Skip to main content
Erschienen in: BMC Psychiatry 1/2023

Open Access 01.12.2023 | Research

Identifying major depressive disorder with associated sleep disturbances through fMRI regional homogeneity at rest

verfasst von: Dan Lv, Yangpan Ou, Dan Xiao, Huabing Li, Feng Liu, Ping Li, Jingping Zhao, Wenbin Guo

Erschienen in: BMC Psychiatry | Ausgabe 1/2023

Abstract

Background

Anomalies in regional homogeneity (ReHo) have been documented in patients with major depressive disorder (MDD) and sleep disturbances (SDs). This investigation aimed to scrutinize changes in ReHo in MDD patients with comorbid SD, and to devise potential diagnostic biomarkers for detecting sleep-related conditions in patients with MDD.

Methods

Patients with MDD and healthy controls underwent resting-state functional magnetic resonance imaging scans. SD severity was quantified using the 17-item Hamilton Rating Scale for Depression. Subsequent to the acquisition of imaging data, ReHo analysis was performed, and a support vector machine (SVM) method was employed to assess the utility of ReHo in discriminating MDD patients with SD.

Results

Compared with MDD patients without SD, MDD patients with SD exhibited increased ReHo values in the right posterior cingulate cortex (PCC)/precuneus, right median cingulate cortex, left postcentral gyrus (postCG), and right inferior temporal gyrus (ITG). Furthermore, the ReHo values in the right PCC/precuneus and ITG displayed a positive correlation with clinical symptoms across all patients. SVM classification results showed that a combination of abnormal ReHo in the left postCG and right ITG achieved an overall accuracy of 84.21%, a sensitivity of 81.82%, and a specificity of 87.50% in identifying MDD patients with SD from those without SD.

Conclusion

We identified disrupted ReHo patterns in MDD patients with SD, and presented a prospective neuroimaging-based diagnostic biomarker for these patients.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12888-023-05305-7.
Dan Lv, Yangpan Ou and Dan Xiao contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
MDD
Major Depressive Disorder
HCs
Healthy Controls
SD
Sleep Disturbance
rs-fMRI
Resting state functional magnetic resonance imaging
ReHo
Regional homogeneity
DMN
Default-mode network
SVM
Support vector machine
HAMD-17
17-item Hamilton Rating Scale for Depression
BAI
Beck Anxiety Inventory
MRI
Magnetic resonance imaging
DPARSF
Data Processing Assistant and Resting-State fMRI
KCC
Kendall’s Coefficient of Concordance
ANOVA
Analysis of variance
GRF
Gaussian Random Field
FD
Framewise displacement
PCC
Posterior cingulate cortex
MCC
Median cingulate cortex
postCG
Postcentral gyrus
ITG
Inferior temporal gyrus
MFG
Medial frontal gyrus
SOG
Superior occipital gyrus
MOG
Middle occipital gyrus
MTG
Middle temporal gyrus

Introduction

Major depressive disorder (MDD) is one of the most prevalent mental disorders, with a global prevalence of 4.4% [1, 2]. More than 300 million people suffer from MDD, which can lead to self-mutilation, suicidal tendencies, and harmful behaviors. It is estimated that by 2030, MDD will be the leading cause of disease burden worldwide [3, 4]. Sleep disturbance (SD) is a prominent symptom of MDD, affecting nearly two-thirds of patients with MDD during the course of illness [5]. Meta-analyses have shown that SD is positively correlated with the overall severity of MDD and its impact on quality of life [6, 7]. SD is also a risk factor for the onset and recurrence of MDD, increasing the risk of suicide [8]. However, the pathological mechanism of MDD with SD remains unclear.
Resting-state functional magnetic resonance imaging (rs-fMRI), an objective and noninvasive technology, has been widely used to explore the pathological mechanisms of mental disorders [911]. Regional homogeneity (ReHo) represents the temporal homogeneity of regional blood oxygen level-dependent signals and quantifies the temporal homogeneity of neural activities at rest. It has been utilized to investigate the pathological mechanisms underlying MDD and SD [12, 13]. Patients with MDD exhibit abnormal ReHo in the default-mode network (DMN) and cerebellum. Furthermore, abnormal ReHo in the left precuneus is positively correlated with SD scores in MDD patients [14, 15]. Patients with SD display abnormal ReHo in the frontal gyrus, cerebellum, occipital gyrus, and amygdala, and decreased ReHo in the occipital gyrus is negatively correlated with clinical symptoms of SD [16]. Resting-state functional connectivity between the bilateral amygdala and superior temporal gyrus is positively associated with SD scores in MDD patients [17]. Patients with MDD and SD exhibit abnormal temporal homogeneity of neural activities at rest. However, it is unclear whether MDD with SD has specific or distinctive alterations in ReHo and whether abnormal ReHo values can be used to distinguish MDD patients with SD.
Support vector machine (SVM) is a machine learning approach for multivariate pattern recognition that effectively defines a set of information and functions of different brain regions to find optimal separation hyperplanes in high-dimensional space for data classification [18, 19]. In SVM analysis, the optimal hyperplane is defined by finding the support vector [20]. Support vectors are data points closest to the hyperplane and play a crucial role in defining the position and orientation of the hyperplane [21]. SVM has great potential for predicting psychiatric disorders based on high-dimensional neuroimaging data [2224]. Therefore, this study applied the SVM method to determine whether altered ReHo can identify sleep conditions in MDD patients.
In this study, we utilized ReHo and SVM methods to explore the pathological mechanisms underlying MDD patients with SD. We hypothesized that abnormal ReHo can be observed in certain brain regions in MDD patients with SD at rest and can be applied to identify sleep conditions in MDD patients.

Materials and methods

Participants

In the study, a total of sixty MDD patients and thirty-four age- and education-matched healthy controls (HCs) were included. All MDD patients were recruited from the psychiatric clinic of the Second Xiangya Hospital of Central South University. The diagnosis of MDD was performed by two trained senior psychiatrists following the criteria outlined in the fifth edition of Diagnostic and Statistical Manual of Mental Disorders (DSM-5). The severity of depression and anxiety was assessed using the 17-item Hamilton Rating Scale for Depression (HAMD-17) and Beck Anxiety Inventory (BAI). SD symptoms in each MDD patient were calculated based on the three items of the insomnia subscale (items four to six) of the HAMD-17 scale [25, 26]. Previous researches also defined SD based the items of the HAMD [27, 28]. Patients were stratified into MDD patients with SD (characterized by chief complaints of SD symptoms, and SD scores > 4) and MDD patients without SD (lacking chief complaints of SD symptoms, and SD scores ≤ 4) [29, 30]. All patients met the following criteria: ① aged between 18 and 55 years; ② right-handed; ③ first major depressive episode with HAMD-17 total scores > 20; ④ illness duration of at least 12 months; ⑤ no history of antipsychotics or electroconvulsive therapy; ⑥ no serious physical diseases, neurological disorder, or other psychiatric illness; ⑦ no drug or alcohol dependence; and ⑧ no contraindications for magnetic resonance imaging (MRI) scans. The HCs were enrolled from the community and screened using the SCID-I/NP (non-patient version).
The study was approved by the medical research ethics committee of the Second Xiangya Hospital of Central South University. All the procedures described herein comply with the Helsinki Declaration of 2013. Each participant provided informed consent before enrollment.

