Skip to main content
Erschienen in: Cardiovascular Toxicology 2/2015

01.04.2015

Human Stem Cell-Derived Cardiomyocytes in Cellular Impedance Assays: Bringing Cardiotoxicity Screening to the Front Line

verfasst von: Matthew F. Peters, Sarah D. Lamore, Liang Guo, Clay W Scott, Kyle L. Kolaja

Erschienen in: Cardiovascular Toxicology | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Abstract

Cardiovascular (CV) toxicity is a leading cause of drug attrition and withdrawal. Introducing in vitro assays with higher throughput should permit earlier CV hazard identification and enable medicinal chemists to design-out liabilities. Heretofore, development of in vitro CV assays has been limited by the challenge of replicating integrated cardiovascular physiology while achieving the throughput and consistency required for screening. These challenges appear to be met with a combination of human stem cell-derived cardiomyocytes (CM) which beat spontaneously and monitoring the response with technology that can assess drug-induced changes in voltage dependent contraction such as cellular impedance which has been validated with excellent predictivity for drug-induced arrhythmia and contractility. Here, we review advances in cardiomyocyte impedance with emphasis on stem cell-derived cardiomyocyte models for toxicity screening. Key perspectives include: the electrical principles of impedance technology, impedance detection of cardiomyocyte beating, beat parameter selection/analysis, validation in toxicity and drug discovery, and future directions. As a conclusion, an in vitro screening cascade is proffered using the downstream, inclusive detection of CM impedance assays as a primary screen followed by complementary CM assays chosen to enable mechanism-appropriate follow-up. The combined approach will enhance testing for CV liabilities prior to traditional in vivo models.
Literatur
1.
Zurück zum Zitat Shah, R. R. (2006). Can pharmacogenetics help rescue drugs withdrawn from the market? Pharmacogenomics, 6, 889–908.CrossRef Shah, R. R. (2006). Can pharmacogenetics help rescue drugs withdrawn from the market? Pharmacogenomics, 6, 889–908.CrossRef
2.
Zurück zum Zitat McGuinness, R. P., Proctor, J. M., Gallant, D. L., van Staden, C. J., Ly, J. T., Tang, F. L., et al. (2009). Enhanced selectivity screening of GPCR ligands using a label-free cell based assay technology. Combinational Chemistry and High Throughput Screening, 12(8), 812–823. McGuinness, R. P., Proctor, J. M., Gallant, D. L., van Staden, C. J., Ly, J. T., Tang, F. L., et al. (2009). Enhanced selectivity screening of GPCR ligands using a label-free cell based assay technology. Combinational Chemistry and High Throughput Screening, 12(8), 812–823.
3.
Zurück zum Zitat Stevens, J. L., & Baker, T. K. (2009). The future of drug safety testing: Expanding the view and narrowing the focus. Drug Discovery Today, 3–4, 162–167.CrossRef Stevens, J. L., & Baker, T. K. (2009). The future of drug safety testing: Expanding the view and narrowing the focus. Drug Discovery Today, 3–4, 162–167.CrossRef
4.
Zurück zum Zitat Ciambrone, G. J., Liu, V. F., Lin, D. C., McGuinness, R. P., Leung, G. K., & Pitchford, S. (2004). Cellular dielectric spectroscopy: A powerful new approach to label-free cellular analysis. Journal of Biomolecular Screening, 6, 467–480.CrossRef Ciambrone, G. J., Liu, V. F., Lin, D. C., McGuinness, R. P., Leung, G. K., & Pitchford, S. (2004). Cellular dielectric spectroscopy: A powerful new approach to label-free cellular analysis. Journal of Biomolecular Screening, 6, 467–480.CrossRef
5.
Zurück zum Zitat Giaever, I., & Keese, C. R. (1991). Micromotion of mammalian cells measured electrically. Proceedings of the National Academy of Science, 17, 7896–7900.CrossRef Giaever, I., & Keese, C. R. (1991). Micromotion of mammalian cells measured electrically. Proceedings of the National Academy of Science, 17, 7896–7900.CrossRef
6.
Zurück zum Zitat Scott, C. W., & Peters, M. F. (2010). Label-free whole-cell assays: Expanding the scope of GPCR screening. Drug Discovery Today, 17–18, 704–716.CrossRef Scott, C. W., & Peters, M. F. (2010). Label-free whole-cell assays: Expanding the scope of GPCR screening. Drug Discovery Today, 17–18, 704–716.CrossRef
7.
