Skip to main content
Erschienen in: Inflammation 2/2019

13.10.2018 | ORIGINAL ARTICLE

Human Adipose Tissue-Derived Stromal Cells Attenuate the Multiple Organ Injuries Induced by Sepsis and Mechanical Ventilation in Mice

verfasst von: Shuya Mei, Shuang Wang, Shuqing Jin, Xiang Zhao, Zhenzhen Shao, Renlingzi Zhang, Xiangsheng Yu, Yao Tong, Shibiao Chen, Zhixia Chen, Quan Li

Erschienen in: Inflammation | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Mechanical ventilation (MV) can augment sepsis-induced organ injury. Previous studies indicate that human mesenchymal stem cells (hMSCs) have immune-modulatory effect. We hypothesize that human adipose tissue-derived stromal cells (hADSCs) could attenuate MV and sepsis-induced organ injury. Male C57BL/6 mice were randomized to five groups: Sham group; MV group; cecal ligation and puncture (CLP) group; CLP + MV group; and CLP + MV + hADSC group. Anesthetized mice were subjected to cecal ligation and puncture surgery. The mice then received mechanical ventilation (12 ml/kg), with or without the intervention of hADSCs. The survival rate, organ injury of the liver and kidney, total protein and cells in bronchoalveolar lavage fluid (BALF), and histological changes of the lung and liver were examined. The level of IL-6 in BALF was measured by ELISA. Real-time quantitative PCR was used to analyze mRNA of IL-6 and tumor necrosis factor-α (TNF-α). hADSC treatment increased survival rate of septic mice with MV. hADSCs attenuated dysfunction of the liver and kidney and decreased lung inflammation and tissue injury of the liver and lung. IL-6 level in BALF and TNF-α and IL-6 mRNA expression in the tissue of the lung, liver, and kidney were significantly reduced by hADSC treatment. MV with conventional tidal volume aggravates CLP-induced multiple organ injuries. hADSCs inhibited the compound injuries possibly through modulation of immune responses.
Literatur
1.
Zurück zum Zitat Chao, Y.H., H.P. Wu, K.H. Wu, Y.G. Tsai, C.T. Peng, K.C. Lin, W.R. Chao, M.S. Lee, and Y.C. Fu. 2014. An increase in cd3+cd4+cd25+ regulatory t cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One 9: e110338.CrossRefPubMedPubMedCentral Chao, Y.H., H.P. Wu, K.H. Wu, Y.G. Tsai, C.T. Peng, K.C. Lin, W.R. Chao, M.S. Lee, and Y.C. Fu. 2014. An increase in cd3+cd4+cd25+ regulatory t cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One 9: e110338.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Krisztián Németh, A Leelahavanichkul, Peter S T Yuen, Balázs Mayer, Alissa Parmelee1, Kent Doi, Pamela G Robey, Kantima Leelahavanichkul, Beverly H Koller, Jared M Brown, Xuzhen Hu, Ivett Jelinek, Robert A Star, and Éva Mezey. Bone marrow stromal cells attenuate sepsis via prostaglandin e2—Dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine 2009;15. Krisztián Németh, A Leelahavanichkul, Peter S T Yuen, Balázs Mayer, Alissa Parmelee1, Kent Doi, Pamela G Robey, Kantima Leelahavanichkul, Beverly H Koller, Jared M Brown, Xuzhen Hu, Ivett Jelinek, Robert A Star, and Éva Mezey. Bone marrow stromal cells attenuate sepsis via prostaglandin e2—Dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine 2009;15.
3.
Zurück zum Zitat Pinhu, L., T. Whitehead, T. Evans, and M. Griffiths. 2003. Ventilator-associated lung injury. Lancet (London, England) 361: 332–340.CrossRef Pinhu, L., T. Whitehead, T. Evans, and M. Griffiths. 2003. Ventilator-associated lung injury. Lancet (London, England) 361: 332–340.CrossRef
4.
