Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2008

01.12.2008

Imaging matrix metalloproteinases in cancer

verfasst von: Randy L. Scherer, J. Oliver McIntyre, Lynn M. Matrisian

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

Early detection of both primary tumors and metastatic disease remains a major challenge in the diagnosis and staging of cancer. The recognition of the role of MMPs in both the growth and metastasis of tumors has guided the development not only of therapeutic strategies utilizing synthetic, small-molecule MMP inhibitors (MMPIs), but has also catalyzed methods to detect and image tumors in vivo by means of tumor-associated proteolytic activity. These imaging approaches target MMPs involved in cancer progression via contrast agents linked to MMPIs or to MMP selective and specific substrates with sensitivity enhanced by amplification during enzymatic processing. This review draws attention to a variety of strategies utilized to image MMP activity in vivo.
Literatur
1.
Zurück zum Zitat Woessner, J. F., & Nagase, H. (2000). Matrix metalloproteinases and TIMPs. New York: Oxford University Press, Inc.CrossRef Woessner, J. F., & Nagase, H. (2000). Matrix metalloproteinases and TIMPs. New York: Oxford University Press, Inc.CrossRef
2.
Zurück zum Zitat Massova, I., Kotra, L. P., Fridman, R., & Mobashery, S. (1998). Matrix metalloproteinases: Structures, evolution, and diversification. FASEB Journal, 12(12), 1075–1095.PubMed Massova, I., Kotra, L. P., Fridman, R., & Mobashery, S. (1998). Matrix metalloproteinases: Structures, evolution, and diversification. FASEB Journal, 12(12), 1075–1095.PubMed
3.
Zurück zum Zitat Sternlicht, M. D., & Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annual Review of Cell and Developmental Biology, 17, 463–516.PubMedCrossRef Sternlicht, M. D., & Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annual Review of Cell and Developmental Biology, 17, 463–516.PubMedCrossRef
4.
Zurück zum Zitat Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 3(69), 562–573.CrossRef Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 3(69), 562–573.CrossRef
5.
Zurück zum Zitat McKerrow, J. H., Bhargava, V., Hansell, E., Huling, S., Kuwahara, T., Matley, M., et al. (2000). A functional proteomics screen of proteases in colorectal carcinoma. Molecular Medicine, 5(6), 450–460. McKerrow, J. H., Bhargava, V., Hansell, E., Huling, S., Kuwahara, T., Matley, M., et al. (2000). A functional proteomics screen of proteases in colorectal carcinoma. Molecular Medicine, 5(6), 450–460.
6.
Zurück zum Zitat Nelson, A. R., Fingleton, B., Rothenberg, M. L., & Matrisian, L. M. (2000). Matrix metalloproteinases: Biologic activity and clinical implications. Journal of Clinical Oncology, 5(18), 1135–1149. Nelson, A. R., Fingleton, B., Rothenberg, M. L., & Matrisian, L. M. (2000). Matrix metalloproteinases: Biologic activity and clinical implications. Journal of Clinical Oncology, 5(18), 1135–1149.
7.
Zurück zum Zitat MacDougall, J. R., Bani, M. R., Lin, Y., Rak, J., & Kerbel, R. S. (1995). The 92-kDa gelatinase B is expressed by advanced stage melanoma cells: Suppression by somatic cell hybridization with early stage melanoma cell. Cancer Research, 18(55), 4174–4181. MacDougall, J. R., Bani, M. R., Lin, Y., Rak, J., & Kerbel, R. S. (1995). The 92-kDa gelatinase B is expressed by advanced stage melanoma cells: Suppression by somatic cell hybridization with early stage melanoma cell. Cancer Research, 18(55), 4174–4181.
8.
Zurück zum Zitat Vaisanen, A., Tuominen, H., Kallioinen, M., & Turpeenniemihujanen, T. (1996). Matrix metalloproteinase-2 (72 kD type IV collagenase) expression occurs in the early stage of human melanocytic tumour progression and may have prognostic value. Journal of Pathology, 3(180), 283–289.CrossRef Vaisanen, A., Tuominen, H., Kallioinen, M., & Turpeenniemihujanen, T. (1996). Matrix metalloproteinase-2 (72 kD type IV collagenase) expression occurs in the early stage of human melanocytic tumour progression and may have prognostic value. Journal of Pathology, 3(180), 283–289.CrossRef
9.