Zurück zum Zitat Xi, B., Wang, T., Li, N., Ouyang, W., Zhang, W., Wu, J., et al. (2011). Functional cardiotoxicity profiling and screening using the xCELLigence RTCA Cardio System. Journal of the Association for Laboratory Automation, 6, 415–421.CrossRef Xi, B., Wang, T., Li, N., Ouyang, W., Zhang, W., Wu, J., et al. (2011). Functional cardiotoxicity profiling and screening using the xCELLigence RTCA Cardio System. Journal of the Association for Laboratory Automation, 6, 415–421.CrossRef
8.
Zurück zum Zitat Abassi, Y. A., Xi, B., Li, N., Ouyang, W., Seiler, A., Watzele, M., et al. (2012). Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment. British Journal of Pharmacology, 5, 1424–1441.CrossRef Abassi, Y. A., Xi, B., Li, N., Ouyang, W., Seiler, A., Watzele, M., et al. (2012). Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment. British Journal of Pharmacology, 5, 1424–1441.CrossRef
9.
Zurück zum Zitat Guo, L., Abrams, R. M., Babiarz, J. E., Cohen, J. D., Kameoka, S., Sanders, M. J., et al. (2011). Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicological Sciences, 1, 281–289.CrossRef Guo, L., Abrams, R. M., Babiarz, J. E., Cohen, J. D., Kameoka, S., Sanders, M. J., et al. (2011). Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicological Sciences, 1, 281–289.CrossRef
10.
Zurück zum Zitat Parsons, J. T., Horwitz, A. R., & Schwartz, M. A. (2010). Cell adhesion: Integrating cytoskeletal dynamics and cellular tension. Nature Reviews Molecular Cell Biology, 9, 633–643.CrossRef Parsons, J. T., Horwitz, A. R., & Schwartz, M. A. (2010). Cell adhesion: Integrating cytoskeletal dynamics and cellular tension. Nature Reviews Molecular Cell Biology, 9, 633–643.CrossRef
11.
Zurück zum Zitat Layland, J., & Kentish, J. C. (1999). Positive force- and [Ca2+]i-frequency relationships in rat ventricular trabeculae at physiological frequencies. American Journal of Physiology, 1(Pt 2), H9–H18. Layland, J., & Kentish, J. C. (1999). Positive force- and [Ca2+]i-frequency relationships in rat ventricular trabeculae at physiological frequencies. American Journal of Physiology, 1(Pt 2), H9–H18.
12.
Zurück zum Zitat Lieu, D. K., Liu, J., Siu, C. W., McNerney, G. P., Tse, H. F., Abu-Khalil, A., et al. (2009). Absence of transverse tubules contributes to non-uniform Ca(2+) wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells and Development, 10, 1493–1500.CrossRef Lieu, D. K., Liu, J., Siu, C. W., McNerney, G. P., Tse, H. F., Abu-Khalil, A., et al. (2009). Absence of transverse tubules contributes to non-uniform Ca(2+) wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells and Development, 10, 1493–1500.CrossRef
13.
Zurück zum Zitat Delcarpio, J. B., Claycomb, W. C., & Moses, R. L. (1989). Ultrastructural morphometric analysis of cultured neonatal and adult rat ventricular cardiac muscle cells. American Journal of Anatomy, 4, 335–345.CrossRef Delcarpio, J. B., Claycomb, W. C., & Moses, R. L. (1989). Ultrastructural morphometric analysis of cultured neonatal and adult rat ventricular cardiac muscle cells. American Journal of Anatomy, 4, 335–345.CrossRef
14.
Zurück zum Zitat Germanguz, I., Sedan, O., Zeevi-Levin, N., Shtrichman, R., Barak, E., Ziskind, A., et al. (2011). Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells. Journal of Cellular and Molecular Medicine, 1, 38–51.CrossRef Germanguz, I., Sedan, O., Zeevi-Levin, N., Shtrichman, R., Barak, E., Ziskind, A., et al. (2011). Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells. Journal of Cellular and Molecular Medicine, 1, 38–51.CrossRef
15.
Zurück zum Zitat Dibb, K. M., Eisner, D. A., & Trafford, A. W. (2007). Regulation of systolic [Ca2+]i and cellular Ca2+ flux balance in rat ventricular myocytes by SR Ca2+ L-type Ca2+ current and diastolic [Ca2+]i. The Journal of Physiology, 2, 579–592.CrossRef Dibb, K. M., Eisner, D. A., & Trafford, A. W. (2007). Regulation of systolic [Ca2+]i and cellular Ca2+ flux balance in rat ventricular myocytes by SR Ca2+ L-type Ca2+ current and diastolic [Ca2+]i. The Journal of Physiology, 2, 579–592.CrossRef
16.
Zurück zum Zitat Korhonen, T., Hanninen, S. L., & Tavi, P. (2009). Model of excitation-contraction coupling of rat neonatal ventricular myocytes. Biophysical Journal, 3, 1189–1209.CrossRef Korhonen, T., Hanninen, S. L., & Tavi, P. (2009). Model of excitation-contraction coupling of rat neonatal ventricular myocytes. Biophysical Journal, 3, 1189–1209.CrossRef
17.
Zurück zum Zitat Peters, M. F., Scott, C. W., Ochalski, R., & Dragan, Y. P. (2012). Evaluation of cellular impedance measures of cardiomyocyte cultures for drug screening applications. Assay and Drug Development Technologies, 6, 525–532.CrossRef Peters, M. F., Scott, C. W., Ochalski, R., & Dragan, Y. P. (2012). Evaluation of cellular impedance measures of cardiomyocyte cultures for drug screening applications. Assay and Drug Development Technologies, 6, 525–532.CrossRef
18.
Zurück zum Zitat Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J., & Kroemer, G. (2011). Cell death assays for drug discovery. Nature Reviews Drug Discovery, 3, 221–237.CrossRef Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J., & Kroemer, G. (2011). Cell death assays for drug discovery. Nature Reviews Drug Discovery, 3, 221–237.CrossRef
19.
Zurück zum Zitat Lamore, S. D., Kamendi, H. W., Scott, C. W., Dragan, Y. P., & Peters, M. F. (2013). Cellular impedance assays for predictive preclinical drug screening of kinase inhibitor cardiovascular toxicity. Toxicological Sciences, 2, 402–413.CrossRef Lamore, S. D., Kamendi, H. W., Scott, C. W., Dragan, Y. P., & Peters, M. F. (2013). Cellular impedance assays for predictive preclinical drug screening of kinase inhibitor cardiovascular toxicity. Toxicological Sciences, 2, 402–413.CrossRef
20.
Zurück zum Zitat Sirenko, O., Crittenden, C., Callamaras, N., Hesley, J., Chen, Y. W., Funes, C., et al. (2013). Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. Journal of Biomolecular Screening, 1, 39–53.CrossRef Sirenko, O., Crittenden, C., Callamaras, N., Hesley, J., Chen, Y. W., Funes, C., et al. (2013). Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells. Journal of Biomolecular Screening, 1, 39–53.CrossRef
21.
Zurück zum Zitat Schiller, L. R., & Johnson, D. A. (2008). Balancing drug risk and benefit: Toward refining the process of FDA decisions affecting patient care. American Journal of Gastroenterology, 4, 815–819.CrossRef Schiller, L. R., & Johnson, D. A. (2008). Balancing drug risk and benefit: Toward refining the process of FDA decisions affecting patient care. American Journal of Gastroenterology, 4, 815–819.CrossRef
22.
Zurück zum Zitat Redfern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G., MacKenzie, I., Palethorpe, S., et al. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: Evidence for a provisional safety margin in drug development. Cardiovascular Research, 1, 32–45.CrossRef Redfern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G., MacKenzie, I., Palethorpe, S., et al. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: Evidence for a provisional safety margin in drug development. Cardiovascular Research, 1, 32–45.CrossRef
23.
Zurück zum Zitat Lu, H. R., Vlaminckx, E., Hermans, A. N., Rohrbacher, J., Van Ammel, K., Towart, R., et al. (2008). Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines. British Journal of Pharmacology, 7, 1427–1438.CrossRef Lu, H. R., Vlaminckx, E., Hermans, A. N., Rohrbacher, J., Van Ammel, K., Towart, R., et al. (2008). Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines. British Journal of Pharmacology, 7, 1427–1438.CrossRef
24.
Zurück zum Zitat Guo, L., Coyle, L., Abrams, R. M., Kemper, R., Chiao, E. T., & Kolaja, K. L. (2013). Refining the human iPSC-cardiomyocyte arrhythmic risk assessment model. Toxicological Sciences, 2, 581–594.CrossRef Guo, L., Coyle, L., Abrams, R. M., Kemper, R., Chiao, E. T., & Kolaja, K. L. (2013). Refining the human iPSC-cardiomyocyte arrhythmic risk assessment model. Toxicological Sciences, 2, 581–594.CrossRef
25.
Zurück zum Zitat Gintant, G. (2011). An evaluation of hERG current assay performance: Translating preclinical safety studies to clinical QT prolongation. Pharmacology & Therapeutics, 2, 109–119.CrossRef Gintant, G. (2011). An evaluation of hERG current assay performance: Translating preclinical safety studies to clinical QT prolongation. Pharmacology & Therapeutics, 2, 109–119.CrossRef
26.
Zurück zum Zitat Sager, P. T., Gintant, G., Turner, J. R., Pettit, S., & Stockbridge, N. (2014). Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the cardiac safety research consortium. American Heart Journal, 3, 292–300.CrossRef Sager, P. T., Gintant, G., Turner, J. R., Pettit, S., & Stockbridge, N. (2014). Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the cardiac safety research consortium. American Heart Journal, 3, 292–300.CrossRef
27.
Zurück zum Zitat Jonsson, M. K., Wang, Q. D., & Becker, B. (2011). Impedance-based detection of beating rhythm and proarrhythmic effects of compounds on stem cell-derived cardiomyocytes. Assay and Drug Development Technologies, 6, 589–599.CrossRef Jonsson, M. K., Wang, Q. D., & Becker, B. (2011). Impedance-based detection of beating rhythm and proarrhythmic effects of compounds on stem cell-derived cardiomyocytes. Assay and Drug Development Technologies, 6, 589–599.CrossRef
28.
Zurück zum Zitat Nguemo, F., Saric, T., Pfannkuche, K., Watzele, M., Reppel, M., & Hescheler, J. (2012). In vitro model for assessing arrhythmogenic properties of drugs based on high-resolution impedance measurements. Cellular Physiology and Biochemistry, 5–6, 819–832.CrossRef Nguemo, F., Saric, T., Pfannkuche, K., Watzele, M., Reppel, M., & Hescheler, J. (2012). In vitro model for assessing arrhythmogenic properties of drugs based on high-resolution impedance measurements. Cellular Physiology and Biochemistry, 5–6, 819–832.CrossRef
29.
Zurück zum Zitat Chi, K. R. (2013). Regulatory watch: Speedy validation sought for new cardiotoxicity testing strategy. Nature Reviews Drug Discovery, 9, 655.CrossRef Chi, K. R. (2013). Regulatory watch: Speedy validation sought for new cardiotoxicity testing strategy. Nature Reviews Drug Discovery, 9, 655.CrossRef
30.
Zurück zum Zitat Mellor, H. R., Bell, A. R., Valentin, J. P., & Roberts, R. R. (2011). Cardiotoxicity associated with targeting kinase pathways in cancer. Toxicological Sciences, 1, 14–32.CrossRef Mellor, H. R., Bell, A. R., Valentin, J. P., & Roberts, R. R. (2011). Cardiotoxicity associated with targeting kinase pathways in cancer. Toxicological Sciences, 1, 14–32.CrossRef
31.
Zurück zum Zitat Harmer, A. R., Abi-Gerges, N., Morton, M. J., Pullen, G. F., Valentin, J. P., & Pollard, C. E. (2012). Validation of an in vitro contractility assay using canine ventricular myocytes. Toxicology and Applied Pharmacology, 2, 162–172.CrossRef Harmer, A. R., Abi-Gerges, N., Morton, M. J., Pullen, G. F., Valentin, J. P., & Pollard, C. E. (2012). Validation of an in vitro contractility assay using canine ventricular myocytes. Toxicology and Applied Pharmacology, 2, 162–172.CrossRef
32.
Zurück zum Zitat Force, T., & Kolaja, K. L. (2011). Cardiotoxicity of kinase inhibitors: The prediction and translation of preclinical models to clinical outcomes. Nature Reviews Drug Discovery, 2, 111–126.CrossRef Force, T., & Kolaja, K. L. (2011). Cardiotoxicity of kinase inhibitors: The prediction and translation of preclinical models to clinical outcomes. Nature Reviews Drug Discovery, 2, 111–126.CrossRef
33.
Zurück zum Zitat Doherty, K. R., Wappel, R. L., Talbert, D. R., Trusk, P. B., Moran, D. M., Kramer, J. W., et al. (2013). Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicology and Applied Pharmacology, 1, 245–255.CrossRef Doherty, K. R., Wappel, R. L., Talbert, D. R., Trusk, P. B., Moran, D. M., Kramer, J. W., et al. (2013). Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicology and Applied Pharmacology, 1, 245–255.CrossRef
34.
Zurück zum Zitat Cohen, J. D., Babiarz, J. E., Abrams, R. M., Guo, L., Kameoka, S., Chiao, E., et al. (2011). Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations. Toxicology and Applied Pharmacology, 1, 74–83.CrossRef Cohen, J. D., Babiarz, J. E., Abrams, R. M., Guo, L., Kameoka, S., Chiao, E., et al. (2011). Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations. Toxicology and Applied Pharmacology, 1, 74–83.CrossRef
35.
Zurück zum Zitat Lim, J., Taoka, B. M., Lee, S., Northrup, A., Altman, M., Sloman, D., et al. (2011). Pyrazolo[1,5-A]pyrimidines as MARK inhibitors. World Patent WO 2011/087999 A1, 21 July 2011. Lim, J., Taoka, B. M., Lee, S., Northrup, A., Altman, M., Sloman, D., et al. (2011). Pyrazolo[1,5-A]pyrimidines as MARK inhibitors. World Patent WO 2011/087999 A1, 21 July 2011.
36.
Zurück zum Zitat Anastassiadis, T., Deacon, S. W., Devarajan, K., Ma, H., & Peterson, J. R. (2011). Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nature Biotechnology, 11, 1039–1045.CrossRef Anastassiadis, T., Deacon, S. W., Devarajan, K., Ma, H., & Peterson, J. R. (2011). Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nature Biotechnology, 11, 1039–1045.CrossRef
37.
Zurück zum Zitat Davis, M. I., Hunt, J. P., Herrgard, S., Ciceri, P., Wodicka, L. M., Pallares, G., et al. (2011). Comprehensive analysis of kinase inhibitor selectivity. Nature Biotechnology, 11, 1046–1051.CrossRef Davis, M. I., Hunt, J. P., Herrgard, S., Ciceri, P., Wodicka, L. M., Pallares, G., et al. (2011). Comprehensive analysis of kinase inhibitor selectivity. Nature Biotechnology, 11, 1046–1051.CrossRef
38.
Zurück zum Zitat Carlson, C., Koonce, C., Aoyama, N., Einhorn, S., Fiene, S., Thompson, A., et al. (2013). Phenotypic screening with human iPS cell-derived cardiomyocytes: HTS-compatible assays for interrogating cardiac hypertrophy. Journal of Biomolecular Screening, 10, 1203–1211.CrossRef Carlson, C., Koonce, C., Aoyama, N., Einhorn, S., Fiene, S., Thompson, A., et al. (2013). Phenotypic screening with human iPS cell-derived cardiomyocytes: HTS-compatible assays for interrogating cardiac hypertrophy. Journal of Biomolecular Screening, 10, 1203–1211.CrossRef
39.
Zurück zum Zitat Satoh, H., Delbridge, L. M., Blatter, L. A., & Bers, D. M. (1996). Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: Species-dependence and developmental effects. Biophysical Journal, 3, 1494–1504.CrossRef Satoh, H., Delbridge, L. M., Blatter, L. A., & Bers, D. M. (1996). Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: Species-dependence and developmental effects. Biophysical Journal, 3, 1494–1504.CrossRef
40.
Zurück zum Zitat Feinberg, A. W., Alford, P. W., Jin, H., Ripplinger, C. M., Werdich, A. A., Sheehy, S. P., et al. (2012). Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials, 23, 5732–5741.CrossRef Feinberg, A. W., Alford, P. W., Jin, H., Ripplinger, C. M., Werdich, A. A., Sheehy, S. P., et al. (2012). Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials, 23, 5732–5741.CrossRef
41.
Zurück zum Zitat Blazeski, A., Zhu, R., Hunter, D. W., Weinberg, S. H., Zambidis, E. T., & Tung, L. (2012). Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. Progress in Biophysics and Molecular Biology, 2–3, 166–177.CrossRef Blazeski, A., Zhu, R., Hunter, D. W., Weinberg, S. H., Zambidis, E. T., & Tung, L. (2012). Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. Progress in Biophysics and Molecular Biology, 2–3, 166–177.CrossRef
43.
Zurück zum Zitat Laverty, H., Benson, C., Cartwright, E., Cross, M., Garland, C., Hammond, T., et al. (2011). How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines? British Journal of Pharmacology, 4, 675–693.CrossRef Laverty, H., Benson, C., Cartwright, E., Cross, M., Garland, C., Hammond, T., et al. (2011). How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines? British Journal of Pharmacology, 4, 675–693.CrossRef
44.
Zurück zum Zitat Liang, P., Lan, F., Lee, A. S., Gong, T., Sanchez-Freire, V., Wang, Y., et al. (2013). Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation, 16, 1677–1691.CrossRef Liang, P., Lan, F., Lee, A. S., Gong, T., Sanchez-Freire, V., Wang, Y., et al. (2013). Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation, 16, 1677–1691.CrossRef
45.
Zurück zum Zitat Harris, K., Aylott, M., Cui, Y., Louttit, J. B., McMahon, N. C., & Sridhar, A. (2013). Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyocytes to functional preclinical safety assays. Toxicological Sciences, 2, 412–426.CrossRef Harris, K., Aylott, M., Cui, Y., Louttit, J. B., McMahon, N. C., & Sridhar, A. (2013). Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyocytes to functional preclinical safety assays. Toxicological Sciences, 2, 412–426.CrossRef
46.
Zurück zum Zitat Navarrete, E. G., Liang, P., Lan, F., Sanchez-Freire, V., Simmons, C., Gong, T., et al. (2013). Screening drug-induced arrhythmia events using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation, 11(Suppl 1), S3–S13.CrossRef Navarrete, E. G., Liang, P., Lan, F., Sanchez-Freire, V., Simmons, C., Gong, T., et al. (2013). Screening drug-induced arrhythmia events using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation, 11(Suppl 1), S3–S13.CrossRef
47.
Zurück zum Zitat Sirenko, O., Cromwell, E. F., Crittenden, C., Wignall, J. A., Wright, F. A., & Rusyn, I. (2013). Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity. Toxicology and Applied Pharmacology, 3, 500–507.CrossRef Sirenko, O., Cromwell, E. F., Crittenden, C., Wignall, J. A., Wright, F. A., & Rusyn, I. (2013). Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity. Toxicology and Applied Pharmacology, 3, 500–507.CrossRef
48.
Zurück zum Zitat Cerignoli, F., Charlot, D., Whittaker, R., Ingermanson, R., Gehalot, P., Savchenko, A., et al. (2012). High throughput measurement of Ca(2)(+) dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. Journal of Pharmacological and Toxicological Methods, 3, 246–256.CrossRef Cerignoli, F., Charlot, D., Whittaker, R., Ingermanson, R., Gehalot, P., Savchenko, A., et al. (2012). High throughput measurement of Ca(2)(+) dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. Journal of Pharmacological and Toxicological Methods, 3, 246–256.CrossRef
49.
Zurück zum Zitat Alford, P. W., Feinberg, A. W., Sheehy, S. P., & Parker, K. K. (2010). Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials, 13, 3613–3621.CrossRef Alford, P. W., Feinberg, A. W., Sheehy, S. P., & Parker, K. K. (2010). Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials, 13, 3613–3621.CrossRef
50.
Zurück zum Zitat Pointon, A., Abi-Gerges, N., Cross, M. J., & Sidaway, J. E. (2013). Phenotypic profiling of structural cardiotoxins in vitro reveals dependency on multiple mechanisms of toxicity. Toxicological Sciences, 2, 317–326.CrossRef Pointon, A., Abi-Gerges, N., Cross, M. J., & Sidaway, J. E. (2013). Phenotypic profiling of structural cardiotoxins in vitro reveals dependency on multiple mechanisms of toxicity. Toxicological Sciences, 2, 317–326.CrossRef
51.
Zurück zum Zitat Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature, 6868, 198–205.CrossRef Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature, 6868, 198–205.CrossRef
52.
Zurück zum Zitat Scott, C. W., Peters, M. F., & Dragan, Y. P. (2013). Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicology Letters, 1, 49–58.CrossRef Scott, C. W., Peters, M. F., & Dragan, Y. P. (2013). Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicology Letters, 1, 49–58.CrossRef
Metadaten
Titel
Human Stem Cell-Derived Cardiomyocytes in Cellular Impedance Assays: Bringing Cardiotoxicity Screening to the Front Line
verfasst von
Matthew F. Peters
Sarah D. Lamore
Liang Guo
Clay W Scott
Kyle L. Kolaja
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 2/2015
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-014-9268-9

Weitere Artikel der Ausgabe 2/2015

Cardiovascular Toxicology 2/2015 Zur Ausgabe