Zurück zum Zitat Kuiper, J.W., A.B. Groeneveld, A.S. Slutsky, and F.B. Plotz. 2005. Mechanical ventilation and acute renal failure. Critical Care Medicine 33: 1408–1415.CrossRefPubMed Kuiper, J.W., A.B. Groeneveld, A.S. Slutsky, and F.B. Plotz. 2005. Mechanical ventilation and acute renal failure. Critical Care Medicine 33: 1408–1415.CrossRefPubMed
5.
Zurück zum Zitat Yehya, N., Y. Xin, Y. Oquendo, M. Cereda, R.R. Rizi, and S.S. Margulies. 2015. Cecal ligation and puncture accelerates development of ventilator-induced lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 308: L443–L451.CrossRefPubMed Yehya, N., Y. Xin, Y. Oquendo, M. Cereda, R.R. Rizi, and S.S. Margulies. 2015. Cecal ligation and puncture accelerates development of ventilator-induced lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 308: L443–L451.CrossRefPubMed
6.
Zurück zum Zitat Villar, J., N. Cabrera, M. Casula, C. Flores, F. Valladares, M. Muros, L. Blanch, A.S. Slutsky, and R.M. Kacmarek. 2010. Mechanical ventilation modulates toll-like receptor signaling pathway in a sepsis-induced lung injury model. Intensive Care Medicine 36: 1049–1057.CrossRefPubMed Villar, J., N. Cabrera, M. Casula, C. Flores, F. Valladares, M. Muros, L. Blanch, A.S. Slutsky, and R.M. Kacmarek. 2010. Mechanical ventilation modulates toll-like receptor signaling pathway in a sepsis-induced lung injury model. Intensive Care Medicine 36: 1049–1057.CrossRefPubMed
7.
Zurück zum Zitat Matthay, M.A., B.T. Thompson, E.J. Read, D.H. McKenna Jr., K.D. Liu, C.S. Calfee, and J.W. Lee. 2010. Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest 138: 965–972.CrossRefPubMedPubMedCentral Matthay, M.A., B.T. Thompson, E.J. Read, D.H. McKenna Jr., K.D. Liu, C.S. Calfee, and J.W. Lee. 2010. Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest 138: 965–972.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Ma, S., N. Xie, W. Li, B. Yuan, Y. Shi, and Y. Wang. 2014. Immunobiology of mesenchymal stem cells. Cell Death and Differentiation 21: 216–225.CrossRefPubMed Ma, S., N. Xie, W. Li, B. Yuan, Y. Shi, and Y. Wang. 2014. Immunobiology of mesenchymal stem cells. Cell Death and Differentiation 21: 216–225.CrossRefPubMed
10.
Zurück zum Zitat Rocheteau, P., L. Chatre, D. Briand, M. Mebarki, G. Jouvion, J. Bardon, C. Crochemore, P. Serrani, P.P. Lecci, M. Latil, B. Matot, P.G. Carlier, N. Latronico, C. Huchet, A. Lafoux, T. Sharshar, M. Ricchetti, and F. Chretien. 2015. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nature Communications 6: 10145.CrossRefPubMedPubMedCentral Rocheteau, P., L. Chatre, D. Briand, M. Mebarki, G. Jouvion, J. Bardon, C. Crochemore, P. Serrani, P.P. Lecci, M. Latil, B. Matot, P.G. Carlier, N. Latronico, C. Huchet, A. Lafoux, T. Sharshar, M. Ricchetti, and F. Chretien. 2015. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nature Communications 6: 10145.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Anderson, P., L. Souza-Moreira, M. Morell, M. Caro, F. O'Valle, E. Gonzalez-Rey, and M. Delgado. 2013. Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut 62: 1131–1141.CrossRefPubMed Anderson, P., L. Souza-Moreira, M. Morell, M. Caro, F. O'Valle, E. Gonzalez-Rey, and M. Delgado. 2013. Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut 62: 1131–1141.CrossRefPubMed
12.