Image acquisition and preprocessing

Resting-state functional images were acquired using a 3.0 T GE scanner (General Electric, Fairfield Connecticut, USA) at the Second Xiangya Hospital of Central South University. The echo planar imaging sequence was used to obtain images with the following parameters: TR, 2000 ms; TE, 30 ms; thickness, 4 mm; gap, 0.4 mm; FA, 90°; slices, 33; matrix, 64 × 64; and field of view (FOV), 220 mm × 220 mm. A total of 240 volumes were collected over a duration of 480 s.
Image preprocessing was performed using MATLAB toolboxes and Data Processing Assistant and Resting-State fMRI (DPARSF) [31, 32]. The preprocessing steps included discarding the first 10 functional volumes, slice timing correction, head motion correction, image normalization, spatial resampling to 3 × 3 × 3 mm3, bandpass filtering (0.01–0.08 Hz), and linear detrending.

ReHo analysis

ReHo analyses were performed by calculating Kendall’s Coefficient of Concordance (KCC) values, which measure the synchronization of time series between a given voxel and its 26 adjacent voxels by using the REST software. The methodology for this approach has been described elsewhere [33]. To mitigate the effects of individual variations in KCC values, the ReHo map was standardized. Specifically, the KCC of each voxel was divided by the average KCC of the entire brain. Subsequently, the resulting ReHo maps underwent spatial smoothing with a Gaussian kernel of 4 mm FWHM. Finally, the smoothed ReHo maps were utilized for statistical analyses.

Statistical analysis

Demographic and clinical data were analyzed using SPSS 22.0. Categorical variables, such as gender, were calculated by performing a chi-square test. Continuous variables, including illness duration, age, educational status, and scores of BAI, HAMD-17, and SD were analyzed using two-sample t-tests or one-way analysis of variance (ANOVA). The threshold for statistical significance was set at p < 0.05 (two tailed) for all tests.
The ReHo maps were compared using an analysis of covariance (ANCOVA) model. Post hoc t-tests were conducted to identify differences with age, gender, educational status, and mean framewise displacement (FD) values as covariates across the groups. The significance level was set at corrected p < 0.05 for multiple comparisons by using Gaussian Random Field theory (voxel significance: p < 0.001, cluster significance: p < 0.05). Since MDD patients with SD had higher total HAMD scores compared to MDD patients without SD, we reanalyzed the data with HAMD scores, age, gender, educational status, and mean FD values as covariates to minimize the confounding effects of depressive and SD symptoms.
Pearson/Spearman analysis was used to explore the correlations between abnormal ReHo values and scores of BAI, HAMD-17, and SD, with the Bonferroni correction for all patients, MDD patients with SD, MDD patients without SD, and HCs subjects, respectively.

SVM analysis

SVM is widely employed in classification due to its proficiency in handling high-dimensional data and achieving high classification accuracy [3436]. In this study, SVM analyses consisted of the following steps: 1) Obtained the dataset; 2) Data splitting: The entire dataset was divided into training and test datasets with a 0.5 ratio; 3) Feature normalization: Features were scaled to the range [0,1]; 4) Kernel selection: Gaussian radial basis function (RBF) kernels were chosen for classifier analysis. The RBF kernel features two parameters, ‘c’ and ‘g’; 5) Parameter optimization: A grid search method was employed for ‘c’ and ‘g’ via cross-validation to identify the optimal parameters; 6) Validation: To validate the SVM results, a 2-fold cross-validation method was applied. The dataset was divided into two equally sized subsets, and two classifier training sessions were conducted. In the first training session, one subset served as the training set, while the other acted as the test set. In the second training session, the training and test sets were swapped; 7) Performance metrics: Accuracy, sensitivity, and specificity were determined by summing the count of correct classifications in both the training and test sets.
Further details regarding the ReHo calculation process, statistical analysis, and SVM analysis were presented in Fig. 1.

Results

Demographics and clinical characteristics of participants

Five subjects were excluded due to excessive head movement (two MDD patients with SD, one MDD patient without SD, and two HCs). Eventually, a total of 24 MDD patients with SD, 33 MDD patients without SD, and 32 HCs were included in our study. There were no differences in age and education status among the three groups except for gender, and no difference in illness duration between the two MDD groups. The MDD with SD group showed higher BAI scores, HAMD-17 total scores, and SD scores than the MDD without SD group. Both MDD groups showed higher scores in anxiety/somatization, retardation symptoms, weight loss, and cognitive disturbance than HCs. However, no significant differences were found in these aforementioned features between the MDD with SD group and MDD without SD group (Table 1).
Table 1
Demographic and clinical characteristics of participants
Variables
Pa_s group (n = 24)
Pa_ns group (n = 33)
HCs (n = 32)
F2/t
Post hoc t-tests or p/t values
Age (years)
31.375 ± 6.78
29.48 ± 7.13
29.59 ± 5.00
1.07a
0.35
Gender (male/female)
12/12
6/27
15/17
8.09b
0.02
Education (years)
13.63 ± 3.73
13.91 ± 3.06
14.59 ± 2.82
0.72a
0.49
Illness duration (months)
5.83 ± 4.12
6.77 ± 4.65
 
0.78c
0.43
BAI -
47.39 ± 13.11
37.97 ± 7.58
22.63 ± 2.28
63.75a
Pa_s > Pa_ns > HCs
HAMD − 17 scores
23.38 ± 3.70
20.18 ± 2.64
0.94 ± 0.95
670.29a
Pa_s > Pa_ns > HCs
Sleep disturbances*
5.54 ± 0.51
3.15 ± 0.94
0.34 ± 0.60
357.41a
Pa_s > Pa_ns > HCs
Anxiety/Somatization
7.38 ± 1.91
6.76 ± 1.82
0.44 ± 0.62
190.43a
Pa_s, Pa_ns > HCs
Retardation symptoms
6.25 ± 1.51
6.64 ± 1.32
0.16 ± 0.37
313.83a
Pa_s, Pa_ns > HCs
Weight loss
0.71 ± 0.81
0.39 ± 0.70
0
9.83a
Pa_s, Pa_ns > HCs
Cognitive disturbances
3.50 ± 2.04
3.24 ± 1.70
0
52.83a
Pa_s, Pa_ns > HCs
Data was displayed with mean ± standard deviation. HAMD-17, the 17-item Hamilton Rating Scale for Depression; BAI, Beck anxiety inventory; Pa_s, major depressive disorder with sleep disturbances; Pa_ns, major depressive disorder without sleep disturbances; HCs, healthy controls
a ANOVA
b Chi-square test
c Two sample t-test
*Sleep disturbance scores were computed by the fourth to sixth items of the HAMD-17 scale

Differences in ReHo between groups

According to ANCOVA analysis, significant changes in ReHo values were observed in the temporal, occipital, frontal, cerebellar, and limbic regions for the three groups (Fig. 2A).
In comparison to MDD patients without SD, MDD patients with SD exhibited increased ReHo values in the right posterior cingulate cortex (PCC)/precuneus, right median cingulate cortex (MCC), right inferior temporal gyrus (ITG) and left postcentral gyrus (postCG) (Fig. 2B; Table 2).
Table 2
Significant ReHo differences across three groups
Cluster location
Peak (MNI)
Number of voxels
T value
x
y
z
Pa_s vs. Pa_ns
     
Right PCC/precuneus
9
-51
36
72
3.8734
Right MCC
9
-21
36
39
3.8839
Right ITG
60
-12
-30
47
4.1982
Left postCG
-57
-18
15
35
3.5905
Pa_s vs. HCs
     
Bilateral Cerebellum Crus2
-9
-90
-33
94
4.2532
Bilateral MFG
0
21
63
75
3.8023
Right Fusiform Gyrus/Cerebellum 6
30
-63
-15
38
-4.3164
Left Cuneus
0
-81
27
37
-3.7039
Left SOG
-24
-84
39
36
-4.3143
Pa_ns vs. HCs
     
Bilateral Cerebellum Crus2
-6
-93
-33
75
4.0532
Right MOG
54
-72
-18
49
3.6440
Left ITG
-63
-60
-12
35
3.3091
Right MTG
66
-57
-9
45
3.7689
Bilateral PCC/precuneus
-9
-45
21
32
-3.3397
MNI, Montreal Neurological Institute; ReHo, regional homogeneity. Pa_s, major depressive disorder with sleep disturbances; Pa_ns, major depressive disorder without sleep disturbances; HCs, healthy controls; PCC, posterior cingulate cortex; MCC, median cingulate cortex; ITG, inferior temporal gyrus; postCG, postcentral gyrus; MFG, medial frontal gyrus; SOG, superior occipital gyrus; MOG, middle occipital gyrus; MTG, middle temporal gyrus
In comparison to HCs, MDD patients with SD exhibited increased ReHo values in the bilateral cerebellum crus 2 and bilateral medial frontal gyrus (MFG), and decreased ReHo in the right fusiform gyrus/cerebellum crus 6, left cuneus, and left superior occipital gyrus (SOG) (Fig. 2C; Table 2).
In comparison to HCs, MDD patients without SD displayed increased ReHo in the bilateral cerebellum crus 2, right middle occipital gyrus (MOG), left ITG, and right middle temporal gyrus (MTG) and decreased ReHo in the bilateral PCC/precuneus (Fig. 2D; Table 2).
In comparison to HCs, all MDD patients showed increased ReHo values in the bilateral cerebellum crus 2, right MFG and right ITG, and decreased ReHo in the right MOG (Table S1).
These results remained consistent when considering HAMD scores, age, gender, educational status, and mean FD values as covariates (Table S2).

Correlations between ReHo and clinical characteristics

For all patients, increased ReHo values in the right PCC/precuneus were positively correlated with the total scores of BAI (r = 0.533, p = 0.000028) and SD (r = 0.416, p = 0.001575), and increased ReHo in the right ITG was positively correlated with the SD scores (r = 0.490, p = 0.000145) (Fig. 3). Abnormal ReHo values were not correlated with BAI, HAMD-17, and SD scores in HC subjects or in MDD patients with or without SD.

SVM results

Discriminating MDD patients with SD from MDD patients without SD

Abnormal ReHo between MDD patients with SD and MDD patients without SD represented as feature variables (1 = right PCC/precuneus, 2 = right MCC, 3 = right ITG, 4 = left postCG), which were entered into the classification models. The combination of the ReHo values of 3 and 4 (Table 3; Fig. 4) could optimally discriminate MDD patients with SD from those without SD with accuracy, sensitivity, and specificity rates of 84.21% (48/57), 87.50% (21/24), and 81.82% (27/33), respectively.
Table 3
The results of SVM analysis based on the selected optimal features
Features
Accuracy (%)
Sensitivity (%)
Specificity (%)
Pa_s vs. Pa_ns
   
Combine 3 and 4
84.21 (48/57)
87.50 (21/24)
81.82 (27/33)
3 = right ITG
   
4 = left postCG
   
All MDD Patients vs. HCs
   
Combine 1, 2 and 4
80.90 (72/89)
94.74 (54/57)
56.25 (18/32)
1 = bilateral cerebellum crus2
   
2 = right MFG
   
4 = right ITG
   
Pa_s, major depressive disorder with sleep disturbances; Pa_ns, major depressive disorder without sleep disturbances; MDD, major depressive disorder; HCs, healthy controls; ITG, inferior temporal gyrus; postCG, postcentral gyrus; MFG, medial frontal gyrus

Discriminating MDD patients from HCs

Abnormal ReHo between MDD patients and HCs (Table S1) represented as feature variables (1 = bilateral cerebellum crus2, 2 = right MFG, 3 = right MOG, 4 = right ITG), which were entered into the classification models. The combination of the ReHo values of 1, 2 and 4 exhibited a high sensitivity (94.74%) and a low specificity (56.25%) in discriminating MDD patients from HCs (Table 3; Fig. 5). To provide a clearer understanding of the high sensitivity and low specificity in distinguishing MDD patients from HCs, we conducted SVM analyses using altered ReHo values between MDD and HCs to differentiate MDD patients with SD from HCs, and MDD patients without SD from HCs. The SVM results showed that the combination of ReHo values of 1, 2 and 4 achieved a good sensitivity of 75.00% and a specificity of 78.79% in differentiating MDD patients with SD from HCs. Similarly, these same regions in the brain could distinguish MDD patients without SD from HCs with a good sensitivity of 81.25% and a specificity of 75.00% (Table S3, Fig. S1 and Fig. S2).

Discussion

The results revealed that MDD patients with SD exhibited increased ReHo in the right PCC/precuneus, right MCC, right ITG, and left postCG compared with MDD patients without SD. In addition, increased ReHo values of the right PCC/precuneus and ITG were positively correlated with the SD scores. A combination of ReHo in the left postCG and right ITG can be utilized in distinguishing MDD patients with SD from those without SD, showing optimal specificity and sensitivity. These findings provide insight for further clinical diagnosis and syndrome sub-classification.
MDD patients with SD exhibited increased ReHo in the right PCC/precuneus and right MCC compared with MDD patients without SD, and increased ReHo in the right PCC/precuneus showed a positive relationship with the SD scores. PCC/precuneus and MCC are important brain regions of the DMN and are generally related to negative self-focus and disturbed emotional regulation in patients with MDD [37, 38]. The rates of volume loss in the right PCC were negatively associated with sleep quality, suggesting that poor sleep quality significantly accelerated volume loss in the right PCC [39]. Impaired sleep in patients with MDD was associated with increased connectivity in the function of the DMN, which includes regions responsible for self-reflection and emotional processing [40, 41]. Consistent with previous findings, increased ReHo values in PCC/precuneus and MCC within the DMN were involved in the compensatory response to emotional regulation and self-perceptions in MDD patients with SD, which might lead to difficulty in falling asleep and poor sleep quality [42].
As a component of the auditory cortex, ITG exhibits decreased functional connectivity in responses to external stimuli during sleep [17]. Stimulation related to external auditory stimuli leads to increased responsiveness to insomnia [43]. The present research showed increased ReHo in the ITG and a positive correlation with SD scores in MDD patients with SD, suggesting that ITG is associated with high arousal status in these patients, who were sensitive to external auditory stimuli during sleep. Patients with primary insomnia showed progressively increased gray matter volume in the right ITG [44]. Furthermore, the correlation between psychological stress and sleep quality may be mediated by the bilateral ITG [45]. These findings highlight that the increased regional neural activity of the ITG may be involved in the pathophysiological mechanism underlying SD in patients with MDD [28].
As a key brain area of the somatosensory network, the postCG plays an important role in sensory–motor integration and transmission [46, 47]. Compared with MDD patients without SD, MDD patients with SD showed increased ReHo value in the left postCG in the current study. A previous research found that reduction in the gray matter volume of the left postCG is related to the severity of SD and depressive symptom in shift-working nurses [48]. Congruent with previous findings, we suggest that increased ReHo in the left postCG leads to excessive sensory–motor information integration through the activation of the somatosensory network, thereby affecting sleep sensitivity in patients with MDD [49]. SVM analysis results showed a combination of increased ReHo values in the left postCG and right ITG exhibits the highest accuracy (84.21%) in discriminating MDD patients with SD from those without SD. Thus, we suggest that increased ReHo values in the left postCG and right ITG can be used as a potential neurobiological marker for MDD patients with SD. Furthermore, SVM results showed that the combination of ReHo values in the bilateral cerebellum crus 2, right MFG and right ITG exhibited a high sensitivity (94.74%) and low specificity (56.25%) in discriminating MDD patients from HCs. However, the combination of ReHo values of these same regions achieved a good sensitivity of 75.00% and specificity of 78.79% in differentiating MDD patients with SD from HCs. Similarly, these same regions in the brain could distinguish MDD patients without SD from HCs with a good sensitivity of 81.25% and specificity of 75.00%. These findings indicate that increased ReHo values in the bilateral cerebellum crus 2, right MFG and right ITG could be utilized for future MDD classification. The initial observation of high sensitivity and low specificity in distinguishing MDD patients from HC may be attributed to class size imbalance (MDD: 57 vs. HCs: 32).
Additionally, compared with HCs, increased ReHo values in the bilateral cerebellum crus 2 were found in MDD patients with and without SD. The cerebellum crus 2 was the intersection of the two subtypes of MDD, indicating that cerebellum crus 2 is involved in the pathological mechanism of MDD patients with and without SD. Compared with HCs, MDD patients with SD showed increased ReHo values in the bilateral MFG and decreased ReHo in the right fusiform gyrus/cerebellum crus 6, left cuneus, and left SOG. However, the MDD patients without SD displayed increased ReHo in the right MOG, left ITG, and right MTG, and decreased ReHo in the bilateral PCC/precuneus. These findings suggest that different subtypes of MDD have diverse neuropathological mechanisms.
Several limitations deserve to be mentioned. First, the sample size may limit the statistical power in detecting subtle brain alterations and uncovering potential depression–brain–sleep relationship. Second, refined classification of SD was not included in our current study, such as difficulties and quality of sleep duration and sleep fragmentation. Third, most patients with MDD were adults, and the current findings may not generalize to adolescent patients with MDD. Finally, the SD symptoms of each patient with MDD were calculated according to the three items insomnia subscale of the HAMD-17 scale. However, this is not robust, and future studies should utilized valid sleep questionaries such as the Pittsburgh Sleep Quality Index (PSQI) for the assessment of SD.

Conclusions

Our present study addressed the specific or distinctive ReHo patterns in MDD patients with SD. Increased ReHo in the right ITG and PCC/precuneus might represent stable and unique neurobiological features of MDD patients with specific sleep conditions. In addition, a combination of abnormal ReHo in the postCG and right ITG may be applied as a potential neurobiological marker for discriminate MDD patients with SD from those without SD.

Acknowledgements

The authors thank all individuals who served as the research participants.

Declarations

The study was approved by the medical research ethics committee of the Second Xiangya Hospital of Central South University. All the procedures described herein comply with the Helsinki Declaration of 2013. Each participant provided informed consent prior to enrollment.
Not applicable.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Jakobsen JC, Gluud C, Kirsch I. Should antidepressants be used for major depressive disorder? BMJ Evid Based Med. 2020;25(4):130.PubMedCrossRef Jakobsen JC, Gluud C, Kirsch I. Should antidepressants be used for major depressive disorder? BMJ Evid Based Med. 2020;25(4):130.PubMedCrossRef
2.
Zurück zum Zitat Stringaris A. Editorial: what is depression? J Child Psychol Psychiatry. 2017;58(12):1287–9.PubMedCrossRef Stringaris A. Editorial: what is depression? J Child Psychol Psychiatry. 2017;58(12):1287–9.PubMedCrossRef
3.
Zurück zum Zitat Dwyer JB, Aftab A, Radhakrishnan R, Widge A, Rodriguez CI, Carpenter LL, Nemeroff CB, McDonald WM, Kalin NH. Hormonal treatments for major depressive disorder: state of the art. Am J Psychiatry. 2020;177(8):686–705.PubMedPubMedCentralCrossRef Dwyer JB, Aftab A, Radhakrishnan R, Widge A, Rodriguez CI, Carpenter LL, Nemeroff CB, McDonald WM, Kalin NH. Hormonal treatments for major depressive disorder: state of the art. Am J Psychiatry. 2020;177(8):686–705.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat De Sousa RAL, Rocha-Dias I, de Oliveira LRS, Improta-Caria AC, Monteiro-Junior RS, Cassilhas RC. Molecular mechanisms of physical exercise on depression in the elderly: a systematic review. Mol Biol Rep. 2021;48(4):3853–62.PubMedCrossRef De Sousa RAL, Rocha-Dias I, de Oliveira LRS, Improta-Caria AC, Monteiro-Junior RS, Cassilhas RC. Molecular mechanisms of physical exercise on depression in the elderly: a systematic review. Mol Biol Rep. 2021;48(4):3853–62.PubMedCrossRef
5.
Zurück zum Zitat Cunningham JEA, Shapiro CM. Cognitive behavioural therapy for Insomnia (CBT-I) to treat depression: a systematic review. J Psychosom Res. 2018;106:1–12.PubMedCrossRef Cunningham JEA, Shapiro CM. Cognitive behavioural therapy for Insomnia (CBT-I) to treat depression: a systematic review. J Psychosom Res. 2018;106:1–12.PubMedCrossRef
6.
Zurück zum Zitat Harris LM, Huang X, Linthicum KP, Bryen CP, Ribeiro JD. Sleep disturbances as risk factors for suicidal thoughts and behaviours: a meta-analysis of longitudinal studies. Sci Rep. 2020;10(1):13888.PubMedPubMedCentralCrossRef Harris LM, Huang X, Linthicum KP, Bryen CP, Ribeiro JD. Sleep disturbances as risk factors for suicidal thoughts and behaviours: a meta-analysis of longitudinal studies. Sci Rep. 2020;10(1):13888.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Liu RT, Steele SJ, Hamilton JL, Do QBP, Furbish K, Burke TA, Martinez AP, Gerlus N. Sleep and Suicide: a systematic review and meta-analysis of longitudinal studies. Clin Psychol Rev. 2020;81:101895.PubMedPubMedCentralCrossRef Liu RT, Steele SJ, Hamilton JL, Do QBP, Furbish K, Burke TA, Martinez AP, Gerlus N. Sleep and Suicide: a systematic review and meta-analysis of longitudinal studies. Clin Psychol Rev. 2020;81:101895.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Joshi K, Cambron-Mellott MJ, Costantino H, Pfau A, Jha MK. The real-world burden of adults with major depressive disorder with moderate or severe insomnia symptoms in the United States. J Affect Disord. 2023;323:698–706.PubMedCrossRef Joshi K, Cambron-Mellott MJ, Costantino H, Pfau A, Jha MK. The real-world burden of adults with major depressive disorder with moderate or severe insomnia symptoms in the United States. J Affect Disord. 2023;323:698–706.PubMedCrossRef
9.
Zurück zum Zitat Raimondo L, Oliveira ĹAF, Heij J, Priovoulos N, Kundu P, van der Leoni RF. Zwaag W: advances in resting state fMRI acquisitions for functional connectomics. NeuroImage. 2021;243:118503.PubMedCrossRef Raimondo L, Oliveira ĹAF, Heij J, Priovoulos N, Kundu P, van der Leoni RF. Zwaag W: advances in resting state fMRI acquisitions for functional connectomics. NeuroImage. 2021;243:118503.PubMedCrossRef
10.
Zurück zum Zitat Liang S, Deng W, Li X, Greenshaw AJ, Wang Q, Li M, Ma X, Bai TJ, Bo QJ, Cao J, et al. Biotypes of major depressive disorder: neuroimaging evidence from resting-state default mode network patterns. Neuroimage Clin. 2020;28:102514.PubMedPubMedCentralCrossRef Liang S, Deng W, Li X, Greenshaw AJ, Wang Q, Li M, Ma X, Bai TJ, Bo QJ, Cao J, et al. Biotypes of major depressive disorder: neuroimaging evidence from resting-state default mode network patterns. Neuroimage Clin. 2020;28:102514.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Zhang L, Zhao J, Guo W. Pharmacological treatment-associated brain structural and functional alterations in major depressive disorder: a narrative review. J Clin Basic Psychosom 2023, 1(1). Zhang L, Zhao J, Guo W. Pharmacological treatment-associated brain structural and functional alterations in major depressive disorder: a narrative review. J Clin Basic Psychosom 2023, 1(1).
12.
Zurück zum Zitat Zhang J, Cai X, Wang Y, Zheng Y, Qu S, Zhang Z, Yao Z, Chen G, Tang C, Huang Y. Different Brain Activation after Acupuncture at Combined Acupoints and Single Acupoint in Hypertension Patients: An Rs-fMRI Study Based on ReHo Analysis. Evid Based Complement Alternat Med 2019, 2019:5262896. Zhang J, Cai X, Wang Y, Zheng Y, Qu S, Zhang Z, Yao Z, Chen G, Tang C, Huang Y. Different Brain Activation after Acupuncture at Combined Acupoints and Single Acupoint in Hypertension Patients: An Rs-fMRI Study Based on ReHo Analysis. Evid Based Complement Alternat Med 2019, 2019:5262896.
13.
Zurück zum Zitat Lin Z, Xu X, Wang T, Huang Z, Wang G. Abnormal regional homogeneity and functional connectivity in major depressive disorder patients with long-term remission: an exploratory study. Psychiatry Res Neuroimaging. 2022;327:111557.PubMedCrossRef Lin Z, Xu X, Wang T, Huang Z, Wang G. Abnormal regional homogeneity and functional connectivity in major depressive disorder patients with long-term remission: an exploratory study. Psychiatry Res Neuroimaging. 2022;327:111557.PubMedCrossRef
14.
Zurück zum Zitat Yan M, Chen J, Liu F, Li H, Huang R, Tang Y, Zhao J, Guo W. Disrupted Regional Homogeneity in Major Depressive Disorder with gastrointestinal symptoms at Rest. Front Psychiatry. 2021;12:636820.PubMedPubMedCentralCrossRef Yan M, Chen J, Liu F, Li H, Huang R, Tang Y, Zhao J, Guo W. Disrupted Regional Homogeneity in Major Depressive Disorder with gastrointestinal symptoms at Rest. Front Psychiatry. 2021;12:636820.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Yan M, Chen J, Liu F, Li H, Zhao J, Guo W. Abnormal default Mode Network Homogeneity in Major Depressive Disorder with gastrointestinal symptoms at Rest. Front Aging Neurosci. 2022;14:804621.PubMedPubMedCentralCrossRef Yan M, Chen J, Liu F, Li H, Zhao J, Guo W. Abnormal default Mode Network Homogeneity in Major Depressive Disorder with gastrointestinal symptoms at Rest. Front Aging Neurosci. 2022;14:804621.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Zhang Y, Zhang Z, Wang Y, Zhu F, Liu X, Chen W, Zhu H, Zhu H, Li J, Guo Z. Dysfunctional beliefs and attitudes about sleep are associated with regional homogeneity of left inferior occidental gyrus in primary insomnia patients: a preliminary resting state functional magnetic resonance imaging study. Sleep Med. 2021;81:188–93.PubMedCrossRef Zhang Y, Zhang Z, Wang Y, Zhu F, Liu X, Chen W, Zhu H, Zhu H, Li J, Guo Z. Dysfunctional beliefs and attitudes about sleep are associated with regional homogeneity of left inferior occidental gyrus in primary insomnia patients: a preliminary resting state functional magnetic resonance imaging study. Sleep Med. 2021;81:188–93.PubMedCrossRef
17.
Zurück zum Zitat Ye Y, Wang C, Lan X, Li W, Fu L, Zhang F, Liu H, Zhang Z, Wu K, Zhou Y, et al. Abnormal amygdala functional connectivity in MDD patients with insomnia complaints. Psychiatry Res Neuroimaging. 2023;328:111578.PubMedCrossRef Ye Y, Wang C, Lan X, Li W, Fu L, Zhang F, Liu H, Zhang Z, Wu K, Zhou Y, et al. Abnormal amygdala functional connectivity in MDD patients with insomnia complaints. Psychiatry Res Neuroimaging. 2023;328:111578.PubMedCrossRef
18.
Zurück zum Zitat Gao Y, Xiong Z, Wang X, Ren H, Liu R, Bai B, Zhang L, Li D. Abnormal degree centrality as a potential imaging biomarker for right temporal lobe Epilepsy: a resting-state functional magnetic resonance imaging study and support Vector Machine Analysis. Neuroscience. 2022;487:198–206.PubMedCrossRef Gao Y, Xiong Z, Wang X, Ren H, Liu R, Bai B, Zhang L, Li D. Abnormal degree centrality as a potential imaging biomarker for right temporal lobe Epilepsy: a resting-state functional magnetic resonance imaging study and support Vector Machine Analysis. Neuroscience. 2022;487:198–206.PubMedCrossRef
19.
Zurück zum Zitat Zhang L, Chao B, Zhang X. Modeling and optimization of microbial lipid fermentation from cellulosic ethanol wastewater by Rhodotorula glutinis based on the support vector machine. Bioresour Technol. 2020;301:122781.PubMedCrossRef Zhang L, Chao B, Zhang X. Modeling and optimization of microbial lipid fermentation from cellulosic ethanol wastewater by Rhodotorula glutinis based on the support vector machine. Bioresour Technol. 2020;301:122781.PubMedCrossRef
20.
Zurück zum Zitat Gaonkar B, Davatzikos RTS. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging. Med Image Anal. 2015;24(1):190–204.PubMedPubMedCentralCrossRef Gaonkar B, Davatzikos RTS. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging. Med Image Anal. 2015;24(1):190–204.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Shan X, Cui X, Liu F, Li H, Huang R, Tang Y, Chen J, Zhao J, Guo W, Xie G. Shared and distinct homotopic connectivity changes in melancholic and non-melancholic depression. J Affect Disord. 2021;287:268–75.PubMedCrossRef Shan X, Cui X, Liu F, Li H, Huang R, Tang Y, Chen J, Zhao J, Guo W, Xie G. Shared and distinct homotopic connectivity changes in melancholic and non-melancholic depression. J Affect Disord. 2021;287:268–75.PubMedCrossRef
23.
Zurück zum Zitat Song H, Chen L, Gao R, Bogdan IIM, Yang J, Wang S, Dong W, Quan W, Dang W, Yu X. Automatic Schizophrenic discrimination on fNIRS by using complex brain network analysis and SVM. BMC Med Inform Decis Mak. 2017;17(Suppl 3):166.PubMedPubMedCentralCrossRef Song H, Chen L, Gao R, Bogdan IIM, Yang J, Wang S, Dong W, Quan W, Dang W, Yu X. Automatic Schizophrenic discrimination on fNIRS by using complex brain network analysis and SVM. BMC Med Inform Decis Mak. 2017;17(Suppl 3):166.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Gao Y, Zhao X, Huang J, Wang S, Chen X, Li M, Sun F, Wang G, Zhong Y. Abnormal regional homogeneity in right caudate as a potential neuroimaging biomarker for mild cognitive impairment: a resting-state fMRI study and support vector machine analysis. Front Aging Neurosci. 2022;14:979183.PubMedPubMedCentralCrossRef Gao Y, Zhao X, Huang J, Wang S, Chen X, Li M, Sun F, Wang G, Zhong Y. Abnormal regional homogeneity in right caudate as a potential neuroimaging biomarker for mild cognitive impairment: a resting-state fMRI study and support vector machine analysis. Front Aging Neurosci. 2022;14:979183.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Troxel WM, Kupfer DJ, Reynolds CF 3rd, Frank E, Thase ME, Miewald JM, Buysse DJ. Insomnia and objectively measured sleep disturbances predict treatment outcome in depressed patients treated with psychotherapy or psychotherapy-pharmacotherapy combinations. J Clin Psychiatry. 2012;73(4):478–85.PubMedCrossRef Troxel WM, Kupfer DJ, Reynolds CF 3rd, Frank E, Thase ME, Miewald JM, Buysse DJ. Insomnia and objectively measured sleep disturbances predict treatment outcome in depressed patients treated with psychotherapy or psychotherapy-pharmacotherapy combinations. J Clin Psychiatry. 2012;73(4):478–85.PubMedCrossRef
26.
Zurück zum Zitat Shi Y, Zhang L, He C, Yin Y, Song R, Chen S, Fan D, Zhou D, Yuan Y, Xie C, et al. Sleep disturbance-related neuroimaging features as potential biomarkers for the diagnosis of major depressive disorder: a multicenter study based on machine learning. J Affect Disord. 2021;295:148–55.PubMedCrossRef Shi Y, Zhang L, He C, Yin Y, Song R, Chen S, Fan D, Zhou D, Yuan Y, Xie C, et al. Sleep disturbance-related neuroimaging features as potential biomarkers for the diagnosis of major depressive disorder: a multicenter study based on machine learning. J Affect Disord. 2021;295:148–55.PubMedCrossRef
27.
Zurück zum Zitat Manber R, Blasey C, Arnow B, Markowitz JC, Thase ME, Rush AJ, Dowling F, Koscis J, Trivedi M, Keller MB. Assessing insomnia severity in depression: comparison of depression rating scales and sleep diaries. J Psychiatr Res. 2005;39(5):481–8.PubMedCrossRef Manber R, Blasey C, Arnow B, Markowitz JC, Thase ME, Rush AJ, Dowling F, Koscis J, Trivedi M, Keller MB. Assessing insomnia severity in depression: comparison of depression rating scales and sleep diaries. J Psychiatr Res. 2005;39(5):481–8.PubMedCrossRef
28.
Zurück zum Zitat Gong L, Xu R, Liu D, Zhang C, Huang Q, Zhang B, Xi C. Abnormal functional connectivity density in patients with major depressive disorder with comorbid insomnia. J Affect Disord. 2020;266:417–23.PubMedCrossRef Gong L, Xu R, Liu D, Zhang C, Huang Q, Zhang B, Xi C. Abnormal functional connectivity density in patients with major depressive disorder with comorbid insomnia. J Affect Disord. 2020;266:417–23.PubMedCrossRef
29.
Zurück zum Zitat Trivedi MH, Bandelow B, Demyttenaere K, Papakostas GI, Szamosi J, Earley W, Eriksson H. Evaluation of the effects of extended release quetiapine fumarate monotherapy on sleep disturbance in patients with major depressive disorder: a pooled analysis of four randomized acute studies. Int J Neuropsychopharmacol. 2013;16(8):1733–44.PubMedCrossRef Trivedi MH, Bandelow B, Demyttenaere K, Papakostas GI, Szamosi J, Earley W, Eriksson H. Evaluation of the effects of extended release quetiapine fumarate monotherapy on sleep disturbance in patients with major depressive disorder: a pooled analysis of four randomized acute studies. Int J Neuropsychopharmacol. 2013;16(8):1733–44.PubMedCrossRef
30.
Zurück zum Zitat Liu CH, Guo J, Lu SL, Tang LR, Fan J, Wang CY, Wang L, Liu QQ, Liu CZ. Increased salience network activity in patients with Insomnia complaints in Major Depressive Disorder. Front Psychiatry. 2018;9:93.PubMedPubMedCentralCrossRef Liu CH, Guo J, Lu SL, Tang LR, Fan J, Wang CY, Wang L, Liu QQ, Liu CZ. Increased salience network activity in patients with Insomnia complaints in Major Depressive Disorder. Front Psychiatry. 2018;9:93.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Chao-Gan Y, Yu-Feng Z. DPARSF: a MATLAB Toolbox for Pipeline Data Analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13.PubMedPubMedCentral Chao-Gan Y, Yu-Feng Z. DPARSF: a MATLAB Toolbox for Pipeline Data Analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13.PubMedPubMedCentral
32.
Zurück zum Zitat Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59(3):2142–54.PubMedCrossRef Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59(3):2142–54.PubMedCrossRef
33.
Zurück zum Zitat Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. NeuroImage. 2004;22(1):394–400.PubMedCrossRef Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. NeuroImage. 2004;22(1):394–400.PubMedCrossRef
34.
Zurück zum Zitat Lv D, Ou Y, Chen Y, Ding Z, Ma J, Zhan C, Yang R, Shang T, Zhang G, Bai X, et al. Anatomical distance affects functional connectivity at rest in medicine-free obsessive-compulsive disorder. BMC Psychiatry. 2022;22(1):462.PubMedPubMedCentralCrossRef Lv D, Ou Y, Chen Y, Ding Z, Ma J, Zhan C, Yang R, Shang T, Zhang G, Bai X, et al. Anatomical distance affects functional connectivity at rest in medicine-free obsessive-compulsive disorder. BMC Psychiatry. 2022;22(1):462.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genomics Proteomics. 2018;15(1):41–51.PubMed Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genomics Proteomics. 2018;15(1):41–51.PubMed
36.
Zurück zum Zitat Franzmeier N, Koutsouleris N, Benzinger T, Goate A, Karch CM, Fagan AM, McDade E, Duering M, Dichgans M, Levin J, et al. Predicting sporadic Alzheimer’s Disease progression via inherited Alzheimer’s disease-informed machine-learning. Alzheimers Dement. 2020;16(3):501–11.PubMedPubMedCentralCrossRef Franzmeier N, Koutsouleris N, Benzinger T, Goate A, Karch CM, Fagan AM, McDade E, Duering M, Dichgans M, Levin J, et al. Predicting sporadic Alzheimer’s Disease progression via inherited Alzheimer’s disease-informed machine-learning. Alzheimers Dement. 2020;16(3):501–11.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Lin IM, Yu HE, Yeh YC, Huang MF, Wu KT, Ke CK, Lin PY, Yen CF. Prefrontal lobe and Posterior Cingulate Cortex Activations in patients with major depressive disorder by using standardized weighted low-resolution Electromagnetic Tomography. J Pers Med 2021, 11(11). Lin IM, Yu HE, Yeh YC, Huang MF, Wu KT, Ke CK, Lin PY, Yen CF. Prefrontal lobe and Posterior Cingulate Cortex Activations in patients with major depressive disorder by using standardized weighted low-resolution Electromagnetic Tomography. J Pers Med 2021, 11(11).
38.
Zurück zum Zitat Zhu Z, Wang Y, Lau WKW, Wei X, Liu Y, Huang R, Zhang R. Hyperconnectivity between the posterior cingulate and middle frontal and temporal gyrus in depression: based on functional connectivity meta-analyses. Brain Imaging Behav. 2022;16(4):1538–51.PubMedCrossRef Zhu Z, Wang Y, Lau WKW, Wei X, Liu Y, Huang R, Zhang R. Hyperconnectivity between the posterior cingulate and middle frontal and temporal gyrus in depression: based on functional connectivity meta-analyses. Brain Imaging Behav. 2022;16(4):1538–51.PubMedCrossRef
39.
Zurück zum Zitat Liu C, Lee SH, Loewenstein DA, Galvin JE, Camargo CJ, Alperin N. Poor sleep accelerates hippocampal and posterior cingulate volume loss in cognitively normal healthy older adults. J Sleep Res. 2022;31(4):e13538.PubMedCrossRef Liu C, Lee SH, Loewenstein DA, Galvin JE, Camargo CJ, Alperin N. Poor sleep accelerates hippocampal and posterior cingulate volume loss in cognitively normal healthy older adults. J Sleep Res. 2022;31(4):e13538.PubMedCrossRef
40.
Zurück zum Zitat McKinnon AC, Hickie IB, Scott J, Duffy SL, Norrie L, Terpening Z, Grunstein RR, Lagopoulos J, Batchelor J, Lewis SJG, et al. Current sleep disturbance in older people with a lifetime history of depression is associated with increased connectivity in the default Mode Network. J Affect Disord. 2018;229:85–94.PubMedCrossRef McKinnon AC, Hickie IB, Scott J, Duffy SL, Norrie L, Terpening Z, Grunstein RR, Lagopoulos J, Batchelor J, Lewis SJG, et al. Current sleep disturbance in older people with a lifetime history of depression is associated with increased connectivity in the default Mode Network. J Affect Disord. 2018;229:85–94.PubMedCrossRef
41.
Zurück zum Zitat Wu Z, Fang X, Yu L, Wang D, Liu R, Teng X, Guo C, Ren J, Zhang C. Abnormal functional connectivity of the anterior cingulate cortex subregions mediates the association between anhedonia and sleep quality in major depressive disorder. J Affect Disord. 2022;296:400–7.PubMedCrossRef Wu Z, Fang X, Yu L, Wang D, Liu R, Teng X, Guo C, Ren J, Zhang C. Abnormal functional connectivity of the anterior cingulate cortex subregions mediates the association between anhedonia and sleep quality in major depressive disorder. J Affect Disord. 2022;296:400–7.PubMedCrossRef
42.
Zurück zum Zitat Wang M, Ju Y, Lu X, Sun J, Dong Q, Liu J, Zhang L, Zhang Y, Zhang S, Wang Z, et al. Longitudinal changes of amplitude of low-frequency fluctuations in MDD patients: a 6-month follow-up resting-state functional magnetic resonance imaging study. J Affect Disord. 2020;276:411–7.PubMedCrossRef Wang M, Ju Y, Lu X, Sun J, Dong Q, Liu J, Zhang L, Zhang Y, Zhang S, Wang Z, et al. Longitudinal changes of amplitude of low-frequency fluctuations in MDD patients: a 6-month follow-up resting-state functional magnetic resonance imaging study. J Affect Disord. 2020;276:411–7.PubMedCrossRef
43.
Zurück zum Zitat Czisch M, Wetter TC, Kaufmann C, Pollmächer T, Holsboer F, Auer DP. Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study. NeuroImage. 2002;16(1):251–8.PubMedCrossRef Czisch M, Wetter TC, Kaufmann C, Pollmächer T, Holsboer F, Auer DP. Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study. NeuroImage. 2002;16(1):251–8.PubMedCrossRef
44.
Zurück zum Zitat Li S, Wang BA, Li C, Feng Y, Li M, Wang T, Nie L, Li C, Hua W, Lin C, et al. Progressive gray matter hypertrophy with severity stages of insomnia disorder and its relevance for mood symptoms. Eur Radiol. 2021;31(8):6312–22.PubMedCrossRef Li S, Wang BA, Li C, Feng Y, Li M, Wang T, Nie L, Li C, Hua W, Lin C, et al. Progressive gray matter hypertrophy with severity stages of insomnia disorder and its relevance for mood symptoms. Eur Radiol. 2021;31(8):6312–22.PubMedCrossRef
45.
Zurück zum Zitat Zhang L, Cao G, Liu Z, Bai Y, Li D, Liu J, Yin H. The gray matter volume of bilateral inferior temporal gyrus in mediating the association between psychological stress and sleep quality among Chinese college students. Brain Imaging Behav. 2022;16(2):557–64.PubMedCrossRef Zhang L, Cao G, Liu Z, Bai Y, Li D, Liu J, Yin H. The gray matter volume of bilateral inferior temporal gyrus in mediating the association between psychological stress and sleep quality among Chinese college students. Brain Imaging Behav. 2022;16(2):557–64.PubMedCrossRef
46.
Zurück zum Zitat Liu P, Tu H, Zhang A, Yang C, Liu Z, Lei L, Wu P, Sun N, Zhang K. Brain functional alterations in MDD patients with somatic symptoms: a resting-state fMRI study. J Affect Disord. 2021;295:788–96.PubMedCrossRef Liu P, Tu H, Zhang A, Yang C, Liu Z, Lei L, Wu P, Sun N, Zhang K. Brain functional alterations in MDD patients with somatic symptoms: a resting-state fMRI study. J Affect Disord. 2021;295:788–96.PubMedCrossRef
47.
Zurück zum Zitat Nelson AJ, Chen R. Digit somatotopy within cortical areas of the postcentral gyrus in humans. Cereb Cortex. 2008;18(10):2341–51.PubMedCrossRef Nelson AJ, Chen R. Digit somatotopy within cortical areas of the postcentral gyrus in humans. Cereb Cortex. 2008;18(10):2341–51.PubMedCrossRef
48.
Zurück zum Zitat Park CH, Bang M, Ahn KJ, Kim WJ, Shin NY. Sleep disturbance-related depressive symptom and brain volume reduction in shift-working nurses. Sci Rep. 2020;10(1):9100.PubMedPubMedCentralCrossRef Park CH, Bang M, Ahn KJ, Kim WJ, Shin NY. Sleep disturbance-related depressive symptom and brain volume reduction in shift-working nurses. Sci Rep. 2020;10(1):9100.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Yang Y, Zhu DM, Zhang C, Zhang Y, Wang C, Zhang B, Zhao W, Zhu J, Yu Y. Brain structural and functional alterations specific to low sleep efficiency in major depressive disorder. Front Neurosci. 2020;14:50.PubMedPubMedCentralCrossRef Yang Y, Zhu DM, Zhang C, Zhang Y, Wang C, Zhang B, Zhao W, Zhu J, Yu Y. Brain structural and functional alterations specific to low sleep efficiency in major depressive disorder. Front Neurosci. 2020;14:50.PubMedPubMedCentralCrossRef
Metadaten
Titel
Identifying major depressive disorder with associated sleep disturbances through fMRI regional homogeneity at rest
verfasst von
Dan Lv
Yangpan Ou
Dan Xiao
Huabing Li
Feng Liu
Ping Li
Jingping Zhao
Wenbin Guo
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Psychiatry / Ausgabe 1/2023
Elektronische ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-023-05305-7

Weitere Artikel der Ausgabe 1/2023

BMC Psychiatry 1/2023 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Typ-2-Diabetes und Depression folgen oft aufeinander

14.05.2024 Typ-2-Diabetes Nachrichten

Menschen mit Typ-2-Diabetes sind überdurchschnittlich gefährdet, in den nächsten Jahren auch noch eine Depression zu entwickeln – und umgekehrt. Besonders ausgeprägt ist die Wechselbeziehung laut GKV-Daten bei jüngeren Erwachsenen.