. 1994;121:953–9.PubMedCrossRef
2.
Zurück zum Zitat Stewart DE. Emotional disorders misdiagnosed as physical illness: Environmental hypersensitivity, candidiasis hypersensitivity, and chronic fatigue syndrome. Int J Ment Health. 1990;19:56–68.CrossRef Stewart DE. Emotional disorders misdiagnosed as physical illness: Environmental hypersensitivity, candidiasis hypersensitivity, and chronic fatigue syndrome. Int J Ment Health. 1990;19:56–68.CrossRef
3.
Zurück zum Zitat Manu P, Lane TJ, Matthews DA. Chronic fatigue and chronic fatigue syndrome: clinical epidemiology and aetiological classification. In: Chronic Fatigue Syndrome, Ciba Foundation Symposium. 1993. p. 23–30. Manu P, Lane TJ, Matthews DA. Chronic fatigue and chronic fatigue syndrome: clinical epidemiology and aetiological classification. In: Chronic Fatigue Syndrome, Ciba Foundation Symposium. 1993. p. 23–30.
4.
Zurück zum Zitat Lievesley K, Rimes KA, Chalder T. A review of the predisposing, precipitating and perpetuating factors in Chronic Fatigue Syndrome in children and adolescents. Clin Psychol Rev. 2014;34:233–48.PubMedCrossRef Lievesley K, Rimes KA, Chalder T. A review of the predisposing, precipitating and perpetuating factors in Chronic Fatigue Syndrome in children and adolescents. Clin Psychol Rev. 2014;34:233–48.PubMedCrossRef
5.
Zurück zum Zitat Jacob L, Haro JM, Kostev K. Associations of physical and psychiatric conditions with chronic fatigue syndrome in Germany: an exploratory case-control study. Psychol Med. 2020;8:1–7. Jacob L, Haro JM, Kostev K. Associations of physical and psychiatric conditions with chronic fatigue syndrome in Germany: an exploratory case-control study. Psychol Med. 2020;8:1–7.
6.
Zurück zum Zitat Cockshell S, Mathias J. Cognitive functioning in chronic fatigue syndrome: a meta-analysis. Psychol Med. 2010;40:1253–67.PubMedCrossRef Cockshell S, Mathias J. Cognitive functioning in chronic fatigue syndrome: a meta-analysis. Psychol Med. 2010;40:1253–67.PubMedCrossRef
7.
Zurück zum Zitat McCrone P, Darbishire L, Ridsdale L, Seed P. The economic cost of chronic fatigue and chronic fatigue syndrome in UK primary care. Psychol Med. 2003;33:253–61.PubMedCrossRef McCrone P, Darbishire L, Ridsdale L, Seed P. The economic cost of chronic fatigue and chronic fatigue syndrome in UK primary care. Psychol Med. 2003;33:253–61.PubMedCrossRef
8.
Zurück zum Zitat Hickie I, Davenport T, Wakefield D, Vollmer-Conna U, Cameron B, Vernon SD, Reeves WC, Lloyd A. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ. 2006;333:575.PubMedPubMedCentralCrossRef Hickie I, Davenport T, Wakefield D, Vollmer-Conna U, Cameron B, Vernon SD, Reeves WC, Lloyd A. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ. 2006;333:575.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Hornig M, Gottschalk G, Peterson D, Knox K, Schultz A, Eddy M, Che X, Lipkin W. Cytokine network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome. Mol Psychiatry. 2016;21:261–9.PubMedCrossRef Hornig M, Gottschalk G, Peterson D, Knox K, Schultz A, Eddy M, Che X, Lipkin W. Cytokine network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome. Mol Psychiatry. 2016;21:261–9.PubMedCrossRef
10.
Zurück zum Zitat Naviaux RK, Naviaux JC, Li K, Bright AT, Alaynick WA, Wang L, Baxter A, Nathan N, Anderson W, Gordon E. Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci. 2016;113:E5472–80.PubMedPubMedCentral Naviaux RK, Naviaux JC, Li K, Bright AT, Alaynick WA, Wang L, Baxter A, Nathan N, Anderson W, Gordon E. Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci. 2016;113:E5472–80.PubMedPubMedCentral
11.
