Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2008

01.12.2008

The role of DNA synthesis imaging in cancer in the era of targeted therapeutics

verfasst von: Sridhar Nimmagadda, Anthony F. Shields

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

Non-specific targets such as DNA and microtubules have been the mainstay of cancer therapeutics and the most effective clinical agents until a decade ago. Advances in genetics, molecular and cellular biology over the past decade led to the development of a new generation of agents that are far more specific and effective. In contrast to progress seen with therapeutic agents, general monitoring targets such as proliferation imaging are just gaining momentum and targeted imaging is still in its infancy. In these paradoxical times, this review assesses the role of proliferation imaging in monitoring the efficacy of targeted therapeutics.
Literatur
1.
Zurück zum Zitat Laverman, P., Boerman, O. C., Corstens, F. H., & Oyen, W. J. (2002). Fluorinated amino acids for tumour imaging with positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 29, 681–690.PubMed Laverman, P., Boerman, O. C., Corstens, F. H., & Oyen, W. J. (2002). Fluorinated amino acids for tumour imaging with positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 29, 681–690.PubMed
2.
Zurück zum Zitat Yoshimoto, M., Waki, A., Obata, A., Furukawa, T., Yonekura, Y., & Fujibayashi, Y. (2004). Radiolabeled choline as a proliferation marker: comparison with radiolabeled acetate. Nuclear Medicine and Biology, 31, 859–865.PubMed Yoshimoto, M., Waki, A., Obata, A., Furukawa, T., Yonekura, Y., & Fujibayashi, Y. (2004). Radiolabeled choline as a proliferation marker: comparison with radiolabeled acetate. Nuclear Medicine and Biology, 31, 859–865.PubMed
3.
Zurück zum Zitat Mankoff, D. A., Shields, A. F., & Krohn, K. A. (2005). PET imaging of cellular proliferation. Radiologic Clinics of North America, 43, 153–167.PubMed Mankoff, D. A., Shields, A. F., & Krohn, K. A. (2005). PET imaging of cellular proliferation. Radiologic Clinics of North America, 43, 153–167.PubMed
4.
Zurück zum Zitat Kenny, L. M., Aboagye, E. O., & Price, P. M. (2004). Positron emission tomography imaging of cell proliferation in oncology. Clinical Oncology (Royal College of Radiologists (Great Britain)), 16, 176–185. Kenny, L. M., Aboagye, E. O., & Price, P. M. (2004). Positron emission tomography imaging of cell proliferation in oncology. Clinical Oncology (Royal College of Radiologists (Great Britain)), 16, 176–185.
5.
Zurück zum Zitat Christman, D., Crawford, E. J., Friedkin, M., & Wolf, A. P. (1972). Detection of DNA synthesis in intact organisms with positron-emitting (11C-methyl)thymidine. Proceedings of the National Academy of Sciences of the United States of America, 69, 988–992.PubMed Christman, D., Crawford, E. J., Friedkin, M., & Wolf, A. P. (1972). Detection of DNA synthesis in intact organisms with positron-emitting (11C-methyl)thymidine. Proceedings of the National Academy of Sciences of the United States of America, 69, 988–992.PubMed
6.
Zurück zum Zitat Shields, A. F., Coonrod, D. V., Quackenbush, R. C., & Crowley, J. J. (1987). Cellular sources of thymidine nucleotides: Studies for PET. Journal of Nuclear Medicine, 28, 1435–1440.PubMed Shields, A. F., Coonrod, D. V., Quackenbush, R. C., & Crowley, J. J. (1987). Cellular sources of thymidine nucleotides: Studies for PET. Journal of Nuclear Medicine, 28, 1435–1440.PubMed
7.
Zurück zum Zitat Quackenbush, R. C., & Shields, A. F. (1988). Local Re-utilization of thymidine in normal mouse tissues as measured with iododeoxyuridine. Cell and Tissue Kinetics, 21, 381–387.PubMed Quackenbush, R. C., & Shields, A. F. (1988). Local Re-utilization of thymidine in normal mouse tissues as measured with iododeoxyuridine. Cell and Tissue Kinetics, 21, 381–387.PubMed
8.
Zurück zum Zitat Shields, A. F., Lim, K., Grierson, J., Link, J., & Krohn, K. A. (1990). Utilization of labeled thymidine in DNA synthesis: studies for PET. Journal of Nuclear Medicine, 31, 337–342.PubMed Shields, A. F., Lim, K., Grierson, J., Link, J., & Krohn, K. A. (1990). Utilization of labeled thymidine in DNA synthesis: studies for PET. Journal of Nuclear Medicine, 31, 337–342.PubMed
9.
Zurück zum Zitat Adler, R., & McAuslan, B. R. (1974). Expression of thymidine kinase variants is a function of the replicative state of cells. Cell, 2, 113–117.PubMed Adler, R., & McAuslan, B. R. (1974). Expression of thymidine kinase variants is a function of the replicative state of cells. Cell, 2, 113–117.PubMed
10.
Zurück zum Zitat Bello, L. J. (1974). Regulation of thymidine kinase synthesis in human cells. Experimental Cell Research, 89, 263–274.PubMed Bello, L. J. (1974). Regulation of thymidine kinase synthesis in human cells. Experimental Cell Research, 89, 263–274.PubMed
11.
Zurück zum Zitat Johnson, L. F., Rao, L. G., & Muench, A. J. (1982). Regulation of thymidine kinase enzyme level in serum-stimulated mouse 3T6 fibroblasts. Experimental Cell Research, 138, 79–85.PubMed Johnson, L. F., Rao, L. G., & Muench, A. J. (1982). Regulation of thymidine kinase enzyme level in serum-stimulated mouse 3T6 fibroblasts. Experimental Cell Research, 138, 79–85.PubMed
12.
Zurück zum Zitat Sherley, J. L., & Kelly, T. J. (1988). Human cytosolic thymidine kinase. Purification and physical characterization of the enzyme from HeLa cells. Journal of Biological Chemistry, 263, 375–382.PubMed Sherley, J. L., & Kelly, T. J. (1988). Human cytosolic thymidine kinase. Purification and physical characterization of the enzyme from HeLa cells. Journal of Biological Chemistry, 263, 375–382.PubMed
13.
Zurück zum Zitat Broet, P., Romain, S., Daver, A., Ricolleau, G., Quillien, V., Rallet, A., et al. (2001). Thymidine kinase as a proliferative marker: Clinical relevance in 1,692 primary breast cancer patients. Journal of Clinical Oncology, 19, 2778–2787.PubMed Broet, P., Romain, S., Daver, A., Ricolleau, G., Quillien, V., Rallet, A., et al. (2001). Thymidine kinase as a proliferative marker: Clinical relevance in 1,692 primary breast cancer patients. Journal of Clinical Oncology, 19, 2778–2787.PubMed
14.
Zurück zum Zitat Hallek, M., Wanders, L., Strohmeyer, S., & Emmerich, B. (1992). Thymidine kinase: A tumor marker with prognostic value for non-Hodgkin’s lymphoma and a broad range of potential clinical applications. Annals of Hematology, 65, 1–5.PubMed Hallek, M., Wanders, L., Strohmeyer, S., & Emmerich, B. (1992). Thymidine kinase: A tumor marker with prognostic value for non-Hodgkin’s lymphoma and a broad range of potential clinical applications. Annals of Hematology, 65, 1–5.PubMed
15.
Zurück zum Zitat Svobodova, S., Topolcan, O., Holubec, L., Treska, V., Sutnar, A., Rupert, K., et al. (2007). Prognostic importance of thymidine kinase in colorectal and breast cancer. Anticancer Research, 27, 1907–1909.PubMed Svobodova, S., Topolcan, O., Holubec, L., Treska, V., Sutnar, A., Rupert, K., et al. (2007). Prognostic importance of thymidine kinase in colorectal and breast cancer. Anticancer Research, 27, 1907–1909.PubMed
16.
Zurück zum Zitat Romain, S., Christensen, I. J., Chinot, O., Balslev, I., Rose, C., Martin, P. -M., et al. (1995). Prognostic value of cytosolic thymidine kinase activity as a marker of proliferation in breast cancer. International Journal of Cancer, 61, 7–12. Romain, S., Christensen, I. J., Chinot, O., Balslev, I., Rose, C., Martin, P. -M., et al. (1995). Prognostic value of cytosolic thymidine kinase activity as a marker of proliferation in breast cancer. International Journal of Cancer, 61, 7–12.
17.
Zurück zum Zitat Dou, Q. P., Zhao, S., Levin, A. H., Wang, J., Helin, K., & Pardee, A. B. (1994). G1/S-regulated E2F-containing protein complexes bind to the mouse thymidine kinase gene promoter. Journal of Biological Chemistry, 269, 1306–1313.PubMed Dou, Q. P., Zhao, S., Levin, A. H., Wang, J., Helin, K., & Pardee, A. B. (1994). G1/S-regulated E2F-containing protein complexes bind to the mouse thymidine kinase gene promoter. Journal of Biological Chemistry, 269, 1306–1313.PubMed
18.
Zurück zum Zitat Shields, A., Grierson, J., Dohmen, B., Machulla, H. -J., Stayanoff, J., Lawhorn-Crews, J., et al. (1998). Imaging proliferation in vivo with [18F-]FLT and positron emission tomography. Nature Medicine, 4, 1334–1336.PubMed Shields, A., Grierson, J., Dohmen, B., Machulla, H. -J., Stayanoff, J., Lawhorn-Crews, J., et al. (1998). Imaging proliferation in vivo with [18F-]FLT and positron emission tomography. Nature Medicine, 4, 1334–1336.PubMed
19.
Zurück zum Zitat Carreras, C. W., & Santi, D. V. (1995). The catalytic mechanism and structure of thymidylate synthase. Annual Reviews of Biochemical, 64, 721–762. Carreras, C. W., & Santi, D. V. (1995). The catalytic mechanism and structure of thymidylate synthase. Annual Reviews of Biochemical, 64, 721–762.
20.
Zurück zum Zitat Peters, G. J., Backus, H. H., Freemantle, S., van Triest, B., Codacci-Pisanelli, G., van der Wilt, C. L., et al. (2002). Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochimica et Biophysica Acta, 1587, 194–205.PubMed Peters, G. J., Backus, H. H., Freemantle, S., van Triest, B., Codacci-Pisanelli, G., van der Wilt, C. L., et al. (2002). Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochimica et Biophysica Acta, 1587, 194–205.PubMed
21.
Zurück zum Zitat van Triest, B., Pinedo, H. M., van Hensbergen, Y., Smid, K., Telleman, F., Schoenmakers, P. S., et al. (1999). Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines. Clinical Cancer Research, 5, 643–654.PubMed van Triest, B., Pinedo, H. M., van Hensbergen, Y., Smid, K., Telleman, F., Schoenmakers, P. S., et al. (1999). Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines. Clinical Cancer Research, 5, 643–654.PubMed
22.
Zurück zum Zitat Pestalozzi, B. C., Peterson, H. F., Gelber, R. D., Goldhirsch, A., Gusterson, B. A., Trihia, H., et al. (1997). Prognostic importance of thymidylate synthase expression in early breast cancer. Journal of Clinical Oncology, 15, 1923–1931.PubMed Pestalozzi, B. C., Peterson, H. F., Gelber, R. D., Goldhirsch, A., Gusterson, B. A., Trihia, H., et al. (1997). Prognostic importance of thymidylate synthase expression in early breast cancer. Journal of Clinical Oncology, 15, 1923–1931.PubMed
23.
Zurück zum Zitat Johnston, P. G., Lenz, H. J., Leichman, C. G., Danenberg, K. D., Allegra, C. J., Danenberg, P. V., et al. (1995). Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Research, 55, 1407–1412.PubMed Johnston, P. G., Lenz, H. J., Leichman, C. G., Danenberg, K. D., Allegra, C. J., Danenberg, P. V., et al. (1995). Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Research, 55, 1407–1412.PubMed
24.
Zurück zum Zitat Friedkin, M., & Roberts, D. (1954). The enzymatic synthesis of nucleosides. II. Thymidine and related pyrimidine nucleosides. Journal of Biological Chemistry, 207, 257–266.PubMed Friedkin, M., & Roberts, D. (1954). The enzymatic synthesis of nucleosides. II. Thymidine and related pyrimidine nucleosides. Journal of Biological Chemistry, 207, 257–266.PubMed
25.
Zurück zum Zitat Friedkin, M., & Roberts, D. (1954). The enzymatic synthesis of nucleosides. I. Thymidine phosphorylase in mammalian tissue. Journal of Biological Chemistry, 207, 245–256.PubMed Friedkin, M., & Roberts, D. (1954). The enzymatic synthesis of nucleosides. I. Thymidine phosphorylase in mammalian tissue. Journal of Biological Chemistry, 207, 245–256.PubMed
26.
Zurück zum Zitat Iltzsch, M. H., el Kouni, M. H., & Cha, S. (1985). Kinetic studies of thymidine phosphorylase from mouse liver. Biochemistry, 24, 6799–6807.PubMed Iltzsch, M. H., el Kouni, M. H., & Cha, S. (1985). Kinetic studies of thymidine phosphorylase from mouse liver. Biochemistry, 24, 6799–6807.PubMed
27.
Zurück zum Zitat Sumizawa, T., Furukawa, T., Haraguchi, M., Yoshimura, A., Takeyasu, A., Ishizawa, M., et al. (1993). Thymidine phosphorylase activity associated with platelet-derived endothelial cell growth factor. Journal of Biochemistry (Tokyo), 114, 9–14. Sumizawa, T., Furukawa, T., Haraguchi, M., Yoshimura, A., Takeyasu, A., Ishizawa, M., et al. (1993). Thymidine phosphorylase activity associated with platelet-derived endothelial cell growth factor. Journal of Biochemistry (Tokyo), 114, 9–14.
28.
Zurück zum Zitat Usuki, K., Saras, J., Waltenberger, J., Miyazono, K., Pierce, G., Thomason, A., et al. (1992). Platelet-derived endothelial cell growth factor has thymidine phosphorylase activity. Biochemical and Biophysical Research Communications, 184, 1311–1316.PubMed Usuki, K., Saras, J., Waltenberger, J., Miyazono, K., Pierce, G., Thomason, A., et al. (1992). Platelet-derived endothelial cell growth factor has thymidine phosphorylase activity. Biochemical and Biophysical Research Communications, 184, 1311–1316.PubMed
29.
Zurück zum Zitat Toi, M., Rahman, M. A., Bando, H., & Chow, L. W. C. (2005). Thymidine phosphorylase (platelet-derived endothelial-cell growth factor) in cancer biology and treatment. The Lancet Oncology, 6, 158–166.PubMed Toi, M., Rahman, M. A., Bando, H., & Chow, L. W. C. (2005). Thymidine phosphorylase (platelet-derived endothelial-cell growth factor) in cancer biology and treatment. The Lancet Oncology, 6, 158–166.PubMed
30.
Zurück zum Zitat Klecker Jr., R. W., & Collins, J. M. (2001). Thymidine phosphorylase as a target for imaging and therapy with thymine analogs. Cancer Chemotherapy and Pharmacology, 48, 407–412.PubMed Klecker Jr., R. W., & Collins, J. M. (2001). Thymidine phosphorylase as a target for imaging and therapy with thymine analogs. Cancer Chemotherapy and Pharmacology, 48, 407–412.PubMed
31.
Zurück zum Zitat Dimitrakopoulou, A., Strauss, L. G., Clorius, J. H., Ostertag, H., Schlag, P., Heim, M., et al. (1993). Studies with positron emission tomography after systemic administration of fluorine-18-uracil in patients with liver metastases from colorectal carcinoma. Journal of Nuclear Medicine, 34, 1075–1081.PubMed Dimitrakopoulou, A., Strauss, L. G., Clorius, J. H., Ostertag, H., Schlag, P., Heim, M., et al. (1993). Studies with positron emission tomography after systemic administration of fluorine-18-uracil in patients with liver metastases from colorectal carcinoma. Journal of Nuclear Medicine, 34, 1075–1081.PubMed
32.
Zurück zum Zitat Dimitrakopoulou-Strauss, A., Strauss, L. G., Schlag, P., Hohenberger, P., Mohler, M., Oberdorfer, F., et al. (1998). Fluorine-18-fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. Journal of Nuclear Medicine, 39, 1197–1202.PubMed Dimitrakopoulou-Strauss, A., Strauss, L. G., Schlag, P., Hohenberger, P., Mohler, M., Oberdorfer, F., et al. (1998). Fluorine-18-fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. Journal of Nuclear Medicine, 39, 1197–1202.PubMed
33.
Zurück zum Zitat Shields, A. F., Graham, M. M., Kozawa, S. M., Kozell, L. B., Link, J. M., Swenson, E. R., et al. (1992). Contribution of labeled carbon dioxide to PET imaging of carbon-11-labeled compounds. Journal of Nuclear Medicine, 33, 581–584.PubMed Shields, A. F., Graham, M. M., Kozawa, S. M., Kozell, L. B., Link, J. M., Swenson, E. R., et al. (1992). Contribution of labeled carbon dioxide to PET imaging of carbon-11-labeled compounds. Journal of Nuclear Medicine, 33, 581–584.PubMed
34.
Zurück zum Zitat Mankoff, D. A., Shields, A. F., Graham, M. M., Link, J. M., & Krohn, K. A. (1996). A graphical analysis method for estimating blood-to-tissue transfer constants for tracers with labeled metabolites. Journal of Nuclear Medicine, 37, 2049–2057.PubMed Mankoff, D. A., Shields, A. F., Graham, M. M., Link, J. M., & Krohn, K. A. (1996). A graphical analysis method for estimating blood-to-tissue transfer constants for tracers with labeled metabolites. Journal of Nuclear Medicine, 37, 2049–2057.PubMed
35.
Zurück zum Zitat Shields, A. F., Mankoff, D., Graham, M. M., Zheng, M., Kozawa, S. M., Link, J., et al. (1996b). Analysis of [2-11C]thymidine blood metabolites for imaging with PET. Journal of Nuclear Medicine, 37, 290–296.PubMed Shields, A. F., Mankoff, D., Graham, M. M., Zheng, M., Kozawa, S. M., Link, J., et al. (1996b). Analysis of [2-11C]thymidine blood metabolites for imaging with PET. Journal of Nuclear Medicine, 37, 290–296.PubMed
36.
Zurück zum Zitat Mankoff, D. A., Shields, A. F., Graham, M. M., Link, J. M., Eary, J. F., & Krohn, K. A. (1998). Kinetic analysis of 2-[carbon-11]thymidine PET imaging studies: Compartmental model and mathematical analysis. Journal of Nuclear Medicine, 39, 1043–1055.PubMed Mankoff, D. A., Shields, A. F., Graham, M. M., Link, J. M., Eary, J. F., & Krohn, K. A. (1998). Kinetic analysis of 2-[carbon-11]thymidine PET imaging studies: Compartmental model and mathematical analysis. Journal of Nuclear Medicine, 39, 1043–1055.PubMed
37.
Zurück zum Zitat Russo, A., Gianni, L., Kinsella, T. J., Klecker Jr., R. W., Jenkins, J., Rowland, J., et al. (1984). Pharmacological evaluation of intravenous delivery of 5-bromodeoxyuridine to patients with brain tumors. Cancer Research, 44, 1702–1705.PubMed Russo, A., Gianni, L., Kinsella, T. J., Klecker Jr., R. W., Jenkins, J., Rowland, J., et al. (1984). Pharmacological evaluation of intravenous delivery of 5-bromodeoxyuridine to patients with brain tumors. Cancer Research, 44, 1702–1705.PubMed
38.
Zurück zum Zitat Bergstrom, M., Lu, L., Fasth, K. J., Wu, F., Bergstrom-Pettermann, E., Tolmachev, V., et al. (1998). In vitro and animal validation of bromine-76-bromodeoxyuridine as a proliferation marker. Journal of Nuclear Medicine, 39, 1273–1279.PubMed Bergstrom, M., Lu, L., Fasth, K. J., Wu, F., Bergstrom-Pettermann, E., Tolmachev, V., et al. (1998). In vitro and animal validation of bromine-76-bromodeoxyuridine as a proliferation marker. Journal of Nuclear Medicine, 39, 1273–1279.PubMed
39.
Zurück zum Zitat Gudjonssona, O., Bergstrom, M., Kristjansson, S., Wu, F., Nyberg, G., Fasth, K. J., et al. (2001). Analysis of 76Br-BrdU in DNA of brain tumors after a PET study does not support its use as a proliferation marker. Nuclear Medicine and Biology, 28, 59–65.PubMed Gudjonssona, O., Bergstrom, M., Kristjansson, S., Wu, F., Nyberg, G., Fasth, K. J., et al. (2001). Analysis of 76Br-BrdU in DNA of brain tumors after a PET study does not support its use as a proliferation marker. Nuclear Medicine and Biology, 28, 59–65.PubMed
40.
Zurück zum Zitat Tjuvajev, J., Muraki, A., Ginos, J., Berk, J., Koutcher, J., Ballon, D., et al. (1993). Iododeoxyuridine uptake and retention as a measure of tumor growth. Journal of Nuclear Medicine, 34, 1152–1162.PubMed Tjuvajev, J., Muraki, A., Ginos, J., Berk, J., Koutcher, J., Ballon, D., et al. (1993). Iododeoxyuridine uptake and retention as a measure of tumor growth. Journal of Nuclear Medicine, 34, 1152–1162.PubMed
41.
Zurück zum Zitat Tjuvajev, J. G., Macapinilac, H. A., Daghighian, F., Scott, A. M., Ginos, J. Z., Finn, R. D., et al. (1994). Imaging of brain tumor proliferative activity with iodine-131-iododeoxyuridine. Journal of Nuclear Medicine, 35, 1407–1417.PubMed Tjuvajev, J. G., Macapinilac, H. A., Daghighian, F., Scott, A. M., Ginos, J. Z., Finn, R. D., et al. (1994). Imaging of brain tumor proliferative activity with iodine-131-iododeoxyuridine. Journal of Nuclear Medicine, 35, 1407–1417.PubMed
42.
Zurück zum Zitat Blasberg, R. G., Roelcke, U., Weinreich, R., Beattie, B., von Ammon, K., Yonekawa, Y., et al. (2000). Imaging brain tumor proliferative activity with [124I]iododeoxyuridine. Cancer Research, 60, 624–635.PubMed Blasberg, R. G., Roelcke, U., Weinreich, R., Beattie, B., von Ammon, K., Yonekawa, Y., et al. (2000). Imaging brain tumor proliferative activity with [124I]iododeoxyuridine. Cancer Research, 60, 624–635.PubMed
43.
Zurück zum Zitat Rasey, J. S., Grierson, J. R., Wiens, L. W., Kolb, P. D., & Schwartz, J. L. (2002). Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. Journal of Nuclear Medicine, 43, 1210–1217.PubMed Rasey, J. S., Grierson, J. R., Wiens, L. W., Kolb, P. D., & Schwartz, J. L. (2002). Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. Journal of Nuclear Medicine, 43, 1210–1217.PubMed
44.
Zurück zum Zitat Toyohara, J., Waki, A., Takamatsu, S., Yonekura, Y., Magata, Y., & Fujibayashi, Y. (2002). Basis of FLT as a cell proliferation marker: Comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nuclear Medicine and Biology, 29, 281–287.PubMed Toyohara, J., Waki, A., Takamatsu, S., Yonekura, Y., Magata, Y., & Fujibayashi, Y. (2002). Basis of FLT as a cell proliferation marker: Comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nuclear Medicine and Biology, 29, 281–287.PubMed
45.
Zurück zum Zitat Schwartz, J. L., Tamura, Y., Jordan, R., Grierson, J. R., & Krohn, K. A. (2004). Effect of p53 activation on cell growth, thymidine kinase-1 activity, and 3′-deoxy-3′fluorothymidine uptake. Nuclear Medicine and Biology, 31, 419–423.PubMed Schwartz, J. L., Tamura, Y., Jordan, R., Grierson, J. R., & Krohn, K. A. (2004). Effect of p53 activation on cell growth, thymidine kinase-1 activity, and 3′-deoxy-3′fluorothymidine uptake. Nuclear Medicine and Biology, 31, 419–423.PubMed
46.
Zurück zum Zitat Leyton, J., Latigo, J. R., Perumal, M., Dhaliwal, H., He, Q., & Aboagye, E. O. (2005). Early detection of tumor response to chemotherapy by 3′-deoxy-3′-[18F-]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Research, 65, 4202–4210.PubMed Leyton, J., Latigo, J. R., Perumal, M., Dhaliwal, H., He, Q., & Aboagye, E. O. (2005). Early detection of tumor response to chemotherapy by 3′-deoxy-3′-[18F-]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Research, 65, 4202–4210.PubMed
47.
Zurück zum Zitat Oyama, N., Ponde, D. E., Dence, C., Kim, J., Tai, Y. C., & Welch, M. J. (2004). Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. Journal of Nuclear Medicine, 45, 519–525.PubMed Oyama, N., Ponde, D. E., Dence, C., Kim, J., Tai, Y. C., & Welch, M. J. (2004). Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. Journal of Nuclear Medicine, 45, 519–525.PubMed
48.
Zurück zum Zitat Sherr, C. J., & Roberts, J. M. (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes & Development, 9, 1149–1163. Sherr, C. J., & Roberts, J. M. (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes & Development, 9, 1149–1163.
49.
Zurück zum Zitat Rotheneder, H., Geymayer, S., & Haidweger, E. (1999). Transcription factors of the Sp1 family: Interaction with E2F and regulation of the murine thymidine kinase promoter. Journal of Molecular Biology, 293, 1005–1015.PubMed Rotheneder, H., Geymayer, S., & Haidweger, E. (1999). Transcription factors of the Sp1 family: Interaction with E2F and regulation of the murine thymidine kinase promoter. Journal of Molecular Biology, 293, 1005–1015.PubMed
50.
Zurück zum Zitat Sugiyama, M., Sakahara, H., Sato, K., Harada, N., Fukumoto, D., Kakiuchi, T., et al. (2004). Evaluation of 3′-deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. Journal of Nuclear Medicine, 45, 1754–1758.PubMed Sugiyama, M., Sakahara, H., Sato, K., Harada, N., Fukumoto, D., Kakiuchi, T., et al. (2004). Evaluation of 3′-deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. Journal of Nuclear Medicine, 45, 1754–1758.PubMed
51.
Zurück zum Zitat Apisarnthanarax, S., Alauddin, M. M., Mourtada, F., Ariga, H., Raju, U., Mawlawi, O., et al. (2006). Early detection of chemoradioresponse in esophageal carcinoma by 3′-deoxy-3′-3H-fluorothymidine using preclinical tumor models. Clinical Cancer Research, 12, 4590–4597.PubMed Apisarnthanarax, S., Alauddin, M. M., Mourtada, F., Ariga, H., Raju, U., Mawlawi, O., et al. (2006). Early detection of chemoradioresponse in esophageal carcinoma by 3′-deoxy-3′-3H-fluorothymidine using preclinical tumor models. Clinical Cancer Research, 12, 4590–4597.PubMed
52.
Zurück zum Zitat Yang, Y. J., Ryu, J. S., Kim, S. Y., Oh, S. J., Im, K. C., Lee, H., et al. (2006). Use of 3′-deoxy-3′-[18F-]fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. European Journal of Nuclear Medicine and Molecular Imaging, 33, 412–419.PubMed Yang, Y. J., Ryu, J. S., Kim, S. Y., Oh, S. J., Im, K. C., Lee, H., et al. (2006). Use of 3′-deoxy-3′-[18F-]fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. European Journal of Nuclear Medicine and Molecular Imaging, 33, 412–419.PubMed
53.
Zurück zum Zitat Bolden, J. E., Peart, M. J., & Johnstone, R. W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature Reviews. Drug Discovery, 5, 769–784.PubMed Bolden, J. E., Peart, M. J., & Johnstone, R. W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature Reviews. Drug Discovery, 5, 769–784.PubMed
54.
Zurück zum Zitat Catley, L., Weisberg, E., Tai, Y. T., Atadja, P., Remiszewski, S., Hideshima, T., et al. (2003). NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood, 102, 2615–2622.PubMed Catley, L., Weisberg, E., Tai, Y. T., Atadja, P., Remiszewski, S., Hideshima, T., et al. (2003). NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood, 102, 2615–2622.PubMed
55.
Zurück zum Zitat Leyton, J., Alao, J. P., Da Costa, M., Stavropoulou, A. V., Latigo, J. R., Perumal, M., et al. (2006). In vivo biological activity of the histone deacetylase inhibitor LAQ824 is detectable with 3′-deoxy-3′-[18F-]fluorothymidine positron emission tomography. Cancer Research, 66, 7621–7629.PubMed Leyton, J., Alao, J. P., Da Costa, M., Stavropoulou, A. V., Latigo, J. R., Perumal, M., et al. (2006). In vivo biological activity of the histone deacetylase inhibitor LAQ824 is detectable with 3′-deoxy-3′-[18F-]fluorothymidine positron emission tomography. Cancer Research, 66, 7621–7629.PubMed
56.
Zurück zum Zitat Olayioye, M. A., Neve, R. M., Lane, H. A., & Hynes, N. E. (2000). The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO Journal, 19, 3159–3167.PubMed Olayioye, M. A., Neve, R. M., Lane, H. A., & Hynes, N. E. (2000). The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO Journal, 19, 3159–3167.PubMed
57.
Zurück zum Zitat Janne, P. A., von Pawel, J., Cohen, R. B., Crino, L., Butts, C. A., Olson, S. S., et al. (2007). Multicenter, randomized, phase II trial of CI-1033, an irreversible pan-ERBB inhibitor, for previously treated advanced non small-cell lung cancer. Journal of Clinical Oncology, 25, 3936–3944.PubMed Janne, P. A., von Pawel, J., Cohen, R. B., Crino, L., Butts, C. A., Olson, S. S., et al. (2007). Multicenter, randomized, phase II trial of CI-1033, an irreversible pan-ERBB inhibitor, for previously treated advanced non small-cell lung cancer. Journal of Clinical Oncology, 25, 3936–3944.PubMed
58.
Zurück zum Zitat Zinner, R. G., Nemunaitis, J., Eiseman, I., Shin, H. J., Olson, S. C., Christensen, J., et al. (2007). Phase I clinical and pharmacodynamic evaluation of oral CI-1033 in patients with refractory cancer. Clinical Cancer Research, 13, 3006–3014.PubMed Zinner, R. G., Nemunaitis, J., Eiseman, I., Shin, H. J., Olson, S. C., Christensen, J., et al. (2007). Phase I clinical and pharmacodynamic evaluation of oral CI-1033 in patients with refractory cancer. Clinical Cancer Research, 13, 3006–3014.PubMed
59.
Zurück zum Zitat Dorow, D. S., Cullinane, C., Conus, N., Roselt, P., Binns, D., McCarthy, T. J., et al. (2006). Multi-tracer small animal PET imaging of the tumour response to the novel pan-Erb-B inhibitor CI-1033. European Journal of Nuclear Medicine and Molecular Imaging, 33, 441–452.PubMed Dorow, D. S., Cullinane, C., Conus, N., Roselt, P., Binns, D., McCarthy, T. J., et al. (2006). Multi-tracer small animal PET imaging of the tumour response to the novel pan-Erb-B inhibitor CI-1033. European Journal of Nuclear Medicine and Molecular Imaging, 33, 441–452.PubMed
60.
Zurück zum Zitat Carvajal, R. D., Tse, A., & Schwartz, G. K. (2006). Aurora kinases: New targets for cancer therapy. Clinical Cancer Research, 12, 6869–6875.PubMed Carvajal, R. D., Tse, A., & Schwartz, G. K. (2006). Aurora kinases: New targets for cancer therapy. Clinical Cancer Research, 12, 6869–6875.PubMed
61.
Zurück zum Zitat Chan, F., Sun, C., Perumal, M., Nguyen, Q. D., Bavetsias, V., McDonald, E., et al. (2007). Mechanism of action of the Aurora kinase inhibitor CCT129202 and in vivo quantification of biological activity. Molecular Cancer Therapeutics, 6, 3147–3157.PubMed Chan, F., Sun, C., Perumal, M., Nguyen, Q. D., Bavetsias, V., McDonald, E., et al. (2007). Mechanism of action of the Aurora kinase inhibitor CCT129202 and in vivo quantification of biological activity. Molecular Cancer Therapeutics, 6, 3147–3157.PubMed
62.
Zurück zum Zitat Barthel, H., Cleij, M. C., Collingridge, D. R., Hutchinson, O. C., Osman, S., He, Q., et al. (2003). 3′-Deoxy-3′-[18F-]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Research, 63, 3791–3798.PubMed Barthel, H., Cleij, M. C., Collingridge, D. R., Hutchinson, O. C., Osman, S., He, Q., et al. (2003). 3′-Deoxy-3′-[18F-]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Research, 63, 3791–3798.PubMed
63.
Zurück zum Zitat Shields, A., Grierson, J. R., Muzik, O., Stayanoff, J. C., Lawhorn-Crews, J., Obradovich, J. E., et al. (2002). Kinetics of 3′-deoxy-3′-[18F-]fluorothymidine uptake and retention in dogs. Molecular Imaging Biology, 4(1), 83–89. Shields, A., Grierson, J. R., Muzik, O., Stayanoff, J. C., Lawhorn-Crews, J., Obradovich, J. E., et al. (2002). Kinetics of 3′-deoxy-3′-[18F-]fluorothymidine uptake and retention in dogs. Molecular Imaging Biology, 4(1), 83–89.
64.
Zurück zum Zitat Muzi, M., Mankoff, D. A., Grierson, J. R., Wells, J. M., Vesselle, H., & Krohn, K. A. (2005). Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. Journal of Nuclear Medicine, 46, 371–380.PubMed Muzi, M., Mankoff, D. A., Grierson, J. R., Wells, J. M., Vesselle, H., & Krohn, K. A. (2005). Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. Journal of Nuclear Medicine, 46, 371–380.PubMed
65.
Zurück zum Zitat Shields, A., Briston, D., Chandupatla, S., Douglas, K., Lawhorn-Crews, J., Collins, J., et al. (2005). A simplified analysis of 18F- 3’-fluorothymidine metabolism and retention. European Journal of Nuclear Medicine and Molecular Imaging, 32, 1269–1275.PubMed Shields, A., Briston, D., Chandupatla, S., Douglas, K., Lawhorn-Crews, J., Collins, J., et al. (2005). A simplified analysis of 18F- 3’-fluorothymidine metabolism and retention. European Journal of Nuclear Medicine and Molecular Imaging, 32, 1269–1275.PubMed
66.
Zurück zum Zitat Munch-Petersen, B., Cloos, L., Tyrsted, G., & Eriksson, S. (1991). Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. Journal of Biological Chemistry, 266, 9032–9038.PubMed Munch-Petersen, B., Cloos, L., Tyrsted, G., & Eriksson, S. (1991). Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. Journal of Biological Chemistry, 266, 9032–9038.PubMed
67.
Zurück zum Zitat Been, L. B., Elsinga, P. H., de Vries, J., Cobben, D. C., Jager, P. L., Hoekstra, H. J., et al. (2006). Positron emission tomography in patients with breast cancer using 18F-3′-deoxy-3′-fluoro-l-thymidine (18F-FLT): A pilot study. European Journal of Surgical Oncology, 32, 39–43.PubMed Been, L. B., Elsinga, P. H., de Vries, J., Cobben, D. C., Jager, P. L., Hoekstra, H. J., et al. (2006). Positron emission tomography in patients with breast cancer using 18F-3′-deoxy-3′-fluoro-l-thymidine (18F-FLT): A pilot study. European Journal of Surgical Oncology, 32, 39–43.PubMed
68.
Zurück zum Zitat Dittmann, H., Dohmen, B. M., Paulsen, F., Eichhorn, K., Eschmann, S. M., Horger, M., et al. (2003). [18F-]FLT PET for diagnosis and staging of thoracic tumours. European Journal of Nuclear Medicine and Molecular Imaging, 30, 1407–1412.PubMed Dittmann, H., Dohmen, B. M., Paulsen, F., Eichhorn, K., Eschmann, S. M., Horger, M., et al. (2003). [18F-]FLT PET for diagnosis and staging of thoracic tumours. European Journal of Nuclear Medicine and Molecular Imaging, 30, 1407–1412.PubMed
69.
Zurück zum Zitat Kenny, L. M., Vigushin, D. M., Al-Nahhas, A., Osman, S., Luthra, S. K., Shousha, S., et al. (2005). Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F-]fluorothymidine-positron emission tomography imaging: Evaluation of analytical methods. Cancer Research, 65, 10104–10112.PubMed Kenny, L. M., Vigushin, D. M., Al-Nahhas, A., Osman, S., Luthra, S. K., Shousha, S., et al. (2005). Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F-]fluorothymidine-positron emission tomography imaging: Evaluation of analytical methods. Cancer Research, 65, 10104–10112.PubMed
70.
Zurück zum Zitat Buck, A. K., Halter, G., Schirrmeister, H., Kotzerke, J., Wurziger, I., Glatting, G., et al. (2003). Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. Journal of Nuclear Medicine, 44, 1426–1431.PubMed Buck, A. K., Halter, G., Schirrmeister, H., Kotzerke, J., Wurziger, I., Glatting, G., et al. (2003). Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. Journal of Nuclear Medicine, 44, 1426–1431.PubMed
71.
Zurück zum Zitat Vesselle, H., Grierson, J., Muzi, M., Pugsley, J. M., Schmidt, R. A., Rabinowitz, P., et al. (2002). In vivo validation of 3′deoxy-3′-[18F-]fluorothymidine (18F-FLT) as a proliferation imaging tracer in humans: Correlation of 18F-FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clinical Cancer Research, 8, 3315–3323.PubMed Vesselle, H., Grierson, J., Muzi, M., Pugsley, J. M., Schmidt, R. A., Rabinowitz, P., et al. (2002). In vivo validation of 3′deoxy-3′-[18F-]fluorothymidine (18F-FLT) as a proliferation imaging tracer in humans: Correlation of 18F-FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clinical Cancer Research, 8, 3315–3323.PubMed
72.
Zurück zum Zitat Yamamoto, Y., Nishiyama, Y., Ishikawa, S., Nakano, J., Chang, S. S., Bandoh, S., et al. (2007). Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. European Journal of Nuclear Medicine and Molecular Imaging, 34(10), 1610–1616.PubMed Yamamoto, Y., Nishiyama, Y., Ishikawa, S., Nakano, J., Chang, S. S., Bandoh, S., et al. (2007). Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. European Journal of Nuclear Medicine and Molecular Imaging, 34(10), 1610–1616.PubMed
73.
Zurück zum Zitat Jeraj, R., McCall, K., Simoncic, U., & Nickles, J. (2007). Monitoring of radiation effects with FLT-PET imaging. In Joint Molecular Imaging Conference, Society of Molecular Imaging and Academy of Molecular Imaging: Providence, RI. Jeraj, R., McCall, K., Simoncic, U., & Nickles, J. (2007). Monitoring of radiation effects with FLT-PET imaging. In Joint Molecular Imaging Conference, Society of Molecular Imaging and Academy of Molecular Imaging: Providence, RI.
74.
Zurück zum Zitat McArthur, G., Hicks, R., Binns, D., Shalinsky, D., McCarthy, T., Anderes, K., et al. (2007). Positron-emission tomography reveals early flare in uptake of FLT in tumors following chemotherapy with gemcitabine. [abstract]. In Joint Molecular Imaging Conference, Society of Molecular Imaging and Academy of Molecular Imaging: Providence, RI. McArthur, G., Hicks, R., Binns, D., Shalinsky, D., McCarthy, T., Anderes, K., et al. (2007). Positron-emission tomography reveals early flare in uptake of FLT in tumors following chemotherapy with gemcitabine. [abstract]. In Joint Molecular Imaging Conference, Society of Molecular Imaging and Academy of Molecular Imaging: Providence, RI.
75.
Zurück zum Zitat Troost, E. G., Vogel, W. V., Merkx, M. A., Slootweg, P. J., Marres, H. A., Peeters, W. J., et al. (2007). 18F-FLT PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients. Journal of Nuclear Medicine, 48, 726–735.PubMed Troost, E. G., Vogel, W. V., Merkx, M. A., Slootweg, P. J., Marres, H. A., Peeters, W. J., et al. (2007). 18F-FLT PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients. Journal of Nuclear Medicine, 48, 726–735.PubMed
76.
Zurück zum Zitat van Westreenen, H. L., Cobben, D. C., Jager, P. L., van Dullemen, H. M., Wesseling, J., Elsinga, P. H., et al. (2005). Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. Journal of Nuclear Medicine, 46, 400–404.PubMed van Westreenen, H. L., Cobben, D. C., Jager, P. L., van Dullemen, H. M., Wesseling, J., Elsinga, P. H., et al. (2005). Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. Journal of Nuclear Medicine, 46, 400–404.PubMed
77.
Zurück zum Zitat Smyczek-Gargya, B., Fersis, N., Dittmann, H., Vogel, U., Reischl, G., Machulla, H. J., et al. (2004). PET with 18F-fluorothymidine for imaging of primary breast cancer: A pilot study. European Journal of Nuclear Medicine and Molecular Imaging, 31, 720–724.PubMed Smyczek-Gargya, B., Fersis, N., Dittmann, H., Vogel, U., Reischl, G., Machulla, H. J., et al. (2004). PET with 18F-fluorothymidine for imaging of primary breast cancer: A pilot study. European Journal of Nuclear Medicine and Molecular Imaging, 31, 720–724.PubMed
78.
Zurück zum Zitat Kenny, L., Coombes, R. C., Vigushin, D. M., Al-Nahhas, A., Shousha, S., & Aboagye, E. O. (2007). Imaging early changes in proliferation at 1 week post chemotherapy: A pilot study in breast cancer patients with 3′-deoxy-3′-[18F-]fluorothymidine positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 34(9), 1339–1347.PubMed Kenny, L., Coombes, R. C., Vigushin, D. M., Al-Nahhas, A., Shousha, S., & Aboagye, E. O. (2007). Imaging early changes in proliferation at 1 week post chemotherapy: A pilot study in breast cancer patients with 3′-deoxy-3′-[18F-]fluorothymidine positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 34(9), 1339–1347.PubMed
79.
Zurück zum Zitat Pio, B. S., Park, C. K., Pietras, R., Hsueh, W. A., Satyamurthy, N., Pegram, M. D., et al. (2006). Usefulness of 3′-[18F-]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Molecular Imaging and Biology, 8, 36–42.PubMed Pio, B. S., Park, C. K., Pietras, R., Hsueh, W. A., Satyamurthy, N., Pegram, M. D., et al. (2006). Usefulness of 3′-[18F-]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Molecular Imaging and Biology, 8, 36–42.PubMed
80.
Zurück zum Zitat Buck, A. K., Bommer, M., Stilgenbauer, S., Juweid, M., Glatting, G., Schirrmeister, H., et al. (2006). Molecular imaging of proliferation in malignant lymphoma. Cancer Research, 66, 11055–11061.PubMed Buck, A. K., Bommer, M., Stilgenbauer, S., Juweid, M., Glatting, G., Schirrmeister, H., et al. (2006). Molecular imaging of proliferation in malignant lymphoma. Cancer Research, 66, 11055–11061.PubMed
81.
Zurück zum Zitat Wagner, M., Seitz, U., Buck, A., Neumaier, B., Schultheiss, S., Bangerter, M., et al. (2003). 3′-[18F-]fluoro-3′-deoxythymidine ([18F-]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-cell lymphoma model and in the human disease. Cancer Research, 63, 2681–2687.PubMed Wagner, M., Seitz, U., Buck, A., Neumaier, B., Schultheiss, S., Bangerter, M., et al. (2003). 3′-[18F-]fluoro-3′-deoxythymidine ([18F-]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-cell lymphoma model and in the human disease. Cancer Research, 63, 2681–2687.PubMed
82.
Zurück zum Zitat Herrmann, K., Wieder, H. A., Buck, A. K., Schoffel, M., Krause, B. J., Fend, F., et al. (2007). Early response assessment using 3′-deoxy-3′-[18F-]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clinical Cancer Research, 13, 3552–3558.PubMed Herrmann, K., Wieder, H. A., Buck, A. K., Schoffel, M., Krause, B. J., Fend, F., et al. (2007). Early response assessment using 3′-deoxy-3′-[18F-]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clinical Cancer Research, 13, 3552–3558.PubMed
83.
Zurück zum Zitat Kasper, B., Egerer, G., Gronkowski, M., Haufe, S., Lehnert, T., Eisenhut, M., et al. (2007). Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG-and FLT-PET. Leukemia & Lymphoma, 48, 746–753. Kasper, B., Egerer, G., Gronkowski, M., Haufe, S., Lehnert, T., Eisenhut, M., et al. (2007). Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG-and FLT-PET. Leukemia & Lymphoma, 48, 746–753.
84.
Zurück zum Zitat Wieder, H., Ott, K., Zimmermann, F., Nekarda, H., Stollfuss, J., Watzlowik, P., et al. (2002). PET imaging with [11C-]methyl-l-methionine for therapy monitoring in patients with rectal cancer. European Journal of Nuclear Medicine and Molecular Imaging, 29, 789–796.PubMed Wieder, H., Ott, K., Zimmermann, F., Nekarda, H., Stollfuss, J., Watzlowik, P., et al. (2002). PET imaging with [11C-]methyl-l-methionine for therapy monitoring in patients with rectal cancer. European Journal of Nuclear Medicine and Molecular Imaging, 29, 789–796.PubMed
85.
Zurück zum Zitat Muzi, M., Spence, A. M., O’Sullivan, F., Mankoff, D. A., Wells, J. M., Grierson, J. R., et al. (2006). Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas. Journal of Nuclear Medicine, 47, 1612–1621.PubMed Muzi, M., Spence, A. M., O’Sullivan, F., Mankoff, D. A., Wells, J. M., Grierson, J. R., et al. (2006). Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas. Journal of Nuclear Medicine, 47, 1612–1621.PubMed
86.
Zurück zum Zitat Chen, W., Cloughesy, T., Kamdar, N., Satyamurthy, N., Bergsneider, M., Liau, L., et al. (2005). Imaging proliferation in brain tumors with 18F-FLT PET: Comparison with 18F-FDG. Journal of Nuclear Medicine, 46, 945–952.PubMed Chen, W., Cloughesy, T., Kamdar, N., Satyamurthy, N., Bergsneider, M., Liau, L., et al. (2005). Imaging proliferation in brain tumors with 18F-FLT PET: Comparison with 18F-FDG. Journal of Nuclear Medicine, 46, 945–952.PubMed
87.
Zurück zum Zitat Choi, S. J., Kim, J. S., Kim, J. H., Oh, S. J., Lee, J. G., Kim, C. J., et al. (2005). [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. European Journal of Nuclear Medicine and Molecular Imaging, 32, 653–659.PubMed Choi, S. J., Kim, J. S., Kim, J. H., Oh, S. J., Lee, J. G., Kim, C. J., et al. (2005). [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. European Journal of Nuclear Medicine and Molecular Imaging, 32, 653–659.PubMed
88.
Zurück zum Zitat Saga, T., Kawashima, H., Araki, N., Takahashi, J. A., Nakashima, Y., Higashi, T., et al. (2006). Evaluation of primary brain tumors with FLT-PET: Usefulness and limitations. Clinical Nuclear Medicine, 31, 774–780.PubMed Saga, T., Kawashima, H., Araki, N., Takahashi, J. A., Nakashima, Y., Higashi, T., et al. (2006). Evaluation of primary brain tumors with FLT-PET: Usefulness and limitations. Clinical Nuclear Medicine, 31, 774–780.PubMed
89.
Zurück zum Zitat Yamamoto, Y., Wong, T. Z., Turkington, T. G., Hawk, T. C., Reardon, D. A., & Coleman, R. E. (2006). 3′-Deoxy-3′-[18F-]fluorothymidine positron emission tomography in patients with recurrent glioblastoma multiforme: Comparison with Gd-DTPA enhanced magnetic resonance imaging. Molecular Imaging and Biology, 8, 340–347.PubMed Yamamoto, Y., Wong, T. Z., Turkington, T. G., Hawk, T. C., Reardon, D. A., & Coleman, R. E. (2006). 3′-Deoxy-3′-[18F-]fluorothymidine positron emission tomography in patients with recurrent glioblastoma multiforme: Comparison with Gd-DTPA enhanced magnetic resonance imaging. Molecular Imaging and Biology, 8, 340–347.PubMed
90.
Zurück zum Zitat Schiepers, C., Chen, W., Dahlbom, M., Cloughesy, T., Hoh, C. K., & Huang, S. C. (2007). 18F-fluorothymidine kinetics of malignant brain tumors. European Journal of Nuclear Medicine and Molecular Imaging, 34, 1003–1011.PubMed Schiepers, C., Chen, W., Dahlbom, M., Cloughesy, T., Hoh, C. K., & Huang, S. C. (2007). 18F-fluorothymidine kinetics of malignant brain tumors. European Journal of Nuclear Medicine and Molecular Imaging, 34, 1003–1011.PubMed
91.
Zurück zum Zitat Bading, J. R., Shahinian, A. H., Vail, A., Bathija, P., Koszalka, G. W., Koda, R. T., et al. (2004). Pharmacokinetics of the thymidine analog 2′-fluoro-5-methyl-1-beta-d-arabinofuranosyluracil (FMAU) in tumor-bearing rats. Nuclear Medicine and Biology, 31, 407–418.PubMed Bading, J. R., Shahinian, A. H., Vail, A., Bathija, P., Koszalka, G. W., Koda, R. T., et al. (2004). Pharmacokinetics of the thymidine analog 2′-fluoro-5-methyl-1-beta-d-arabinofuranosyluracil (FMAU) in tumor-bearing rats. Nuclear Medicine and Biology, 31, 407–418.PubMed
92.
Zurück zum Zitat Ebuchi, M., Sakamoto, S., Kudo, H., