Skip to main content
Erschienen in: Cardiovascular Toxicology 2/2015

01.04.2015

The Effects of High Glucose Levels on Reactive Oxygen Species-Induced Apoptosis and Involved Signaling in Human Vascular Endothelial Cells

verfasst von: Qian Hou, Minxiang Lei, Ke Hu, Min Wang

Erschienen in: Cardiovascular Toxicology | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Abstract

This study investigated the effects of high glucose levels on human vascular endothelial cells and the expression of apoptosis-associated signaling molecules. Cell proliferation of human umbilical vein endothelial cells (HUVECs) was analyzed by colorimetric assay and cell number counting. Apoptosis was measured by Annexin V/FITC staining and flow cytometry. Gene knockdown was established by transfection of synthesized small interfering RNA. Caspase-3 activation was inhibited by a caspase-3 inhibitor. Protein expression of signaling molecules was measured by Western blot. Glucose significantly decreased HUVEC viability, induced cell apoptosis, and elevated levels of intracellular reactive oxygen species in a concentration and time-dependent manner. Glucose significantly upregulated the Nox4 isoform of nicotinamide adenine dinucleotide phosphate oxidase and phosphatase and tensin homolog (PTEN) protein expression, increased PTEN phosphorylation, and activated caspase-3 in a concentration-dependent manner. Silencing Nox4 and PTEN gene expression and inhibiting caspase-3 activation significantly protected HUVECs from glucose-induced cell apoptosis. Silencing Nox4 significantly normalized the levels of reactive oxygen species in glucose-treated cells; 20 mM glucose obviously upregulated Nox4, PTEN, phosphor-PTEN, and Bax levels, but significantly reduced integrin-linked kinase (ILK) activity, Bcl-2 (B cell lymphoma 2) expression, and protein kinase B (Akt) phosphorylation at serine 473. High glucose levels can reduce cell viability and induce apoptosis in HUVECs through Nox4-produced reactive oxygen species. Elevated levels of reactive oxygen species decreased Bcl-2 expression and increased PTEN expression and phosphorylation, which lead to the subsequent inhibition of ILK–Akt signaling, elevation of Bax expression, and activation of caspase-3.
Literatur
1.
Zurück zum Zitat Zatalia, S. R., & Sanusi, H. (2013). The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Medica Indonesia, 45, 141–147. Zatalia, S. R., & Sanusi, H. (2013). The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Medica Indonesia, 45, 141–147.
2.
Zurück zum Zitat van den Oever, I. A., Raterman, H. G., Nurmohamed, M. T., & Simsek, S. (2010). Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators of Inflammation, 2010, 792393.PubMedCentralPubMed van den Oever, I. A., Raterman, H. G., Nurmohamed, M. T., & Simsek, S. (2010). Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators of Inflammation, 2010, 792393.PubMedCentralPubMed
3.
Zurück zum Zitat Nakagami, H., Kaneda, Y., Ogihara, T., & Morishita, R. (2005). Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis. Current Diabetes Review, 1, 59–63.CrossRef Nakagami, H., Kaneda, Y., Ogihara, T., & Morishita, R. (2005). Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis. Current Diabetes Review, 1, 59–63.CrossRef
5.
Zurück zum Zitat Teshima, Y., Takahashi, N., Nishio, S., Saito, S., Kondo, H., Fukui, A., et al. (2014). Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circulation Journal, 78, 300–306.CrossRefPubMed Teshima, Y., Takahashi, N., Nishio, S., Saito, S., Kondo, H., Fukui, A., et al. (2014). Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circulation Journal, 78, 300–306.CrossRefPubMed
6.
Zurück zum Zitat Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., & Alexander, R. W. (1994). Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circulation Research, 74, 1141–1148.CrossRefPubMed Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., & Alexander, R. W. (1994). Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circulation Research, 74, 1141–1148.CrossRefPubMed
7.
Zurück zum Zitat Griendling, K. K., Sorescu, D., & Ushio-Fukai, M. (2000). NAD(P)H oxidase: Role in cardiovascular biology and disease. Circulation Research, 86, 494–501.CrossRefPubMed Griendling, K. K., Sorescu, D., & Ushio-Fukai, M. (2000). NAD(P)H oxidase: Role in cardiovascular biology and disease. Circulation Research, 86, 494–501.CrossRefPubMed
8.
Zurück zum Zitat Lambeth, J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 4, 181–189.CrossRefPubMed Lambeth, J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 4, 181–189.CrossRefPubMed
9.