Zurück zum Zitat Hayes, M., C. Masterson, J. Devaney, F. Barry, S. Elliman, T. O'Brien, D. O'Toole, G.F. Curley, and J.G. Laffey. 2015. Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat. Anesthesiology 122: 363–373.CrossRefPubMed Hayes, M., C. Masterson, J. Devaney, F. Barry, S. Elliman, T. O'Brien, D. O'Toole, G.F. Curley, and J.G. Laffey. 2015. Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat. Anesthesiology 122: 363–373.CrossRefPubMed
13.
Zurück zum Zitat Curley, G.F., M. Hayes, B. Ansari, G. Shaw, A. Ryan, F. Barry, T. O'Brien, D. O'Toole, and J.G. Laffey. 2012. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax 67: 496–501.CrossRefPubMed Curley, G.F., M. Hayes, B. Ansari, G. Shaw, A. Ryan, F. Barry, T. O'Brien, D. O'Toole, and J.G. Laffey. 2012. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax 67: 496–501.CrossRefPubMed
14.
Zurück zum Zitat Muller-Redetzky, H.C., D. Will, K. Hellwig, W. Kummer, T. Tschernig, U. Pfeil, R. Paddenberg, M.D. Menger, O. Kershaw, A.D. Gruber, N. Weissmann, S. Hippenstiel, N. Suttorp, and M. Witzenrath. 2014. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: Protection by adrenomedullin. Critical Care (London, England) 18: R73.CrossRef Muller-Redetzky, H.C., D. Will, K. Hellwig, W. Kummer, T. Tschernig, U. Pfeil, R. Paddenberg, M.D. Menger, O. Kershaw, A.D. Gruber, N. Weissmann, S. Hippenstiel, N. Suttorp, and M. Witzenrath. 2014. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: Protection by adrenomedullin. Critical Care (London, England) 18: R73.CrossRef
15.
Zurück zum Zitat Rittirsch, Daniel, M.S. Huber-Lang, M.A. Flierl, and Peter A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4. Rittirsch, Daniel, M.S. Huber-Lang, M.A. Flierl, and Peter A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4.
16.
Zurück zum Zitat Papaiahgari, S., A. Yerrapureddy, S.R. Reddy, N.M. Reddy, O.J. Dodd, M.T. Crow, D.N. Grigoryev, K. Barnes, R.M. Tuder, M. Yamamoto, T.W. Kensler, S. Biswal, W. Mitzner, P.M. Hassoun, and S.P. Reddy. 2007. Genetic and pharmacologic evidence links oxidative stress to ventilator-induced lung injury in mice. American Journal of Respiratory and Critical Care Medicine 176: 1222–1235.CrossRefPubMedPubMedCentral Papaiahgari, S., A. Yerrapureddy, S.R. Reddy, N.M. Reddy, O.J. Dodd, M.T. Crow, D.N. Grigoryev, K. Barnes, R.M. Tuder, M. Yamamoto, T.W. Kensler, S. Biswal, W. Mitzner, P.M. Hassoun, and S.P. Reddy. 2007. Genetic and pharmacologic evidence links oxidative stress to ventilator-induced lung injury in mice. American Journal of Respiratory and Critical Care Medicine 176: 1222–1235.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Schaffler, A., and C. Buchler. 2007. Concise review: Adipose tissue-derived stromal cells--Basic and clinical implications for novel cell-based therapies. Stem Cells (Dayton, Ohio) 25: 818–827.CrossRef Schaffler, A., and C. Buchler. 2007. Concise review: Adipose tissue-derived stromal cells--Basic and clinical implications for novel cell-based therapies. Stem Cells (Dayton, Ohio) 25: 818–827.CrossRef
18.