Zurück zum Zitat Davies, B., Waxman, J., Wasan, H., Abel, P., Williams, G., Krausz, T., et al. (1993). Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Research, 53, 5365–5369.PubMed Davies, B., Waxman, J., Wasan, H., Abel, P., Williams, G., Krausz, T., et al. (1993). Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Research, 53, 5365–5369.PubMed
10.
Zurück zum Zitat Sternlicht, M. D., & Bergers, G. (2000). Matrix metalloproteinases as emerging targets in anticancer therapy: Status and prospects. Emerging Therapeutic Targets, 4, 609–633.CrossRef Sternlicht, M. D., & Bergers, G. (2000). Matrix metalloproteinases as emerging targets in anticancer therapy: Status and prospects. Emerging Therapeutic Targets, 4, 609–633.CrossRef
11.
Zurück zum Zitat Martin, M. D., & Matrisian, L. M. (2007). The other side of MMPs: Protective roles in tumor progression. Cancer and Metastasis Reviews, 26(3–4), 717–724.PubMedCrossRef Martin, M. D., & Matrisian, L. M. (2007). The other side of MMPs: Protective roles in tumor progression. Cancer and Metastasis Reviews, 26(3–4), 717–724.PubMedCrossRef
12.
Zurück zum Zitat Martin, M. D., & Matrisian, L. M. (2005). Matrix metalloproteinases as prognostic factors for cancer. Clinical Laboratory Investigations, 6(28), 16–18. Martin, M. D., & Matrisian, L. M. (2005). Matrix metalloproteinases as prognostic factors for cancer. Clinical Laboratory Investigations, 6(28), 16–18.
13.
Zurück zum Zitat Van de Wiele, C., & Oltenfreiter, R. (2006). Imaging probes targeting matrix metalloproteinases. Cancer Biotherapy & Radiopharmaceuticals, 5(21), 409–417.CrossRef Van de Wiele, C., & Oltenfreiter, R. (2006). Imaging probes targeting matrix metalloproteinases. Cancer Biotherapy & Radiopharmaceuticals, 5(21), 409–417.CrossRef
14.
Zurück zum Zitat Weissleder, R., & Ntziachristos, V. (2003). Shedding light onto live molecular targets. Nature Medicine, 1(9), 123–128.CrossRef Weissleder, R., & Ntziachristos, V. (2003). Shedding light onto live molecular targets. Nature Medicine, 1(9), 123–128.CrossRef
15.
Zurück zum Zitat McIntyre, J. O., Fingleton, B., Wells, K. S., Piston, D. W., Lynch, C. C., Gautam, S., et al. (2004). Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochemical Journal, Pt 3(377), 617–628. McIntyre, J. O., Fingleton, B., Wells, K. S., Piston, D. W., Lynch, C. C., Gautam, S., et al. (2004). Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochemical Journal, Pt 3(377), 617–628.
16.
Zurück zum Zitat McIntyre, J. O., & Matrisian, L. M. (2003). Molecular imaging of proteolytic activity in cancer. Journal of Cellular Biochemistry, 6(90), 1087–1097.CrossRef McIntyre, J. O., & Matrisian, L. M. (2003). Molecular imaging of proteolytic activity in cancer. Journal of Cellular Biochemistry, 6(90), 1087–1097.CrossRef
17.
Zurück zum Zitat Tsien, R. Y. (2005). Building and breeding molecules to spy on cells and tumors. FEBS Letters, 4(579), 927–932.CrossRef Tsien, R. Y. (2005). Building and breeding molecules to spy on cells and tumors. FEBS Letters, 4(579), 927–932.CrossRef
18.
Zurück zum Zitat Weissleder, R., Tung, C. H., Mahmood, U., & Bogdanov Jr., A. (1999). In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology, 4(17), 375–378.CrossRef Weissleder, R., Tung, C. H., Mahmood, U., & Bogdanov Jr., A. (1999). In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology, 4(17), 375–378.CrossRef
19.
Zurück zum Zitat Bremer, C., Tung, C. H., & Weissleder, R. (2001). In vivo molecular target assessment of matrix metalloproteinase inhibition. Nature Medicine, 6(7), 743–748.CrossRef Bremer, C., Tung, C. H., & Weissleder, R. (2001). In vivo molecular target assessment of matrix metalloproteinase inhibition. Nature Medicine, 6(7), 743–748.CrossRef
20.
Zurück zum Zitat Shalinsky, D. R., Brekken, J., Zou, H., McDermott, C. D., Forsyth, P., Edwards, D., et al. (1999). Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Annals of the New York Academy of Sciences, 878, 236–270.PubMedCrossRef Shalinsky, D. R., Brekken, J., Zou, H., McDermott, C. D., Forsyth, P., Edwards, D., et al. (1999). Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Annals of the New York Academy of Sciences, 878, 236–270.PubMedCrossRef
21.
Zurück zum Zitat Scherer, R., VanSaun, M., McIntyre, J. O., & Matrisian, L. M. (2008). Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon. Molecular Imaging, (in press). Scherer, R., VanSaun, M., McIntyre, J. O., & Matrisian, L. M. (2008). Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon. Molecular Imaging, (in press).
22.
Zurück zum Zitat Jiang, T., Olson, E. S., Nguyen, Q. T., Roy, M., Jennings, P. A., & Tsien, R. Y. (2004). Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proceedings of the National Academy of Sciences of the United States of America, 51(101), 17867–17872.CrossRef Jiang, T., Olson, E. S., Nguyen, Q. T., Roy, M., Jennings, P. A., & Tsien, R. Y. (2004). Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proceedings of the National Academy of Sciences of the United States of America, 51(101), 17867–17872.CrossRef
23.
Zurück zum Zitat Zheng, G., Chen, J., Stefflova, K., Jarvi, M., Li, H., & Wilson, B. C. (2007). Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proceedings of the National Academy of Sciences of the United States of America, 21(104), 8989–8994.CrossRef Zheng, G., Chen, J., Stefflova, K., Jarvi, M., Li, H., & Wilson, B. C. (2007). Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proceedings of the National Academy of Sciences of the United States of America, 21(104), 8989–8994.CrossRef
24.
Zurück zum Zitat Levin, C. S. (2005). Primer on molecular imaging technology. European Journal of Nuclear Medicine and Molecular Imaging, 32(Suppl 2), S325–S345.PubMedCrossRef Levin, C. S. (2005). Primer on molecular imaging technology. European Journal of Nuclear Medicine and Molecular Imaging, 32(Suppl 2), S325–S345.PubMedCrossRef
25.
Zurück zum Zitat Wigdal, B. B. S., O’Brien, M., Lewis, K., Fan, F., & Wood, K. (2007). A novel bioluminescent platform for p’-requiring proteolytic activity studies. Proceedings of the 5th General Meeting of the International Proteolysis Society, Patras, Greece, p. 108 Wigdal, B. B. S., O’Brien, M., Lewis, K., Fan, F., & Wood, K. (2007). A novel bioluminescent platform for p’-requiring proteolytic activity studies. Proceedings of the 5th General Meeting of the International Proteolysis Society, Patras, Greece, p. 108
26.
Zurück zum Zitat Kubota, K. (2001). From tumor biology to clinical PET: A review of positron emission tomography (PET) in oncology. Annals of Nuclear Medicine, 6(15), 471–486. Kubota, K. (2001). From tumor biology to clinical PET: A review of positron emission tomography (PET) in oncology. Annals of Nuclear Medicine, 6(15), 471–486.
27.
Zurück zum Zitat Brown, P. D. (1999). Clinical studies with matrix metalloproteinase inhibitors. APMIS, 1(107), 174–180. Brown, P. D. (1999). Clinical studies with matrix metalloproteinase inhibitors. APMIS, 1(107), 174–180.
28.
Zurück zum Zitat Zheng, Q. H., Fei, X., Liu, X., Wang, J. Q., Bin, S. H., Mock, B. H., et al. (2002). Synthesis and preliminary biological evaluation of MMP inhibitor radiotracers [11C]methyl-halo-CGS 27023A analogs, new potential PET breast cancer imaging agents. Nuclear Medicine and Biology, 7(29), 761–770.CrossRef Zheng, Q. H., Fei, X., Liu, X., Wang, J. Q., Bin, S. H., Mock, B. H., et al. (2002). Synthesis and preliminary biological evaluation of MMP inhibitor radiotracers [11C]methyl-halo-CGS 27023A analogs, new potential PET breast cancer imaging agents. Nuclear Medicine and Biology, 7(29), 761–770.CrossRef
29.
Zurück zum Zitat Fei, X., Zheng, Q. H., Liu, X., Wang, J. Q., Sun, H. B., Mock, B. H., et al. (2003). Synthesis of radiolabeled biphenylsulfonamide matrix metalloproteinase inhibitors as new potential PET cancer imaging agents. Bioorganic & Medicinal Chemistry Letters, 13(13), 2217–2222.CrossRef Fei, X., Zheng, Q. H., Liu, X., Wang, J. Q., Sun, H. B., Mock, B. H., et al. (2003). Synthesis of radiolabeled biphenylsulfonamide matrix metalloproteinase inhibitors as new potential PET cancer imaging agents. Bioorganic & Medicinal Chemistry Letters, 13(13), 2217–2222.CrossRef
30.
Zurück zum Zitat Zheng, Q. H., Fei, X., DeGrado, T. R., Wang, J. Q., Stone, K. L., Martinez, T. D., et al. (2003). Synthesis, biodistribution and micro-PET imaging of a potential cancer biomarker carbon-11 labeled MMP inhibitor (2R)-2-[[4-(6-fluorohex-1-ynyl)phenyl]sulfonylamino]-3-methylbutyric acid [11C]methyl ester. Nuclear Medicine and Biology, 7(30), 753–760.CrossRef Zheng, Q. H., Fei, X., DeGrado, T. R., Wang, J. Q., Stone, K. L., Martinez, T. D., et al. (2003). Synthesis, biodistribution and micro-PET imaging of a potential cancer biomarker carbon-11 labeled MMP inhibitor (2R)-2-[[4-(6-fluorohex-1-ynyl)phenyl]sulfonylamino]-3-methylbutyric acid [11C]methyl ester. Nuclear Medicine and Biology, 7(30), 753–760.CrossRef
31.
Zurück zum Zitat Furumoto, S., Takashima, K., Kubota, K., Ido, T., Iwata, R., & Fukuda, H. (2003). Tumor detection using 18F-labeled matrix metalloproteinase-2 inhibitor. Nuclear Medicine and Biology, 2(30), 119–125.CrossRef Furumoto, S., Takashima, K., Kubota, K., Ido, T., Iwata, R., & Fukuda, H. (2003). Tumor detection using 18F-labeled matrix metalloproteinase-2 inhibitor. Nuclear Medicine and Biology, 2(30), 119–125.CrossRef
32.
Zurück zum Zitat Kopka, K., Breyholz, H. J., Wagner, S., Law, M. P., Riemann, B., Schroer, S., et al. (2004). Synthesis and preliminary biological evaluation of new radioiodinated MMP inhibitors for imaging MMP activity in vivo. Nuclear Medicine and Biology, 2(31), 257–267.CrossRef Kopka, K., Breyholz, H. J., Wagner, S., Law, M. P., Riemann, B., Schroer, S., et al. (2004). Synthesis and preliminary biological evaluation of new radioiodinated MMP inhibitors for imaging MMP activity in vivo. Nuclear Medicine and Biology, 2(31), 257–267.CrossRef
33.
Zurück zum Zitat Schafers, M., Riemann, B., Kopka, K., Breyholz, H. J., Wagner, S., Schafers, K. P., et al. (2004). Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation, 21(109), 2554–2559.CrossRef Schafers, M., Riemann, B., Kopka, K., Breyholz, H. J., Wagner, S., Schafers, K. P., et al. (2004). Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation, 21(109), 2554–2559.CrossRef
34.
Zurück zum Zitat Oltenfreiter, R., Staelens, L., Kersemans, V., Cornelissen, B., Frankenne, F., Foidart, J. M., et al. (2006). Valine-based biphenylsulphonamide matrix metalloproteinase inhibitors as tumor imaging agents. Applied Radiation and Isotopes, 6(64), 677–685.CrossRef Oltenfreiter, R., Staelens, L., Kersemans, V., Cornelissen, B., Frankenne, F., Foidart, J. M., et al. (2006). Valine-based biphenylsulphonamide matrix metalloproteinase inhibitors as tumor imaging agents. Applied Radiation and Isotopes, 6(64), 677–685.CrossRef
35.
Zurück zum Zitat Oltenfreiter, R., Staelens, L., Labied, S., Kersemans, V., Frankenne, F., Noel, A., et al. (2005). Tryptophane-based biphenylsulfonamide matrix metalloproteinase inhibitors as tumor imaging agents. Cancer Biotherapy & Radiopharmaceuticals, 6(20), 639–647. Oltenfreiter, R., Staelens, L., Labied, S., Kersemans, V., Frankenne, F., Noel, A., et al. (2005). Tryptophane-based biphenylsulfonamide matrix metalloproteinase inhibitors as tumor imaging agents. Cancer Biotherapy & Radiopharmaceuticals, 6(20), 639–647.
36.
Zurück zum Zitat Kulasegaram, R., Giersing, B., Page, C. J., Blower, P. J., Williamson, R. A., Peters, B. S., et al. (2001). In vivo evaluation of 111In-DTPA-N-TIMP-2 in Kaposi sarcoma associated with HIV infection. European Journal of Nuclear Medicine, 6(28), 756–761. Kulasegaram, R., Giersing, B., Page, C. J., Blower, P. J., Williamson, R. A., Peters, B. S., et al. (2001). In vivo evaluation of 111In-DTPA-N-TIMP-2 in Kaposi sarcoma associated with HIV infection. European Journal of Nuclear Medicine, 6(28), 756–761.
37.
Zurück zum Zitat Seiki, M. (1999). Membrane-type matrix metalloproteinases. APMIS, 1(107), 137–143.CrossRef Seiki, M. (1999). Membrane-type matrix metalloproteinases. APMIS, 1(107), 137–143.CrossRef
38.
Zurück zum Zitat Choyke, P. L., Dwyer, A. J., & Knopp, M. V. (2003). Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 5(17), 509–520.CrossRef Choyke, P. L., Dwyer, A. J., & Knopp, M. V. (2003). Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 5(17), 509–520.CrossRef
39.
Zurück zum Zitat Weinmann, H. J., Laniado, M., & Mutzel, W. (1984). Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiological Chemistry and Physics and Medical NMR, 2(16), 167–172. Weinmann, H. J., Laniado, M., & Mutzel, W. (1984). Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiological Chemistry and Physics and Medical NMR, 2(16), 167–172.
40.
Zurück zum Zitat Henderson, E., Sykes, J., Drost, D., Weinmann, H. J., Rutt, B. K., & Lee, T. Y. (2000). Simultaneous MRI measurement of blood flow, blood volume, and capillary permeability in mammary tumors using two different contrast agents. Journal of Magnetic Resonance Imaging, 6(12), 991–1003.CrossRef Henderson, E., Sykes, J., Drost, D., Weinmann, H. J., Rutt, B. K., & Lee, T. Y. (2000). Simultaneous MRI measurement of blood flow, blood volume, and capillary permeability in mammary tumors using two different contrast agents. Journal of Magnetic Resonance Imaging, 6(12), 991–1003.CrossRef
41.
Zurück zum Zitat Ludemann, L., Hamm, B., & Zimmer, C. (2000). Pharmacokinetic analysis of glioma compartments with dynamic Gd-DTPA-enhanced magnetic resonance imaging. Magnetic Resonance Imaging, 10(18), 1201–1214.CrossRef Ludemann, L., Hamm, B., & Zimmer, C. (2000). Pharmacokinetic analysis of glioma compartments with dynamic Gd-DTPA-enhanced magnetic resonance imaging. Magnetic Resonance Imaging, 10(18), 1201–1214.CrossRef
42.
Zurück zum Zitat Fritz-Hansen, T., Rostrup, E., Larsson, H. B., Sondergaard, L., Ring, P., & Henriksen, O. (1996). Measurement of the arterial concentration of Gd-DTPA using MRI: A step toward quantitative perfusion imaging. Magnetic Resonance in Medicine, 2(36), 225–231.CrossRef Fritz-Hansen, T., Rostrup, E., Larsson, H. B., Sondergaard, L., Ring, P., & Henriksen, O. (1996). Measurement of the arterial concentration of Gd-DTPA using MRI: A step toward quantitative perfusion imaging. Magnetic Resonance in Medicine, 2(36), 225–231.CrossRef
43.
Zurück zum Zitat Furman-Haran, E., Margalit, R., Grobgeld, D., & Degani, H. (1996). Dynamic contrast-enhanced magnetic resonance imaging reveals stress-induced angiogenesis in MCF7 human breast tumors. Proceedings of the National Academy of Sciences of the United States of America, 13(93), 6247–6251.CrossRef Furman-Haran, E., Margalit, R., Grobgeld, D., & Degani, H. (1996). Dynamic contrast-enhanced magnetic resonance imaging reveals stress-induced angiogenesis in MCF7 human breast tumors. Proceedings of the National Academy of Sciences of the United States of America, 13(93), 6247–6251.CrossRef
44.
Zurück zum Zitat Gore, J. C., Kennan, R. P., & Atlas, S. W. (1996). Magnetic resonance imaging of the brain and spine. Philadelphia: Lippincott-Raven. Gore, J. C., Kennan, R. P., & Atlas, S. W. (1996). Magnetic resonance imaging of the brain and spine. Philadelphia: Lippincott-Raven.
45.
Zurück zum Zitat Heckl, S., Debus, J., Jenne, J., Pipkorn, R., Waldeck, W., Spring, H., et al. (2002). CNN-Gd(3+) enables cell nucleus molecular imaging of prostate cancer cells: The last 600 nm. Cancer Research, 23(62), 7018–7024. Heckl, S., Debus, J., Jenne, J., Pipkorn, R., Waldeck, W., Spring, H., et al. (2002). CNN-Gd(3+) enables cell nucleus molecular imaging of prostate cancer cells: The last 600 nm. Cancer Research, 23(62), 7018–7024.
46.
Zurück zum Zitat Wiener, E. C., Konda, S., Shadron, A., Brechbiel, M., & Gansow, O. (1997). Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Investigative Radiology, 12(32), 748–754.CrossRef Wiener, E. C., Konda, S., Shadron, A., Brechbiel, M., & Gansow, O. (1997). Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Investigative Radiology, 12(32), 748–754.CrossRef
47.
Zurück zum Zitat Louie, A. Y., Huber, M. M., Ahrens, E. T., Rothbacher, U., Moats, R., Jacobs, R. E., et al. (2000). In vivo visualization of gene expression using magnetic resonance imaging. Nature Biotechnology, 3(18), 321–325. Louie, A. Y., Huber, M. M., Ahrens, E. T., Rothbacher, U., Moats, R., Jacobs, R. E., et al. (2000). In vivo visualization of gene expression using magnetic resonance imaging. Nature Biotechnology, 3(18), 321–325.
48.
Zurück zum Zitat Frullano, L., Tejerina, B., & Meade, T. J. (2006). Synthesis and characterization of a doxorubicin-Gd(III) contrast agent conjugate: A new approach toward prodrug–procontrast complexes. Inorganic Chemistry, 21(45), 8489–8491.CrossRef Frullano, L., Tejerina, B., & Meade, T. J. (2006). Synthesis and characterization of a doxorubicin-Gd(III) contrast agent conjugate: A new approach toward prodrug–procontrast complexes. Inorganic Chemistry, 21(45), 8489–8491.CrossRef
49.
Zurück zum Zitat Lepage, M., Dow, W. C., Melchior, M., You, Y., Fingleton, B., Quarles, C. C., et al. (2007). Non-invasive detection of matrix metalloproteinase activity using a novel MRI contrast agent with a solubility switch. Molecular Imaging, 6(6), 393–403.PubMed Lepage, M., Dow, W. C., Melchior, M., You, Y., Fingleton, B., Quarles, C. C., et al. (2007). Non-invasive detection of matrix metalloproteinase activity using a novel MRI contrast agent with a solubility switch. Molecular Imaging, 6(6), 393–403.PubMed
50.
Zurück zum Zitat Marten, K., Bremer, C., Khazaie, K., Sameni, M., Sloane, B., Tung, C. H., & Weissleder, R. (2002). Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology, 2(122), 406–414.CrossRef Marten, K., Bremer, C., Khazaie, K., Sameni, M., Sloane, B., Tung, C. H., & Weissleder, R. (2002). Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology, 2(122), 406–414.CrossRef
51.
Zurück zum Zitat Funovics, M. A., Alencar, H., Su, H. S., Khazaie, K., Weissleder, R., & Mahmood, U. (2003). Miniaturized multichannel near infrared endoscope for mouse imaging. Molecular Imaging, 4(2), 350–357.CrossRef Funovics, M. A., Alencar, H., Su, H. S., Khazaie, K., Weissleder, R., & Mahmood, U. (2003). Miniaturized multichannel near infrared endoscope for mouse imaging. Molecular Imaging, 4(2), 350–357.CrossRef
52.
Zurück zum Zitat Kawada, S., Suzuki, Y., Hinohara, S., Koide, S., Ono, Y., & Ashikaga, H. (2007). Cancer screening with PET: Advantages and limitations. Rinsho Byori, 7(55), 656–667. Kawada, S., Suzuki, Y., Hinohara, S., Koide, S., Ono, Y., & Ashikaga, H. (2007). Cancer screening with PET: Advantages and limitations. Rinsho Byori, 7(55), 656–667.
53.
Zurück zum Zitat Kelloff, G. J., Hoffman, J. M., Johnson, B., Scher, H. I., Siegel, B. A., Cheng, E. Y., et al. (2005). Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clinical Cancer Research, 8(11), 2785–2808.CrossRef Kelloff, G. J., Hoffman, J. M., Johnson, B., Scher, H. I., Siegel, B. A., Cheng, E. Y., et al. (2005). Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clinical Cancer Research, 8(11), 2785–2808.CrossRef
54.
Zurück zum Zitat Albright, C. F., Graciani, N., Han, W., Yue, E., Stein, R., Lai, Z., et al. (2005). Matrix metalloproteinase-activated doxorubicin prodrugs inhibit HT1080 xenograft growth better than doxorubicin with less toxicity. Molecular Cancer Therapeutics, 5(4), 751–760.CrossRef Albright, C. F., Graciani, N., Han, W., Yue, E., Stein, R., Lai, Z., et al. (2005). Matrix metalloproteinase-activated doxorubicin prodrugs inhibit HT1080 xenograft growth better than doxorubicin with less toxicity. Molecular Cancer Therapeutics, 5(4), 751–760.CrossRef
55.
Zurück zum Zitat Vartak, D. G., & Gemeinhart, R. A. (2007). Matrix metalloproteases: underutilized targets for drug delivery. Journal of Drug Targeting, 1(15), 1–20.CrossRef Vartak, D. G., & Gemeinhart, R. A. (2007). Matrix metalloproteases: underutilized targets for drug delivery. Journal of Drug Targeting, 1(15), 1–20.CrossRef
56.
Zurück zum Zitat Moses, J. E., & Moorhouse, A. D. (2007). The growing applications of click chemistry. Chemical Society Reviews, 8(36), 1249–1262.CrossRef Moses, J. E., & Moorhouse, A. D. (2007). The growing applications of click chemistry. Chemical Society Reviews, 8(36), 1249–1262.CrossRef
57.
Zurück zum Zitat Cosgrove, D. (2006). Ultrasound contrast agents: an overview. European Journal of Radiology, 3(60), 324–330.CrossRef Cosgrove, D. (2006). Ultrasound contrast agents: an overview. European Journal of Radiology, 3(60), 324–330.CrossRef
58.
Zurück zum Zitat Ntziachristos, V., Ripoll, J., Wang, L. V., & Weissleder, R. (2005). Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnology, 3(23), 313–320.CrossRef Ntziachristos, V., Ripoll, J., Wang, L. V., & Weissleder, R. (2005). Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnology, 3(23), 313–320.CrossRef
Metadaten
Titel
Imaging matrix metalloproteinases in cancer
verfasst von
Randy L. Scherer
J. Oliver McIntyre
Lynn M. Matrisian
Publikationsdatum
01.12.2008
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2008
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9152-9

Weitere Artikel der Ausgabe 4/2008

Cancer and Metastasis Reviews 4/2008 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.