Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2008

01.12.2008

Imaging of tumor glucose utilization with positron emission tomography

verfasst von: Andrea Buerkle, Wolfgang A. Weber

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

In recent years, imaging of tumor glucose metabolism with positron emission tomography and fluorodeoxyglucose (FDG-PET) has become a routine test for detection, staging and restaging of malignant lymphomas and many solid tumors. FDG-PET is also increasingly used to monitor the effects of chemotherapy. The success of FDG-PET in oncologic imaging has generated considerable interest in understanding the molecular mechanisms underlying the markedly accelerated glucose use of almost all human cancers. Recent studies have indicated that there may be a close relation between the activation of oncogenic signaling pathways and cellular glucose utilization. For example deregulation of Akt, ras and MYC as well as loss of p53 function have been reported to confer increased glucose metabolic rates in cancer cells. These findings suggest that imaging of tumor glucose utilization may represent a marker for the activity of oncogenic pathways and metabolic changes during therapy may be used as a readout for the effectiveness of drugs targeting these pathways. However, the mechanisms for increased glucose metabolic activity of cancers cells are multifactorial and clinical studies will be necessary to determine in which context imaging of tumor glucose metabolism may be used for treatment monitoring.
Literatur
1.
Zurück zum Zitat Cheson, B. D., Pfistner, B., Juweid, M. E., Gascoyne, R. D., Specht, L., Horning, S. J., et al. (2007). Revised response criteria for malignant lymphoma. Journal of Clinical Oncology, 25, 579–586.PubMedCrossRef Cheson, B. D., Pfistner, B., Juweid, M. E., Gascoyne, R. D., Specht, L., Horning, S. J., et al. (2007). Revised response criteria for malignant lymphoma. Journal of Clinical Oncology, 25, 579–586.PubMedCrossRef
2.
Zurück zum Zitat IMV (2006). 2005/06 PET market summary report. IMV Medical Information Division: Des Plaines. IMV (2006). 2005/06 PET market summary report. IMV Medical Information Division: Des Plaines.
3.
Zurück zum Zitat Warburg, O., Posener, K., & Negelein, E. (1924). Ueber den Stoffwechsel von Tumoren. Biochemische Zeitschrift, 152, 319–344. Warburg, O., Posener, K., & Negelein, E. (1924). Ueber den Stoffwechsel von Tumoren. Biochemische Zeitschrift, 152, 319–344.
4.
Zurück zum Zitat Czernin, J., Allen-Auerbach, M., & Schelbert, H. R. (2007). Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. Journal of Nuclear Medicine, 48(Suppl 1), 78S–88S.PubMed Czernin, J., Allen-Auerbach, M., & Schelbert, H. R. (2007). Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. Journal of Nuclear Medicine, 48(Suppl 1), 78S–88S.PubMed
5.
Zurück zum Zitat Israel, O., & Kuten, A. (2007). Early detection of cancer recurrence: 18F-FDG PET/CT can make a difference in diagnosis and patient care. Journal of Nuclear Medicine, 48(Suppl 1), 28S–35S.PubMed Israel, O., & Kuten, A. (2007). Early detection of cancer recurrence: 18F-FDG PET/CT can make a difference in diagnosis and patient care. Journal of Nuclear Medicine, 48(Suppl 1), 28S–35S.PubMed
6.
Zurück zum Zitat Bunyaviroch, T., & Coleman, R. E. (2006). PET evaluation of lung cancer. Journal of Nuclear Medicine, 47, 451–469.PubMed Bunyaviroch, T., & Coleman, R. E. (2006). PET evaluation of lung cancer. Journal of Nuclear Medicine, 47, 451–469.PubMed
7.
Zurück zum Zitat Seam, P., Juweid, M. E., & Cheson, B. D. (2007). The role of FDG-PET scans in patients with lymphoma. Blood, 110, 3507–3516.PubMedCrossRef Seam, P., Juweid, M. E., & Cheson, B. D. (2007). The role of FDG-PET scans in patients with lymphoma. Blood, 110, 3507–3516.PubMedCrossRef
8.
Zurück zum Zitat Weber, W. A. (2005). Use of PET for monitoring cancer therapy and for predicting outcome. Journal of Nuclear Medicine, 46, 983–995.PubMed Weber, W. A. (2005). Use of PET for monitoring cancer therapy and for predicting outcome. Journal of Nuclear Medicine, 46, 983–995.PubMed
9.
Zurück zum Zitat Rich, P. R. (2003). The molecular machinery of Keilin’s respiratory chain. Biochemical Society Transactions, 31, 1095–1105.PubMedCrossRef Rich, P. R. (2003). The molecular machinery of Keilin’s respiratory chain. Biochemical Society Transactions, 31, 1095–1105.PubMedCrossRef
10.
Zurück zum Zitat Van Schaftingen, E., Jett, M. F., Hue, L., & Hers, H. G. (1981). Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proceedings of the National Academy of Sciences of the United States of America, 78, 3483–3486.PubMedCrossRef Van Schaftingen, E., Jett, M. F., Hue, L., & Hers, H. G. (1981). Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proceedings of the National Academy of Sciences of the United States of America, 78, 3483–3486.PubMedCrossRef
11.
Zurück zum Zitat Telang, S., Yalcinm, A., Clem, A. L., Bucala, R., Lane, A. N., Eaton, J. W., et al. (2006). Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene, 25, 7225–7234.PubMedCrossRef Telang, S., Yalcinm, A., Clem, A. L., Bucala, R., Lane, A. N., Eaton, J. W., et al. (2006). Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene, 25, 7225–7234.PubMedCrossRef
12.
Zurück zum Zitat Huang, S. C. (2000). Anatomy of SUV. Standardized uptake value. Nuclear Medicine and Biology, 27, 643–646.PubMedCrossRef Huang, S. C. (2000). Anatomy of SUV. Standardized uptake value. Nuclear Medicine and Biology, 27, 643–646.PubMedCrossRef
13.
Zurück zum Zitat Weber, W. A., Petersen, V., Schmidt, B., Tyndale-Hines, L., Link, T., Peschel, C., et al. (2003). Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. Journal of Clinical Oncology, 21, 2651–2657.PubMedCrossRef Weber, W. A., Petersen, V., Schmidt, B., Tyndale-Hines, L., Link, T., Peschel, C., et al. (2003). Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. Journal of Clinical Oncology, 21, 2651–2657.PubMedCrossRef
14.
Zurück zum Zitat Vesselle, H., Schmidt, R. A., Pugsley, J. M., Li, M., Kohlmyer, S. G., Vallires, E., et al. (2000). Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clinical Cancer Research, 6, 3837–3844.PubMed Vesselle, H., Schmidt, R. A., Pugsley, J. M., Li, M., Kohlmyer, S. G., Vallires, E., et al. (2000). Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clinical Cancer Research, 6, 3837–3844.PubMed
15.
Zurück zum Zitat Buck, A., Halter, G., Schirrmeister, H., Kotzerke, J., Wurziger, I., Glatting, G., et al. (2003). Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. Journal of Nuclear Medicine, 44, 1432–1434. Buck, A., Halter, G., Schirrmeister, H., Kotzerke, J., Wurziger, I., Glatting, G., et al. (2003). Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. Journal of Nuclear Medicine, 44, 1432–1434.
16.
Zurück zum Zitat van Baardwijk, A., Dooms, C., van Suylen, R. J., Verbeken, E., Hochstenbag, M., Dehing-Oberije, C., et al. (2007). The maximum uptake of (18)F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1alpha and GLUT-1 in non-small cell lung cancer. European Journal of Cancer, 43, 1392–1398.PubMedCrossRef van Baardwijk, A., Dooms, C., van Suylen, R. J., Verbeken, E., Hochstenbag, M., Dehing-Oberije, C., et al. (2007). The maximum uptake of (18)F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1alpha and GLUT-1 in non-small cell lung cancer. European Journal of Cancer, 43, 1392–1398.PubMedCrossRef
17.
Zurück zum Zitat Yap, C. S., Czernin, J., Fishbein, M. C., Cameron, R. B., Schiepers, C., Phelps, M. E., et al. (2006). Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest, 129, 393–401.PubMedCrossRef Yap, C. S., Czernin, J., Fishbein, M. C., Cameron, R. B., Schiepers, C., Phelps, M. E., et al. (2006). Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest, 129, 393–401.PubMedCrossRef
18.
Zurück zum Zitat Di Chiro, G. (1987). Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Investigative Radiology, 22, 360–371.PubMedCrossRef Di Chiro, G. (1987). Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Investigative Radiology, 22, 360–371.PubMedCrossRef
19.
Zurück zum Zitat Folpe, A. L., Lyles, R. H., Sprouse, J. T., Conrad 3rd, E. U., & Eary, J. F. (2000). (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clinical Cancer Research, 6, 1279–1287.PubMed Folpe, A. L., Lyles, R. H., Sprouse, J. T., Conrad 3rd, E. U., & Eary, J. F. (2000). (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clinical Cancer Research, 6, 1279–1287.PubMed
20.
Zurück zum Zitat Kole, A. C., Nieweg, O. E., Hoekstra, H. J., van Horn, J. R., Koops, H. S., & Vaalburg, W. (1998). Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. Journal of Nuclear Medicine, 39, 810–815.PubMed Kole, A. C., Nieweg, O. E., Hoekstra, H. J., van Horn, J. R., Koops, H. S., & Vaalburg, W. (1998). Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. Journal of Nuclear Medicine, 39, 810–815.PubMed
21.
Zurück zum Zitat Fulham, M. J., Melisi, J. W., Nishimiya, J., Dwyer, A. J., & Di Chiro, G. (1993). Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology, 189, 221–225.PubMed Fulham, M. J., Melisi, J. W., Nishimiya, J., Dwyer, A. J., & Di Chiro, G. (1993). Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology, 189, 221–225.PubMed
22.
Zurück zum Zitat Bos, R., van Der Hoeven, J. J., van Der Wall, E., van Der Groep, P., van Diest, P. J., Comans, E. F., et al. (2002). Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. Journal of Clinical Oncology, 20, 379–387.PubMedCrossRef Bos, R., van Der Hoeven, J. J., van Der Wall, E., van Der Groep, P., van Diest, P. J., Comans, E. F., et al. (2002). Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. Journal of Clinical Oncology, 20, 379–387.PubMedCrossRef
23.
Zurück zum Zitat Westerterp, M., Sloof, G. W., Hoekstra, O. S., Ten Kate, F. J., Meijer, G. A., Reitsma, J. B., et al. (2008). (18)FDG uptake in oesophageal adenocarcinoma: linking biology and outcome. Journal of Cancer Research and Clinical Oncology, 134, 227–236.PubMedCrossRef Westerterp, M., Sloof, G. W., Hoekstra, O. S., Ten Kate, F. J., Meijer, G. A., Reitsma, J. B., et al. (2008). (18)FDG uptake in oesophageal adenocarcinoma: linking biology and outcome. Journal of Cancer Research and Clinical Oncology, 134, 227–236.PubMedCrossRef
24.
Zurück zum Zitat Yen, T. C., See, L. C., Lai, C. H., Yah-Huei, C. W., Ng, K. K., Ma, S. Y., et al. (2004). 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. Journal of Nuclear Medicine, 45, 22–29.PubMed Yen, T. C., See, L. C., Lai, C. H., Yah-Huei, C. W., Ng, K. K., Ma, S. Y., et al. (2004). 18F-FDG uptake in squamous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. Journal of Nuclear Medicine, 45, 22–29.PubMed
25.
Zurück zum Zitat Tohma, T., Okazumi, S., Makino, H., Cho, A., Mochiduki, R., Shuto, K., et al. (2005). Relationship between glucose transporter, hexokinase and FDG-PET in esophageal cancer. Hepato-Gastroenterology, 52, 486–490.PubMed Tohma, T., Okazumi, S., Makino, H., Cho, A., Mochiduki, R., Shuto, K., et al. (2005). Relationship between glucose transporter, hexokinase and FDG-PET in esophageal cancer. Hepato-Gastroenterology, 52, 486–490.PubMed
26.
Zurück zum Zitat Yamada, K., Brink, I., Bisse, E., Epting, T., & Engelhardt, R. (2005). Factors influencing [F-18] 2-fluoro-2-deoxy-d-glucose (F-18 FDG) uptake in melanoma cells: the role of proliferation rate, viability, glucose transporter expression and hexokinase activity. Journal of Dermatology, 32, 316–334.PubMed Yamada, K., Brink, I., Bisse, E., Epting, T., & Engelhardt, R. (2005). Factors influencing [F-18] 2-fluoro-2-deoxy-d-glucose (F-18 FDG) uptake in melanoma cells: the role of proliferation rate, viability, glucose transporter expression and hexokinase activity. Journal of Dermatology, 32, 316–334.PubMed
27.
Zurück zum Zitat Mamede, M., Higashi, T., Kitaichi, M., Ishizu, K., Ishimori, T., Nakamoto, Y., et al. (2005). [18F]FDG uptake and PCNA, glut-1, and hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia, 7, 369–379.PubMedCrossRef Mamede, M., Higashi, T., Kitaichi, M., Ishizu, K., Ishimori, T., Nakamoto, Y., et al. (2005). [18F]FDG uptake and PCNA, glut-1, and hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia, 7, 369–379.PubMedCrossRef
28.
Zurück zum Zitat de Geus-Oei, L. F., van Krieken, J. H., Aliredjo, R. P., Krabbe, P. F., Frielink, C., Verhagen, A. F., et al. (2007). Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer, 55, 79–87.PubMedCrossRef de Geus-Oei, L. F., van Krieken, J. H., Aliredjo, R. P., Krabbe, P. F., Frielink, C., Verhagen, A. F., et al. (2007). Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer, 55, 79–87.PubMedCrossRef
29.
Zurück zum Zitat Aloj, L., Caraco, C., Jagoda, E., Eckelman, W. C., & Neumann, R. D. (1999). Glut-1 and hexokinase expression: relationship with 2-fluoro-2-deoxy-D-glucose uptake in A431 and T47D cells in culture. Cancer Research, 59, 4709–4714.PubMed Aloj, L., Caraco, C., Jagoda, E., Eckelman, W. C., & Neumann, R. D. (1999). Glut-1 and hexokinase expression: relationship with 2-fluoro-2-deoxy-D-glucose uptake in A431 and T47D cells in culture. Cancer Research, 59, 4709–4714.PubMed
30.
Zurück zum Zitat Gatenby, R. A., & Gillies, R. J. (2008). A microenvironmental model of carcinogenesis. Nature Reviews Cancer, 8, 56–61.PubMedCrossRef Gatenby, R. A., & Gillies, R. J. (2008). A microenvironmental model of carcinogenesis. Nature Reviews Cancer, 8, 56–61.PubMedCrossRef
31.
Zurück zum Zitat Kim, J. W., Gao, P., & Dang, C. V. (2007). Effects of hypoxia on tumor metabolism. Cancer and Metastasis Reviews, 26, 291–298.PubMedCrossRef Kim, J. W., Gao, P., & Dang, C. V. (2007). Effects of hypoxia on tumor metabolism. Cancer and Metastasis Reviews, 26, 291–298.PubMedCrossRef
32.
Zurück zum Zitat Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K. I., et al. (2007). HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 11, 407–420.PubMedCrossRef Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K. I., et al. (2007). HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell, 11, 407–420.PubMedCrossRef
33.
Zurück zum Zitat Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3, 177–185.PubMedCrossRef Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metabolism, 3, 177–185.PubMedCrossRef
34.
Zurück zum Zitat Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of Biological Chemistry, 269, 23757–23763.PubMed Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of Biological Chemistry, 269, 23757–23763.PubMed
35.
Zurück zum Zitat Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., et al. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394, 485–490.PubMedCrossRef Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., et al. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394, 485–490.PubMedCrossRef
36.
Zurück zum Zitat Riddle, S. R., Ahmad, A., Ahmad, S., Deeb, S. S., Malkki, M., Schneider, B. K., et al. (2000). Hypoxia induces hexokinase II gene expression in human lung cell line A549. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278, L407–L416.PubMed Riddle, S. R., Ahmad, A., Ahmad, S., Deeb, S. S., Malkki, M., Schneider, B. K., et al. (2000). Hypoxia induces hexokinase II gene expression in human lung cell line A549. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278, L407–L416.PubMed
37.
Zurück zum Zitat Burgman, P., Odonoghue, J. A., Humm, J. L., & Ling, C. C. (2001). Hypoxia-induced increase in FDG uptake in MCF7 cells. Journal of Nuclear Medicine, 42, 170–175.PubMed Burgman, P., Odonoghue, J. A., Humm, J. L., & Ling, C. C. (2001). Hypoxia-induced increase in FDG uptake in MCF7 cells. Journal of Nuclear Medicine, 42, 170–175.PubMed
38.
Zurück zum Zitat Clavo, A. C., Brown, R. S., & Wahl, R. L. (1995). Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. Journal of Nuclear Medicine, 36, 1625–1632.PubMed Clavo, A. C., Brown, R. S., & Wahl, R. L. (1995). Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. Journal of Nuclear Medicine, 36, 1625–1632.PubMed
39.
Zurück zum Zitat Cherk, M. H., Foo, S. S., Poon, A. M., Knight, S. R., Murone, C., Papenfuss, A. T., et al. (2006). Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-fluoromisonidazole and 18F-FDG PET. Journal of Nuclear Medicine, 47, 1921–1926.PubMed Cherk, M. H., Foo, S. S., Poon, A. M., Knight, S. R., Murone, C., Papenfuss, A. T., et al. (2006). Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-fluoromisonidazole and 18F-FDG PET. Journal of Nuclear Medicine, 47, 1921–1926.PubMed
40.
Zurück zum Zitat Rajendran, J. G., Mankoff, D. A., O'Sullivan, F., Peterson, L. M., Schwartz, D. L., Conrad, E. U., et al. (2004). Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clinical Cancer Research, 10, 2245–2252.PubMedCrossRef Rajendran, J. G., Mankoff, D. A., O'Sullivan, F., Peterson, L. M., Schwartz, D. L., Conrad, E. U., et al. (2004). Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clinical Cancer Research, 10, 2245–2252.PubMedCrossRef
41.
Zurück zum Zitat Rajendran, J. G., Wilson, D. C., Conrad, E. U., Peterson, L. M., Bruckner, J. D., Rasey, J. S., et al. (2003). [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. European Journal of Nuclear Medicine and Molecular Imaging, 30, 695–704.PubMed Rajendran, J. G., Wilson, D. C., Conrad, E. U., Peterson, L. M., Bruckner, J. D., Rasey, J. S., et al. (2003). [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. European Journal of Nuclear Medicine and Molecular Imaging, 30, 695–704.PubMed
42.
Zurück zum Zitat Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., et al. (1997). c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proceedings of the National Academy of Sciences of the United States of America, 94, 6658–6663.PubMedCrossRef Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., et al. (1997). c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proceedings of the National Academy of Sciences of the United States of America, 94, 6658–6663.PubMedCrossRef
43.
Zurück zum Zitat Kim, J. W., & Dang, C. V. (2006). Cancer’s molecular sweet tooth and the Warburg effect. Cancer Research, 66, 8927–8930.PubMedCrossRef Kim, J. W., & Dang, C. V. (2006). Cancer’s molecular sweet tooth and the Warburg effect. Cancer Research, 66, 8927–8930.PubMedCrossRef
44.
Zurück zum Zitat Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3, 721–732.PubMedCrossRef Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3, 721–732.PubMedCrossRef
45.
Zurück zum Zitat Ravi, R., Mookerjee, B., Bhujwalla, Z. M., Sutter, C. H., Artemov, D., Zeng, Q., et al. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes and Development, 14, 34–44.PubMed Ravi, R., Mookerjee, B., Bhujwalla, Z. M., Sutter, C. H., Artemov, D., Zeng, Q., et al. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes and Development, 14, 34–44.PubMed
46.
Zurück zum Zitat Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., et al. (2000). Loss of PTEN facilitates HIF-1-mediated gene expression. Genes and Development, 14, 391–396.PubMed Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., Chen, E., et al. (2000). Loss of PTEN facilitates HIF-1-mediated gene expression. Genes and Development, 14, 391–396.PubMed
47.
Zurück zum Zitat Zhong, H., Chiles, K., Feldser, D., Laughner, E., Hanrahan, C., Georgescu, M. M., et al. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Research, 60, 1541–1545.PubMed Zhong, H., Chiles, K., Feldser, D., Laughner, E., Hanrahan, C., Georgescu, M. M., et al. (2000). Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Research, 60, 1541–1545.PubMed
48.
Zurück zum Zitat Jiang, B. H., Agani, F., Passaniti, A., & Semenza, G. L. (1997). V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Research, 57, 5328–5335.PubMed Jiang, B. H., Agani, F., Passaniti, A., & Semenza, G. L. (1997). V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Research, 57, 5328–5335.PubMed
49.
Zurück zum Zitat Fukuda, R., Hirota, K., Fan, F., Jung, Y. D., Ellis, L. M., & Semenza, G. L. (2002). Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. Journal of Biological Chemistry, 277, 38205–38211.PubMedCrossRef Fukuda, R., Hirota, K., Fan, F., Jung, Y. D., Ellis, L. M., & Semenza, G. L. (2002). Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. Journal of Biological Chemistry, 277, 38205–38211.PubMedCrossRef
50.
Zurück zum Zitat Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C., & Semenza, G. L. (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Molecular and Cellular Biology, 21, 3995–4004.PubMedCrossRef Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C., & Semenza, G. L. (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Molecular and Cellular Biology, 21, 3995–4004.PubMedCrossRef
51.
Zurück zum Zitat Liu, X. H., Kirschenbaum, A., Lu, M., Yao, S., Dosoretz, A., Holland, J. F., et al. (2002). Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. Journal of Biological Chemistry, 277, 50081–50086.PubMedCrossRef Liu, X. H., Kirschenbaum, A., Lu, M., Yao, S., Dosoretz, A., Holland, J. F., et al. (2002). Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. Journal of Biological Chemistry, 277, 50081–50086.PubMedCrossRef
52.
Zurück zum Zitat Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F., & Maity, A. (2001). Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. Journal of Biological Chemistry, 276, 9519–9525.PubMedCrossRef Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F., & Maity, A. (2001). Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. Journal of Biological Chemistry, 276, 9519–9525.PubMedCrossRef
53.
Zurück zum Zitat Blum, R., Jacob-Hirsch, J., Amariglio, N., Rechavi, G., & Kloog, Y. (2005). Ras inhibition in glioblastoma downregulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Research, 65, 999–1006.PubMed Blum, R., Jacob-Hirsch, J., Amariglio, N., Rechavi, G., & Kloog, Y. (2005). Ras inhibition in glioblastoma downregulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Research, 65, 999–1006.PubMed
54.
Zurück zum Zitat Chesney, J. (2006). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Current Opinion in Clinical Nutrition and Metabolic Care, 9, 535–539.PubMedCrossRef Chesney, J. (2006). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Current Opinion in Clinical Nutrition and Metabolic Care, 9, 535–539.PubMedCrossRef
55.
Zurück zum Zitat Zdychova, J., & Komers, R. (2005). Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiological Research, 54, 1–16.PubMed Zdychova, J., & Komers, R. (2005). Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiological Research, 54, 1–16.PubMed
56.
Zurück zum Zitat Thompson, J. E., & Thompson, C. B. (2004). Putting the rap on Akt. Journal of Clinical Oncology, 22, 4217–4226.PubMedCrossRef Thompson, J. E., & Thompson, C. B. (2004). Putting the rap on Akt. Journal of Clinical Oncology, 22, 4217–4226.PubMedCrossRef
57.
Zurück zum Zitat Plas, D. R., & Thompson, C. B. (2005). Akt-dependent transformation: there is more to growth than just surviving. Oncogene, 24, 7435–7442.PubMedCrossRef Plas, D. R., & Thompson, C. B. (2005). Akt-dependent transformation: there is more to growth than just surviving. Oncogene, 24, 7435–7442.PubMedCrossRef
58.
Zurück zum Zitat Majewski, N., Nogueira, V., Bhaskar, P., Coy, P. E., Skeen, J. E., Gottlob, K., et al. (2004). Hexokinase–mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Molecular Cell, 16, 819–830.PubMedCrossRef Majewski, N., Nogueira, V., Bhaskar, P., Coy, P. E., Skeen, J. E., Gottlob, K., et al. (2004). Hexokinase–mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Molecular Cell, 16, 819–830.PubMedCrossRef
59.
Zurück zum Zitat Pastorino, J. G., Hoek, J. B., & Shulga, N. (2005). Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Research, 65, 10545–10554.PubMedCrossRef Pastorino, J. G., Hoek, J. B., & Shulga, N. (2005). Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Research, 65, 10545–10554.PubMedCrossRef
60.
Zurück zum Zitat Elstrom, R. L., Bauer, D. E., Buzzai, M., Karnauskas, R., Harris, M. H., Plas, D. R., et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Research, 64, 3892–3899.PubMedCrossRef Elstrom, R. L., Bauer, D. E., Buzzai, M., Karnauskas, R., Harris, M. H., Plas, D. R., et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Research, 64, 3892–3899.PubMedCrossRef
61.
Zurück zum Zitat Majumder, P. K., Febbo, P. G., Bikoff, R., Berger, R., Xue, Q., McMahon, L. M., et al. (2004). mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Medicine, 10, 594–601.PubMedCrossRef Majumder, P. K., Febbo, P. G., Bikoff, R., Berger, R., Xue, Q., McMahon, L. M., et al. (2004). mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Medicine, 10, 594–601.PubMedCrossRef
62.
Zurück zum Zitat Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., et al. (2006). p53 regulates mitochondrial respiration. Science, 312, 1650–1653.PubMedCrossRef Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., et al. (2006). p53 regulates mitochondrial respiration. Science, 312, 1650–1653.PubMedCrossRef
63.
Zurück zum Zitat Kondoh, H., Lleonart, M. E., Gil, J., Wang, J., Degan, P., Peters, G., et al. (2005). Glycolytic enzymes can modulate cellular life span. Cancer Research, 65, 177–185.PubMed Kondoh, H., Lleonart, M. E., Gil, J., Wang, J., Degan, P., Peters, G., et al. (2005). Glycolytic enzymes can modulate cellular life span. Cancer Research, 65, 177–185.PubMed
64.
Zurück zum Zitat Levine, A. J., Feng, Z., Mak, T. W., You, H., & Jin, S. (2006). Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes and Development, 20, 267–275.PubMedCrossRef Levine, A. J., Feng, Z., Mak, T. W., You, H., & Jin, S. (2006). Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes and Development, 20, 267–275.PubMedCrossRef
65.
Zurück zum Zitat Smith, T. A., Sharma, R. I., Thompson, A. M., & Paulin, F. E. (2006). Tumor 18F-FDG incorporation is enhanced by attenuation of P53 function in breast cancer cells in vitro. Journal of Nuclear Medicine, 47, 1525–1530.PubMed Smith, T. A., Sharma, R. I., Thompson, A. M., & Paulin, F. E. (2006). Tumor 18F-FDG incorporation is enhanced by attenuation of P53 function in breast cancer cells in vitro. Journal of Nuclear Medicine, 47, 1525–1530.PubMed
66.
Zurück zum Zitat Riedl, C. C., Akhurst, T., Larson, S., Stanziale, S. F., Tuorto, S., Bhargava, A., et al. (2007). 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predicts mortality for patients after liver resection for colorectal metastases. Journal of Nuclear Medicine, 48, 771–775.PubMedCrossRef Riedl, C. C., Akhurst, T., Larson, S., Stanziale, S. F., Tuorto, S., Bhargava, A., et al. (2007). 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predicts mortality for patients after liver resection for colorectal metastases. Journal of Nuclear Medicine, 48, 771–775.PubMedCrossRef
67.
Zurück zum Zitat Gottlieb, E., & Tomlinson, I. P. (2005). Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Reviews Cancer, 5, 857–866.PubMedCrossRef Gottlieb, E., & Tomlinson, I. P. (2005). Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Reviews Cancer, 5, 857–866.PubMedCrossRef
68.
Zurück zum Zitat Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., et al. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 287, 848–851.PubMedCrossRef Baysal, B. E., Ferrell, R. E., Willett-Brozick, J. E., Lawrence, E. C., Myssiorek, D., Bosch, A., et al. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 287, 848–851.PubMedCrossRef
69.
Zurück zum Zitat Niemann, S., & Muller, U. (2000). Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature Genetics, 26, 268–270.PubMedCrossRef Niemann, S., & Muller, U. (2000). Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature Genetics, 26, 268–270.PubMedCrossRef
70.
Zurück zum Zitat Tomlinson, I. P., Alam, N. A., Rowan, A. J., Barclay, E., Jaeger, E. E., Kelsell, D., et al. (2002). Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genetics, 30, 406–410.PubMedCrossRef Tomlinson, I. P., Alam, N. A., Rowan, A. J., Barclay, E., Jaeger, E. E., Kelsell, D., et al. (2002). Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genetics, 30, 406–410.PubMedCrossRef
71.
Zurück zum Zitat Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., et al. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7, 77–85.PubMedCrossRef Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., et al. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7, 77–85.PubMedCrossRef
72.
Zurück zum Zitat Bonnet, S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., et al. (2007). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 11, 37–51.PubMedCrossRef Bonnet, S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., et al. (2007). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 11, 37–51.PubMedCrossRef
73.
Zurück zum Zitat Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9, 425–434.PubMedCrossRef Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9, 425–434.PubMedCrossRef
74.
Zurück zum Zitat Thomas, G. V., Tran, C., Mellinghoff, I. K., Welsbie, D. S., Chan, E., Fueger, B., et al. (2006). Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nature Medicine, 12, 122–127.PubMedCrossRef Thomas, G. V., Tran, C., Mellinghoff, I. K., Welsbie, D. S., Chan, E., Fueger, B., et al. (2006). Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nature Medicine, 12, 122–127.PubMedCrossRef
75.
Zurück zum Zitat Majhail, N. S., Urbain, J. L., Albani, J. M., Kanvinde, M. H., Rice, T. W., Novick, A. C., et al. (2003). F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. Journal of Clinical Oncology, 21, 3995–4000.PubMedCrossRef Majhail, N. S., Urbain, J. L., Albani, J. M., Kanvinde, M. H., Rice, T. W., Novick, A. C., et al. (2003). F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. Journal of Clinical Oncology, 21, 3995–4000.PubMedCrossRef
76.
Zurück zum Zitat Van den Abbeele, A. D., & Badawi, R. D. (2002). Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs). European Journal of Cancer, 38(Suppl 5), S60–S65.PubMed Van den Abbeele, A. D., & Badawi, R. D. (2002). Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs). European Journal of Cancer, 38(Suppl 5), S60–S65.PubMed
77.
Zurück zum Zitat Stroobants, S., Goeminne, J., Seegers, M., Dimitrijevic, S., Dupont, P., Nuyts, J., et al. (2003). 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). European Journal of Cancer, 39, 2012–2020.PubMedCrossRef Stroobants, S., Goeminne, J., Seegers, M., Dimitrijevic, S., Dupont, P., Nuyts, J., et al. (2003). 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). European Journal of Cancer, 39, 2012–2020.PubMedCrossRef
78.
Zurück zum Zitat Cullinane, C., Dorow, D. S., Kansara, M., Conus, N., Binns, D., Hicks, R. J., et al. (2005). An in vivo tumor model exploiting metabolic response as a biomarker for targeted drug development. Cancer Research, 65, 9633–9636.PubMedCrossRef Cullinane, C., Dorow, D. S., Kansara, M., Conus, N., Binns, D., Hicks, R. J., et al. (2005). An in vivo tumor model exploiting metabolic response as a biomarker for targeted drug development. Cancer Research, 65, 9633–9636.PubMedCrossRef
79.
Zurück zum Zitat Su, H., Bodenstein, C., Dumont, R. A., Seimbille, Y., Dubinett, S., Phelps, M. E., et al. (2006). Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clinical Cancer Research, 12, 5659–5667.PubMedCrossRef Su, H., Bodenstein, C., Dumont, R. A., Seimbille, Y., Dubinett, S., Phelps, M. E., et al. (2006). Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clinical Cancer Research, 12, 5659–5667.PubMedCrossRef
80.
Zurück zum Zitat Gatenby, R. A., & Gillies, R. J. (2007). Glycolysis in cancer: a potential target for therapy. International Journal of Biochemistry and Cell Biology, 39, 1358–1366.PubMedCrossRef Gatenby, R. A., & Gillies, R. J. (2007). Glycolysis in cancer: a potential target for therapy. International Journal of Biochemistry and Cell Biology, 39, 1358–1366.PubMedCrossRef
81.
Metadaten
Titel
Imaging of tumor glucose utilization with positron emission tomography
verfasst von
Andrea Buerkle
Wolfgang A. Weber
Publikationsdatum
01.12.2008
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2008
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9151-x

Weitere Artikel der Ausgabe 4/2008

Cancer and Metastasis Reviews 4/2008 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.