Zurück zum Zitat Kuo C-F, Shi L, Lin C-L, Yao W-C, Chen H-T, Lio C-F. How peptic ulcer disease could potentially lead to the lifelong, debilitating effects of chronic fatigue syndrome: an insight. Sci Rep. 2021;11:1–11.CrossRef Kuo C-F, Shi L, Lin C-L, Yao W-C, Chen H-T, Lio C-F. How peptic ulcer disease could potentially lead to the lifelong, debilitating effects of chronic fatigue syndrome: an insight. Sci Rep. 2021;11:1–11.CrossRef
12.
Zurück zum Zitat Aamir S. Co-morbid anxiety and depression among pulmonary tuberculosis patients. J Coll Physicians Surg Pak. 2010;20:703–4.PubMed Aamir S. Co-morbid anxiety and depression among pulmonary tuberculosis patients. J Coll Physicians Surg Pak. 2010;20:703–4.PubMed
13.
Zurück zum Zitat Hornig M, Montoya JG, Klimas NG, Levine S, Felsenstein D, Bateman L, Peterson DL, Gottschalk CG, Schultz AF, Che X, et al. Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Sci Adv. 2015;1:56.CrossRef Hornig M, Montoya JG, Klimas NG, Levine S, Felsenstein D, Bateman L, Peterson DL, Gottschalk CG, Schultz AF, Che X, et al. Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Sci Adv. 2015;1:56.CrossRef
14.
Zurück zum Zitat Maes M, Twisk FN. Chronic fatigue syndrome: Harvey and Wessely’s (bio)psychosocial model versus a bio (psychosocial) model based on inflammatory and oxidative and nitrosative stress pathways. BMC Med. 2010;8:35.PubMedPubMedCentralCrossRef Maes M, Twisk FN. Chronic fatigue syndrome: Harvey and Wessely’s (bio)psychosocial model versus a bio (psychosocial) model based on inflammatory and oxidative and nitrosative stress pathways. BMC Med. 2010;8:35.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Sauzullo I, Mengoni F, Mascia C, Rossi R, Lichtner M, Vullo V, Mastroianni CM. Treatment of latent tuberculosis infection induces changes in multifunctional Mycobacterium tuberculosis-specific CD4 T cells. Med Microbiol Immunol. 2015;9:89. Sauzullo I, Mengoni F, Mascia C, Rossi R, Lichtner M, Vullo V, Mastroianni CM. Treatment of latent tuberculosis infection induces changes in multifunctional Mycobacterium tuberculosis-specific CD4 T cells. Med Microbiol Immunol. 2015;9:89.
16.
Zurück zum Zitat Morris G, Maes M. A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome. Metab Brain Dis. 2013;28:523–40.PubMedCrossRef Morris G, Maes M. A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome. Metab Brain Dis. 2013;28:523–40.PubMedCrossRef
17.
Zurück zum Zitat Tsai SY, Lin CL, Shih SC, Hsu CW, Leong KH, Kuo CF, Lio CF, Chen YT, Hung YJ, Shi L. Increased risk of chronic fatigue syndrome following burn injuries. J Transl Med. 2018;16:342.PubMedPubMedCentralCrossRef Tsai SY, Lin CL, Shih SC, Hsu CW, Leong KH, Kuo CF, Lio CF, Chen YT, Hung YJ, Shi L. Increased risk of chronic fatigue syndrome following burn injuries. J Transl Med. 2018;16:342.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Hochberg NS, Horsburgh CR Jr. Prevention of tuberculosis in older adults in the United States: obstacles and opportunities. Clin Infect Dis. 2013;56:1240–7.PubMedPubMedCentralCrossRef Hochberg NS, Horsburgh CR Jr. Prevention of tuberculosis in older adults in the United States: obstacles and opportunities. Clin Infect Dis. 2013;56:1240–7.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Comstock GW. Epidemiology of tuberculosis. Am Rev Respir Dis. 1982;125:8–15.PubMed Comstock GW. Epidemiology of tuberculosis. Am Rev Respir Dis. 1982;125:8–15.PubMed
20.