Zurück zum Zitat Ding, X., X. Wang, X. Zhao, S. Jin, Y. Tong, H. Ren, Z. Chen, and Q. Li. 2015. Rgd peptides protects against acute lung injury in septic mice through wisp1-integrin beta6 pathway inhibition. Shock (Augusta, Ga.) 43: 352–360.CrossRef Ding, X., X. Wang, X. Zhao, S. Jin, Y. Tong, H. Ren, Z. Chen, and Q. Li. 2015. Rgd peptides protects against acute lung injury in septic mice through wisp1-integrin beta6 pathway inhibition. Shock (Augusta, Ga.) 43: 352–360.CrossRef
19.
Zurück zum Zitat Suzuki, S., S. Nakamura, T. Koizumi, S. Sakaguchi, S. Baba, H. Muro, et al. 1991. The beneficial effect of a prostaglandin I2 analog on ischemic rat liver. Transplantation 52: 979–983.CrossRefPubMed Suzuki, S., S. Nakamura, T. Koizumi, S. Sakaguchi, S. Baba, H. Muro, et al. 1991. The beneficial effect of a prostaglandin I2 analog on ischemic rat liver. Transplantation 52: 979–983.CrossRefPubMed
20.
Zurück zum Zitat Gupta, N., A. Krasnodembskaya, M. Kapetanaki, M. Mouded, X. Tan, V. Serikov, and M.A. Matthay. 2012. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67: 533–539.CrossRefPubMedPubMedCentral Gupta, N., A. Krasnodembskaya, M. Kapetanaki, M. Mouded, X. Tan, V. Serikov, and M.A. Matthay. 2012. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67: 533–539.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8: 315–317.CrossRef Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8: 315–317.CrossRef
22.
Zurück zum Zitat Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). Journal of the American Medical Association 315: 801–810.CrossRefPubMed Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). Journal of the American Medical Association 315: 801–810.CrossRefPubMed
23.
Zurück zum Zitat Seymour, C.W.L.V., T.J. Iwashyna, F.M. Brunkhorst, T.D. Rea, A. Scherag, G. Rubenfeld, J.M. Kahn, M. Shankar-Hari, M. Singer, C.S. Deutschman, G.J. Escobar, and D.C. Angus. 2016. Assessment of clinical criteria for sepsis: For the third international consensus definitions for sepsis and septic shock (sepsis-3). Journal of the American Medical Association 15: 762–774.CrossRef Seymour, C.W.L.V., T.J. Iwashyna, F.M. Brunkhorst, T.D. Rea, A. Scherag, G. Rubenfeld, J.M. Kahn, M. Shankar-Hari, M. Singer, C.S. Deutschman, G.J. Escobar, and D.C. Angus. 2016. Assessment of clinical criteria for sepsis: For the third international consensus definitions for sepsis and septic shock (sepsis-3). Journal of the American Medical Association 15: 762–774.CrossRef
24.
Zurück zum Zitat Muller, H.C., K. Hellwig, S. Rosseau, T. Tschernig, A. Schmiedl, B. Gutbier, B. Schmeck, S. Hippenstiel, H. Peters, L. Morawietz, N. Suttorp, and M. Witzenrath. 2010. Simvastatin attenuates ventilator-induced lung injury in mice. Critical Care (London, England) 14: R143.CrossRef Muller, H.C., K. Hellwig, S. Rosseau, T. Tschernig, A. Schmiedl, B. Gutbier, B. Schmeck, S. Hippenstiel, H. Peters, L. Morawietz, N. Suttorp, and M. Witzenrath. 2010. Simvastatin attenuates ventilator-induced lung injury in mice. Critical Care (London, England) 14: R143.CrossRef
25.
Zurück zum Zitat Fuller, B.M., N.M. Mohr, M. Dettmer, S. Kennedy, K. Cullison, R. Bavolek, N. Rathert, and C. McCammon. 2013. Mechanical ventilation and acute lung injury in emergency department patients with severe sepsis and septic shock: An observational study. Academic Emergency Medicine 20: 659–669.CrossRefPubMedPubMedCentral Fuller, B.M., N.M. Mohr, M. Dettmer, S. Kennedy, K. Cullison, R. Bavolek, N. Rathert, and C. McCammon. 2013. Mechanical ventilation and acute lung injury in emergency department patients with severe sepsis and septic shock: An observational study. Academic Emergency Medicine 20: 659–669.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Xuan, W., Q. Zhou, S. Yao, Q. Deng, T. Wang, and Q. Wu. 2015. Mechanical ventilation induces an inflammatory response in preinjured lungs in late phase of sepsis. Oxidative Medicine and Cellular Longevity 2015: 364020.CrossRefPubMedPubMedCentral Xuan, W., Q. Zhou, S. Yao, Q. Deng, T. Wang, and Q. Wu. 2015. Mechanical ventilation induces an inflammatory response in preinjured lungs in late phase of sepsis. Oxidative Medicine and Cellular Longevity 2015: 364020.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Tasaka, S., F. Amaya, S. Hashimoto, and A. Ishizaka. 2008. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxidants & Redox Signaling 10: 739–753.CrossRef Tasaka, S., F. Amaya, S. Hashimoto, and A. Ishizaka. 2008. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxidants & Redox Signaling 10: 739–753.CrossRef
28.
Zurück zum Zitat Chapman, K.E., S.E. Sinclair, D. Zhuang, A. Hassid, L.P. Desai, and C.M. Waters. 2005. Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. American Journal of Physiology—Lung Cellular and Molecular Physiology 289: 834–841.CrossRef Chapman, K.E., S.E. Sinclair, D. Zhuang, A. Hassid, L.P. Desai, and C.M. Waters. 2005. Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. American Journal of Physiology—Lung Cellular and Molecular Physiology 289: 834–841.CrossRef
29.
Zurück zum Zitat Deng, J.C., G. Cheng, M.W. Newstead, X. Zeng, K. Kobayashi, R.A. Flavell, and T.J. Standiford. 2006. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. The Journal of Clinical Investigation 116: 2532–2542.PubMedPubMedCentral Deng, J.C., G. Cheng, M.W. Newstead, X. Zeng, K. Kobayashi, R.A. Flavell, and T.J. Standiford. 2006. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. The Journal of Clinical Investigation 116: 2532–2542.PubMedPubMedCentral
30.
Zurück zum Zitat Pati, S., M.H. Gerber, T.D. Menge, K.A. Wataha, Y. Zhao, J.A. Baumgartner, J. Zhao, P.A. Letourneau, M.P. Huby, L.A. Baer, J.R. Salsbury, R.A. Kozar, C.E. Wade, P.A. Walker, P.K. Dash, C.S. Cox Jr., M.F. Doursout, and J.B. Holcomb. 2011. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PLoS One 6: e25171.CrossRefPubMedPubMedCentral Pati, S., M.H. Gerber, T.D. Menge, K.A. Wataha, Y. Zhao, J.A. Baumgartner, J. Zhao, P.A. Letourneau, M.P. Huby, L.A. Baer, J.R. Salsbury, R.A. Kozar, C.E. Wade, P.A. Walker, P.K. Dash, C.S. Cox Jr., M.F. Doursout, and J.B. Holcomb. 2011. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PLoS One 6: e25171.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Goodwin, M., V. Sueblinvong, P. Eisenhauer, N.P. Ziats, L. LeClair, M.E. Poynter, C. Steele, M. Rincon, and D.J. Weiss. 2011. Bone marrow-derived mesenchymal stromal cells inhibit th2-mediated allergic airways inflammation in mice. Stem Cells (Dayton, Ohio) 29: 1137–1148.CrossRef Goodwin, M., V. Sueblinvong, P. Eisenhauer, N.P. Ziats, L. LeClair, M.E. Poynter, C. Steele, M. Rincon, and D.J. Weiss. 2011. Bone marrow-derived mesenchymal stromal cells inhibit th2-mediated allergic airways inflammation in mice. Stem Cells (Dayton, Ohio) 29: 1137–1148.CrossRef
32.
Zurück zum Zitat Ivanova-Todorova, E., I. Bochev, M. Mourdjeva, R. Dimitrov, D. Bukarev, S. Kyurkchiev, P. Tivchev, I. Altunkova, and D.S. Kyurkchiev. 2009. Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunology Letters 126: 37–42.CrossRefPubMed Ivanova-Todorova, E., I. Bochev, M. Mourdjeva, R. Dimitrov, D. Bukarev, S. Kyurkchiev, P. Tivchev, I. Altunkova, and D.S. Kyurkchiev. 2009. Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunology Letters 126: 37–42.CrossRefPubMed
33.
Zurück zum Zitat Chang, C.L., S. Leu, H.C. Sung, Y.Y. Zhen, C.L. Cho, A. Chen, T.H. Tsai, S.Y. Chung, H.T. Chai, C.K. Sun, C.H. Yen, and H.K. Yip. 2012. Impact of apoptotic adipose-derived mesenchymal stem cells on attenuating organ damage and reducing mortality in rat sepsis syndrome induced by cecal puncture and ligation. Journal of Translational Medicine 10: 244.CrossRefPubMedPubMedCentral Chang, C.L., S. Leu, H.C. Sung, Y.Y. Zhen, C.L. Cho, A. Chen, T.H. Tsai, S.Y. Chung, H.T. Chai, C.K. Sun, C.H. Yen, and H.K. Yip. 2012. Impact of apoptotic adipose-derived mesenchymal stem cells on attenuating organ damage and reducing mortality in rat sepsis syndrome induced by cecal puncture and ligation. Journal of Translational Medicine 10: 244.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Zhang, S., S.D. Danchuk, R.W. Bonvillain, B. Xu, B.A. Scruggs, A.L. Strong, J.A. Semon, J.M. Gimble, A.M. Betancourt, D.E. Sullivan, and B.A. Bunnell. 2014. Interleukin 6 mediates the therapeutic effects of adipose-derived stromal/stem cells in lipopolysaccharide-induced acute lung injury. Stem Cells (Dayton, Ohio) 32: 1616–1628.CrossRefPubMedCentral Zhang, S., S.D. Danchuk, R.W. Bonvillain, B. Xu, B.A. Scruggs, A.L. Strong, J.A. Semon, J.M. Gimble, A.M. Betancourt, D.E. Sullivan, and B.A. Bunnell. 2014. Interleukin 6 mediates the therapeutic effects of adipose-derived stromal/stem cells in lipopolysaccharide-induced acute lung injury. Stem Cells (Dayton, Ohio) 32: 1616–1628.CrossRefPubMedCentral
35.
Zurück zum Zitat Mei, S.H., J.J. Haitsma, C.C. Dos Santos, Y. Deng, P.F. Lai, A.S. Slutsky, W.C. Liles, and D.J. Stewart. 2010. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. American Journal of Respiratory and Critical Care Medicine 182: 1047–1057.CrossRefPubMed Mei, S.H., J.J. Haitsma, C.C. Dos Santos, Y. Deng, P.F. Lai, A.S. Slutsky, W.C. Liles, and D.J. Stewart. 2010. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. American Journal of Respiratory and Critical Care Medicine 182: 1047–1057.CrossRefPubMed
36.
Zurück zum Zitat Asmussen, S., H. Ito, D.L. Traber, J.W. Lee, R.A. Cox, H.K. Hawkins, D.F. McAuley, D.H. McKenna, L.D. Traber, H. Zhuo, J. Wilson, D.N. Herndon, D.S. Prough, K.D. Liu, M.A. Matthay, and P. Enkhbaatar. 2014. Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia. Thorax 69: 819–825.CrossRefPubMedPubMedCentral Asmussen, S., H. Ito, D.L. Traber, J.W. Lee, R.A. Cox, H.K. Hawkins, D.F. McAuley, D.H. McKenna, L.D. Traber, H. Zhuo, J. Wilson, D.N. Herndon, D.S. Prough, K.D. Liu, M.A. Matthay, and P. Enkhbaatar. 2014. Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia. Thorax 69: 819–825.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Lee, J.W., X. Fang, N. Gupta, V. Serikov, and M.A. Matthay. 2009. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America 106: 16357–16362.CrossRefPubMedPubMedCentral Lee, J.W., X. Fang, N. Gupta, V. Serikov, and M.A. Matthay. 2009. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America 106: 16357–16362.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Lee, J.W., A. Krasnodembskaya, D.H. McKenna, Y. Song, J. Abbott, and M.A. Matthay. 2013. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. American Journal of Respiratory and Critical Care Medicine 187: 751–760.CrossRefPubMedPubMedCentral Lee, J.W., A. Krasnodembskaya, D.H. McKenna, Y. Song, J. Abbott, and M.A. Matthay. 2013. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. American Journal of Respiratory and Critical Care Medicine 187: 751–760.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Hall, S.R., K. Tsoyi, B. Ith, R.F. Padera Jr., J.A. Lederer, Z. Wang, X. Liu, and M.A. Perrella. 2013. Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: The importance of neutrophils. Stem Cells (Dayton, Ohio) 31: 397–407.CrossRef Hall, S.R., K. Tsoyi, B. Ith, R.F. Padera Jr., J.A. Lederer, Z. Wang, X. Liu, and M.A. Perrella. 2013. Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: The importance of neutrophils. Stem Cells (Dayton, Ohio) 31: 397–407.CrossRef
40.
Zurück zum Zitat Kol, A., S. Foutouhi, N.J. Walker, N.T. Kong, B.C. Weimer, and D.L. Borjesson. 2014. Gastrointestinal microbes interact with canine adipose-derived mesenchymal stem cells in vitro and enhance immunomodulatory functions. Stem Cells and Development 23: 1831–1843.CrossRefPubMedPubMedCentral Kol, A., S. Foutouhi, N.J. Walker, N.T. Kong, B.C. Weimer, and D.L. Borjesson. 2014. Gastrointestinal microbes interact with canine adipose-derived mesenchymal stem cells in vitro and enhance immunomodulatory functions. Stem Cells and Development 23: 1831–1843.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Chen, H.H., K.C. Lin, C.G. Wallace, Y.T. Chen, C.C. Yang, S. Leu, Y.C. Chen, C.K. Sun, T.H. Tsai, Y.L. Chen, S.Y. Chung, C.L. Chang, and H.K. Yip. 2014. Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. Journal of Pineal Research 57: 16–32.CrossRefPubMed Chen, H.H., K.C. Lin, C.G. Wallace, Y.T. Chen, C.C. Yang, S. Leu, Y.C. Chen, C.K. Sun, T.H. Tsai, Y.L. Chen, S.Y. Chung, C.L. Chang, and H.K. Yip. 2014. Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. Journal of Pineal Research 57: 16–32.CrossRefPubMed
Metadaten
Titel
Human Adipose Tissue-Derived Stromal Cells Attenuate the Multiple Organ Injuries Induced by Sepsis and Mechanical Ventilation in Mice
verfasst von
Shuya Mei
Shuang Wang
Shuqing Jin
Xiang Zhao
Zhenzhen Shao
Renlingzi Zhang
Xiangsheng Yu
Yao Tong
Shibiao Chen
Zhixia Chen
Quan Li
Publikationsdatum
13.10.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0905-5

Weitere Artikel der Ausgabe 2/2019

Inflammation 2/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.