Zurück zum Zitat Maalouf, R. M., Eid, A. A., Gorin, Y. C., Block, K., Escobar, G. P., Bailey, S., et al. (2012). Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. American Journal of Physiology. Cell Physiology, 302, C597–C604.CrossRefPubMedCentralPubMed Maalouf, R. M., Eid, A. A., Gorin, Y. C., Block, K., Escobar, G. P., Bailey, S., et al. (2012). Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. American Journal of Physiology. Cell Physiology, 302, C597–C604.CrossRefPubMedCentralPubMed
10.
Zurück zum Zitat Hulsmans, M., Van Dooren, E., & Holvoet, P. (2012). Mitochondrial reactive oxygen species and risk of atherosclerosis. Current Atherosclerosis Reports, 14, 264–276.CrossRefPubMed Hulsmans, M., Van Dooren, E., & Holvoet, P. (2012). Mitochondrial reactive oxygen species and risk of atherosclerosis. Current Atherosclerosis Reports, 14, 264–276.CrossRefPubMed
11.
Zurück zum Zitat Qian, J., Keyes, K. T., Long, B., Chen, G., & Ye, Y. (2011). Impact of HMG-CoA reductase inhibition on oxidant-induced injury in human retinal pigment epithelium cells. Journal of Cellular Biochemistry, 112, 2480–2489.CrossRefPubMed Qian, J., Keyes, K. T., Long, B., Chen, G., & Ye, Y. (2011). Impact of HMG-CoA reductase inhibition on oxidant-induced injury in human retinal pigment epithelium cells. Journal of Cellular Biochemistry, 112, 2480–2489.CrossRefPubMed
12.
Zurück zum Zitat Zhang, X., Kon, T., Wang, H., Li, F., Huang, Q., Rabbani, Z. N., et al. (2004). Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1alpha. Cancer Research, 64, 8139–8142.CrossRefPubMed Zhang, X., Kon, T., Wang, H., Li, F., Huang, Q., Rabbani, Z. N., et al. (2004). Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1alpha. Cancer Research, 64, 8139–8142.CrossRefPubMed
13.
Zurück zum Zitat Kim, I., Kim, Y. J., Métais, J. Y., Dunbar, C. E., & Larochelle, A. (2012). Transient silencing of PTEN in human CD34(+) cells enhances their proliferative potential and ability to engraft immunodeficient mice. Experimental Hematology, 40, 84–91.CrossRefPubMedCentralPubMed Kim, I., Kim, Y. J., Métais, J. Y., Dunbar, C. E., & Larochelle, A. (2012). Transient silencing of PTEN in human CD34(+) cells enhances their proliferative potential and ability to engraft immunodeficient mice. Experimental Hematology, 40, 84–91.CrossRefPubMedCentralPubMed
14.
Zurück zum Zitat Hiraga, R., Kato, M., Miyagawa, S., & Kamata, T. (2013). Nox4-derived ROS signaling contributes to TGF-β-induced epithelial-mesenchymal transition in pancreatic cancer cells. Anticancer Research, 33, 4431–4438.PubMed Hiraga, R., Kato, M., Miyagawa, S., & Kamata, T. (2013). Nox4-derived ROS signaling contributes to TGF-β-induced epithelial-mesenchymal transition in pancreatic cancer cells. Anticancer Research, 33, 4431–4438.PubMed
15.
Zurück zum Zitat Chen, Q., Zhu, X., Zhang, Y., Lee, T. H., Liu, Y., Wetsel, W. C., et al. (2008). Neural plasticity and addiction: integrin-linked kinase and cocaine behavioral sensitization. Journal of Neurochemistry, 107, 679–689.CrossRefPubMed Chen, Q., Zhu, X., Zhang, Y., Lee, T. H., Liu, Y., Wetsel, W. C., et al. (2008). Neural plasticity and addiction: integrin-linked kinase and cocaine behavioral sensitization. Journal of Neurochemistry, 107, 679–689.CrossRefPubMed
16.
Zurück zum Zitat Song, P., Wu, Y., Xu, J., Xie, Z., Dong, Y., et al. (2007). Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner. Circulation, 116, 1585–1595.CrossRefPubMed Song, P., Wu, Y., Xu, J., Xie, Z., Dong, Y., et al. (2007). Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner. Circulation, 116, 1585–1595.CrossRefPubMed
17.
Zurück zum Zitat Lei, K., & Davis, R. J. (2003). JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proceedings of the National Academy of Sciences, 100, 2432–2437.CrossRef Lei, K., & Davis, R. J. (2003). JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proceedings of the National Academy of Sciences, 100, 2432–2437.CrossRef
18.
Zurück zum Zitat Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G., & Green, D. R. (1999). Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. Journal of Biological Chemistry, 274, 2225–2233.CrossRefPubMed Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G., & Green, D. R. (1999). Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. Journal of Biological Chemistry, 274, 2225–2233.CrossRefPubMed
19.
Zurück zum Zitat Oltvai, Z. N., Milliman, C. L., & Korsmeyer, S. J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell, 74, 609–615.CrossRefPubMed Oltvai, Z. N., Milliman, C. L., & Korsmeyer, S. J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell, 74, 609–615.CrossRefPubMed
20.
Zurück zum Zitat Cheng, E. H., Wei, M. C., Weiler, S., Flavell, R. A., Mak, T. W., Lindsten, T., et al. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Molecular Cell, 8, 705–711.CrossRefPubMed Cheng, E. H., Wei, M. C., Weiler, S., Flavell, R. A., Mak, T. W., Lindsten, T., et al. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Molecular Cell, 8, 705–711.CrossRefPubMed
21.
Zurück zum Zitat Sasabe, E., Tatemoto, Y., Li, D., Yamamoto, T., & Osaki, T. (2005). Mechanism of HIF-1alpha-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Science, 96, 394–402.CrossRefPubMed Sasabe, E., Tatemoto, Y., Li, D., Yamamoto, T., & Osaki, T. (2005). Mechanism of HIF-1alpha-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Science, 96, 394–402.CrossRefPubMed
22.
Zurück zum Zitat Hasnan, J., Yusof, M. I., Damitri, T. D., Faridah, A. R., Adenan, A. S., & Norbaini, T. H. (2010). Relationship between apoptotic markers (Bax and Bcl-2) and biochemical markers in type 2 diabetes mellitus. Singapore Medical Journal, 51, 50–55.PubMed Hasnan, J., Yusof, M. I., Damitri, T. D., Faridah, A. R., Adenan, A. S., & Norbaini, T. H. (2010). Relationship between apoptotic markers (Bax and Bcl-2) and biochemical markers in type 2 diabetes mellitus. Singapore Medical Journal, 51, 50–55.PubMed
23.
Zurück zum Zitat Tell, G., Pines, A., Arturi, F., Cesaratto, L., Adamson, E., Puppin, C., et al. (2004). Control of phosphatase and tensin homolog (PTEN) gene expression in normal and neoplastic thyroid cells. Endocrinology, 145, 4660–4666.CrossRefPubMed Tell, G., Pines, A., Arturi, F., Cesaratto, L., Adamson, E., Puppin, C., et al. (2004). Control of phosphatase and tensin homolog (PTEN) gene expression in normal and neoplastic thyroid cells. Endocrinology, 145, 4660–4666.CrossRefPubMed
24.
Zurück zum Zitat Zhang, Y., Zhang, X., Rabbani, Z. N., Jackson, I. L., & Vujaskovic, Z. (2012). Oxidative stress mediates radiation lung injury by inducing apoptosis. International Journal of Radiation Oncology Biology Physics, 83, 740–748.CrossRef Zhang, Y., Zhang, X., Rabbani, Z. N., Jackson, I. L., & Vujaskovic, Z. (2012). Oxidative stress mediates radiation lung injury by inducing apoptosis. International Journal of Radiation Oncology Biology Physics, 83, 740–748.CrossRef
25.
Zurück zum Zitat Torres, J., & Pulido, R. (2001). The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. Journal of Biological Chemistry, 276, 993–998.CrossRefPubMed Torres, J., & Pulido, R. (2001). The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. Journal of Biological Chemistry, 276, 993–998.CrossRefPubMed
26.
Zurück zum Zitat Madhunapantula, S. V., & Robertson, G. P. (2009). The PTEN-AKT3 signaling cascade as a therapeutic target in melanoma. Pigment Cell & Melanoma Research, 22, 400–419.CrossRef Madhunapantula, S. V., & Robertson, G. P. (2009). The PTEN-AKT3 signaling cascade as a therapeutic target in melanoma. Pigment Cell & Melanoma Research, 22, 400–419.CrossRef
27.
Zurück zum Zitat Rabbani, Z. N., Salahuddin, F. K., Yarmolenko, P., Batinic-Haberle, I., Thrasher, B. A., Gauter-Fleckenstein, B., et al. (2007). Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radical Research, 41, 1273–1282.CrossRefPubMed Rabbani, Z. N., Salahuddin, F. K., Yarmolenko, P., Batinic-Haberle, I., Thrasher, B. A., Gauter-Fleckenstein, B., et al. (2007). Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radical Research, 41, 1273–1282.CrossRefPubMed
28.
Zurück zum Zitat Blanco-Aparicio, C., Renner, O., Leal, J. F., & Carnero, A. (2007). PTEN, more than the AKT pathway. Carcinogenesis, 28, 1379–1386.CrossRefPubMed Blanco-Aparicio, C., Renner, O., Leal, J. F., & Carnero, A. (2007). PTEN, more than the AKT pathway. Carcinogenesis, 28, 1379–1386.CrossRefPubMed
29.
Zurück zum Zitat Zheng, X., Zhu, S., Chang, S., Cao, Y., Dong, J., Li, J., et al. (2013). Protective effects of chronic resveratrol treatment on vascular inflammatory injury in steptozotocin-induced type 2 diabetic rats: role of NF-kappa B signaling. European Journal of Pharmacology, 720, 147–157.CrossRefPubMed Zheng, X., Zhu, S., Chang, S., Cao, Y., Dong, J., Li, J., et al. (2013). Protective effects of chronic resveratrol treatment on vascular inflammatory injury in steptozotocin-induced type 2 diabetic rats: role of NF-kappa B signaling. European Journal of Pharmacology, 720, 147–157.CrossRefPubMed
Metadaten
Titel
The Effects of High Glucose Levels on Reactive Oxygen Species-Induced Apoptosis and Involved Signaling in Human Vascular Endothelial Cells
verfasst von
Qian Hou
Minxiang Lei
Ke Hu
Min Wang
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 2/2015
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-014-9276-9

Weitere Artikel der Ausgabe 2/2015

Cardiovascular Toxicology 2/2015 Zur Ausgabe