Zurück zum Zitat Perez-Guzman C, Vargas MH, Torres-Cruz A, Villarreal-Velarde H. Does aging modify pulmonary tuberculosis?: A meta-analytical review. Chest. 1999;116:961–7.PubMedCrossRef Perez-Guzman C, Vargas MH, Torres-Cruz A, Villarreal-Velarde H. Does aging modify pulmonary tuberculosis?: A meta-analytical review. Chest. 1999;116:961–7.PubMedCrossRef
21.
Zurück zum Zitat Sadighi Akha AA. Aging and the immune system: An overview. J Immunol Methods. 2018;463:21–6.PubMedCrossRef Sadighi Akha AA. Aging and the immune system: An overview. J Immunol Methods. 2018;463:21–6.PubMedCrossRef
22.
Zurück zum Zitat Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, Staines D, Powles AC, Speight N, Vallings R, et al. Myalgic encephalomyelitis: International Consensus Criteria. J Intern Med. 2011;270:327–38.PubMedPubMedCentralCrossRef Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, Staines D, Powles AC, Speight N, Vallings R, et al. Myalgic encephalomyelitis: International Consensus Criteria. J Intern Med. 2011;270:327–38.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Sotzny F, Blanco J, Capelli E, Castro-Marrero J, Steiner S, Murovska M, Scheibenbogen C. European Network on MC: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome - Evidence for an autoimmune disease. Autoimmun Rev. 2018;17:601–9.PubMedCrossRef Sotzny F, Blanco J, Capelli E, Castro-Marrero J, Steiner S, Murovska M, Scheibenbogen C. European Network on MC: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome - Evidence for an autoimmune disease. Autoimmun Rev. 2018;17:601–9.PubMedCrossRef
24.
Zurück zum Zitat Maes M, Mihaylova I, De Ruyter M. Lower serum zinc in Chronic Fatigue Syndrome (CFS): relationships to immune dysfunctions and relevance for the oxidative stress status in CFS. J Affect Disord. 2006;90:141–7.PubMedCrossRef Maes M, Mihaylova I, De Ruyter M. Lower serum zinc in Chronic Fatigue Syndrome (CFS): relationships to immune dysfunctions and relevance for the oxidative stress status in CFS. J Affect Disord. 2006;90:141–7.PubMedCrossRef
25.
Zurück zum Zitat Maes M, Mihaylova I, Leunis JC. Chronic fatigue syndrome is accompanied by an IgM-related immune response directed against neopitopes formed by oxidative or nitrosative damage to lipids and proteins. Neuro Endocrinol Lett. 2006;27:615–21.PubMed Maes M, Mihaylova I, Leunis JC. Chronic fatigue syndrome is accompanied by an IgM-related immune response directed against neopitopes formed by oxidative or nitrosative damage to lipids and proteins. Neuro Endocrinol Lett. 2006;27:615–21.PubMed
26.
Zurück zum Zitat Maes M, Twisk FN, Kubera M, Ringel K, Leunis JC, Geffard M. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disord. 2012;136:909–17.PubMedCrossRef Maes M, Twisk FN, Kubera M, Ringel K, Leunis JC, Geffard M. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disord. 2012;136:909–17.PubMedCrossRef
27.
Zurück zum Zitat Broderick G, Fuite J, Kreitz A, Vernon SD, Klimas N, Fletcher MA. A formal analysis of cytokine networks in chronic fatigue syndrome. Brain Behav Immun. 2010;24:1209–17.PubMedPubMedCentralCrossRef Broderick G, Fuite J, Kreitz A, Vernon SD, Klimas N, Fletcher MA. A formal analysis of cytokine networks in chronic fatigue syndrome. Brain Behav Immun. 2010;24:1209–17.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Maes M, Twisk FN, Johnson C. Myalgic Encephalomyelitis (ME), Chronic Fatigue Syndrome (CFS), and Chronic Fatigue (CF) are distinguished accurately: results of supervised learning techniques applied on clinical and inflammatory data. Psychiatry Res. 2012;200:754–60.PubMedCrossRef Maes M, Twisk FN, Johnson C. Myalgic Encephalomyelitis (ME), Chronic Fatigue Syndrome (CFS), and Chronic Fatigue (CF) are distinguished accurately: results of supervised learning techniques applied on clinical and inflammatory data. Psychiatry Res. 2012;200:754–60.PubMedCrossRef
29.
Zurück zum Zitat Jo EK. Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr Opin Infect Dis. 2008;21:279–86.PubMedCrossRef Jo EK. Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr Opin Infect Dis. 2008;21:279–86.PubMedCrossRef
30.
Zurück zum Zitat Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity. 2007;27:135–44.PubMedPubMedCentralCrossRef Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity. 2007;27:135–44.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Maes M, Mihaylova I, Bosmans E. Not in the mind of neurasthenic lazybones but in the cell nucleus: patients with chronic fatigue syndrome have increased production of nuclear factor kappa beta. Neuro Endocrinol Lett. 2007;28:456–62.PubMed Maes M, Mihaylova I, Bosmans E. Not in the mind of neurasthenic lazybones but in the cell nucleus: patients with chronic fatigue syndrome have increased production of nuclear factor kappa beta. Neuro Endocrinol Lett. 2007;28:456–62.PubMed
32.
Zurück zum Zitat Algood HM, Chan J, Flynn JL. Chemokines and tuberculosis. Cytokine Growth Factor Rev. 2003;14:467–77.PubMedCrossRef Algood HM, Chan J, Flynn JL. Chemokines and tuberculosis. Cytokine Growth Factor Rev. 2003;14:467–77.PubMedCrossRef
33.
Zurück zum Zitat Chan J, Flynn J. The immunological aspects of latency in tuberculosis. Clin Immunol. 2004;110:2–12.PubMedCrossRef Chan J, Flynn J. The immunological aspects of latency in tuberculosis. Clin Immunol. 2004;110:2–12.PubMedCrossRef
34.
Zurück zum Zitat Maes M, Twisk FN, Kubera M, Ringel K. Evidence for inflammation and activation of cell-mediated immunity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): increased interleukin-1, tumor necrosis factor-alpha, PMN-elastase, lysozyme and neopterin. J Affect Disord. 2012;136:933–9.PubMedCrossRef Maes M, Twisk FN, Kubera M, Ringel K. Evidence for inflammation and activation of cell-mediated immunity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): increased interleukin-1, tumor necrosis factor-alpha, PMN-elastase, lysozyme and neopterin. J Affect Disord. 2012;136:933–9.PubMedCrossRef
35.
Zurück zum Zitat Wu Q, Inman RD, Davis KD. Tumor necrosis factor inhibitor therapy in ankylosing spondylitis: differential effects on pain and fatigue and brain correlates. Pain. 2015;156:297–304.PubMedCrossRef Wu Q, Inman RD, Davis KD. Tumor necrosis factor inhibitor therapy in ankylosing spondylitis: differential effects on pain and fatigue and brain correlates. Pain. 2015;156:297–304.PubMedCrossRef
36.
Zurück zum Zitat Skoie IM, Dalen I, Omdal R. Effect of biological treatment on fatigue in psoriasis: a systematic review and meta-analysis. Am J Clin Dermatol. 2019;20:493–502.PubMedCrossRef Skoie IM, Dalen I, Omdal R. Effect of biological treatment on fatigue in psoriasis: a systematic review and meta-analysis. Am J Clin Dermatol. 2019;20:493–502.PubMedCrossRef
37.
Zurück zum Zitat Tsai SY, Chen HJ, Chen C, Lio CF, Kuo CF, Leong KH, Wang YT, Yang TY, You CH, Wang WS. Increased risk of chronic fatigue syndrome following psoriasis: a nationwide population-based cohort study. J Transl Med. 2019;17:154.PubMedPubMedCentralCrossRef Tsai SY, Chen HJ, Chen C, Lio CF, Kuo CF, Leong KH, Wang YT, Yang TY, You CH, Wang WS. Increased risk of chronic fatigue syndrome following psoriasis: a nationwide population-based cohort study. J Transl Med. 2019;17:154.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Darwich L, Coma G, Pena R, Bellido R, Blanco EJ, Este JA, Borras FE, Clotet B, Ruiz L, Rosell A, et al. Secretion of interferon-gamma by human macrophages demonstrated at the single-cell level after costimulation with interleukin (IL)-12 plus IL-18. Immunology. 2009;126:386–93.PubMedPubMedCentralCrossRef Darwich L, Coma G, Pena R, Bellido R, Blanco EJ, Este JA, Borras FE, Clotet B, Ruiz L, Rosell A, et al. Secretion of interferon-gamma by human macrophages demonstrated at the single-cell level after costimulation with interleukin (IL)-12 plus IL-18. Immunology. 2009;126:386–93.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Pokryszko-Dragan A, Frydecka I, Kosmaczewska A, Ciszak L, Bilinska M, Gruszka E, Podemski R, Frydecka D. Stimulated peripheral production of interferon-gamma is related to fatigue and depression in multiple sclerosis. Clin Neurol Neurosurg. 2012;114:1153–8.PubMedCrossRef Pokryszko-Dragan A, Frydecka I, Kosmaczewska A, Ciszak L, Bilinska M, Gruszka E, Podemski R, Frydecka D. Stimulated peripheral production of interferon-gamma is related to fatigue and depression in multiple sclerosis. Clin Neurol Neurosurg. 2012;114:1153–8.PubMedCrossRef
40.
Zurück zum Zitat Piraino B, Vollmer-Conna U, Lloyd AR. Genetic associations of fatigue and other symptom domains of the acute sickness response to infection. Brain Behav Immun. 2012;26:552–8.PubMedCrossRef Piraino B, Vollmer-Conna U, Lloyd AR. Genetic associations of fatigue and other symptom domains of the acute sickness response to infection. Brain Behav Immun. 2012;26:552–8.PubMedCrossRef
41.
Zurück zum Zitat Scanga CA, Mohan VP, Tanaka K, Alland D, Flynn JL, Chan J. The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun. 2001;69:7711–7.PubMedPubMedCentralCrossRef Scanga CA, Mohan VP, Tanaka K, Alland D, Flynn JL, Chan J. The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun. 2001;69:7711–7.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Groussard C, Morel I, Chevanne M, Monnier M, Cillard J, Delamarche A. Free radical scavenging and antioxidant effects of lactate ion: an in vitro study. J Appl Physiol. 1985;2000(89):169–75. Groussard C, Morel I, Chevanne M, Monnier M, Cillard J, Delamarche A. Free radical scavenging and antioxidant effects of lactate ion: an in vitro study. J Appl Physiol. 1985;2000(89):169–75.
43.
44.
Zurück zum Zitat Tsai SY, Yang TY, Chen HJ, Chen CS, Lin WM, Shen WC, Kuo CN, Kao CH. Increased risk of chronic fatigue syndrome following herpes zoster: a population-based study. Eur J Clin Microbiol Infect Dis. 2014;33:1653–9.PubMedCrossRef Tsai SY, Yang TY, Chen HJ, Chen CS, Lin WM, Shen WC, Kuo CN, Kao CH. Increased risk of chronic fatigue syndrome following herpes zoster: a population-based study. Eur J Clin Microbiol Infect Dis. 2014;33:1653–9.PubMedCrossRef
45.
Zurück zum Zitat Debrus S, Sadzot-Delvaux C, Nikkels AF, Piette J, Rentier B. Varicella-zoster virus gene 63 encodes an immediate-early protein that is abundantly expressed during latency. J Virol. 1995;69:3240–5.PubMedPubMedCentralCrossRef Debrus S, Sadzot-Delvaux C, Nikkels AF, Piette J, Rentier B. Varicella-zoster virus gene 63 encodes an immediate-early protein that is abundantly expressed during latency. J Virol. 1995;69:3240–5.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Ahmad S. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin Dev Immunol. 2011;2011:814943.PubMedCrossRef Ahmad S. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin Dev Immunol. 2011;2011:814943.PubMedCrossRef
47.
Zurück zum Zitat Cardona PJ. A dynamic reinfection hypothesis of latent tuberculosis infection. Infection. 2009;37:80–6.PubMedCrossRef Cardona PJ. A dynamic reinfection hypothesis of latent tuberculosis infection. Infection. 2009;37:80–6.PubMedCrossRef
48.
Zurück zum Zitat Svirshchevskaya EV. Chronic immune response hypothesis for chronic fatigue syndrome: experimental results and literature overview. In: Immunosuppression - Role in Health and Diseases. 2012. Svirshchevskaya EV. Chronic immune response hypothesis for chronic fatigue syndrome: experimental results and literature overview. In: Immunosuppression - Role in Health and Diseases. 2012.
49.
Zurück zum Zitat Getahun H, Matteelli A, Abubakar I, Aziz MA, Baddeley A, Barreira D, Den Boon S, Borroto Gutierrez SM, Bruchfeld J, Burhan E, et al. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur Respir J. 2015;46:1563–76.PubMedPubMedCentralCrossRef Getahun H, Matteelli A, Abubakar I, Aziz MA, Baddeley A, Barreira D, Den Boon S, Borroto Gutierrez SM, Bruchfeld J, Burhan E, et al. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur Respir J. 2015;46:1563–76.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Shi L, Lin C-L, Su C-H, Lin K-C, Leong K-H. Wang Y-TT, Kuo C-F, Tsai S-Y. The risk of developing osteoporosis in hemolytic anemia—what aggravates the bone loss? J Clin Med. 2021;10:3364.PubMedPubMedCentralCrossRef Shi L, Lin C-L, Su C-H, Lin K-C, Leong K-H. Wang Y-TT, Kuo C-F, Tsai S-Y. The risk of developing osteoporosis in hemolytic anemia—what aggravates the bone loss? J Clin Med. 2021;10:3364.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Yao W-C, Chen H-J, Leong K-H, Chang K-L. Wang Y-TT, Wu L-C, Tung P-Y, Kuo C-F, Lin C-C, Tsai S-Y. The risk of fibromyalgia in patients with iron deficiency anemia: a nationwide population-based cohort study. Sci Rep. 2021;11:1–8. Yao W-C, Chen H-J, Leong K-H, Chang K-L. Wang Y-TT, Wu L-C, Tung P-Y, Kuo C-F, Lin C-C, Tsai S-Y. The risk of fibromyalgia in patients with iron deficiency anemia: a nationwide population-based cohort study. Sci Rep. 2021;11:1–8.
52.
Zurück zum Zitat Hsieh CY, Su CC, Shao SC, Sung SF, Lin SJ, Kao Yang YH, Lai EC. Taiwan’s National Health Insurance Research Database: past and future. Clin Epidemiol. 2019;11:349–58.PubMedPubMedCentralCrossRef Hsieh CY, Su CC, Shao SC, Sung SF, Lin SJ, Kao Yang YH, Lai EC. Taiwan’s National Health Insurance Research Database: past and future. Clin Epidemiol. 2019;11:349–58.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Tsai SY, Chen HJ, Lio CF, Kuo CF, Kao AC, Wang WS, Yao WC, Chen C, Yang TY. Increased risk of chronic fatigue syndrome in patients with inflammatory bowel disease: a population-based retrospective cohort study. J Transl Med. 2019;17:55.PubMedPubMedCentralCrossRef Tsai SY, Chen HJ, Lio CF, Kuo CF, Kao AC, Wang WS, Yao WC, Chen C, Yang TY. Increased risk of chronic fatigue syndrome in patients with inflammatory bowel disease: a population-based retrospective cohort study. J Transl Med. 2019;17:55.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Ercoli G, Fernandes VE, Chung WY, Wanford JJ, Thomson S, Bayliss CD, Straatman K, Crocker PR, Dennison A, Martinez-Pomares L, et al. Intracellular replication of Streptococcus pneumoniae inside splenic macrophages serves as a reservoir for septicaemia. Nat Microbiol. 2018;3:600–10.PubMedPubMedCentralCrossRef Ercoli G, Fernandes VE, Chung WY, Wanford JJ, Thomson S, Bayliss CD, Straatman K, Crocker PR, Dennison A, Martinez-Pomares L, et al. Intracellular replication of Streptococcus pneumoniae inside splenic macrophages serves as a reservoir for septicaemia. Nat Microbiol. 2018;3:600–10.PubMedPubMedCentralCrossRef
Metadaten
Titel
How mycobacterium tuberculosis infection could lead to the increasing risks of chronic fatigue syndrome and the potential immunological effects: a population-based retrospective cohort study
verfasst von
Tse-Yen Yang
Cheng-Li Lin
Wei-Cheng Yao
Chon-Fu Lio
Wen-Po Chiang
Kuan Lin
Chien-Feng Kuo
Shin-Yi Tsai
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2022
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03301-1

Weitere Artikel der Ausgabe 1/2022

Journal of Translational Medicine 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.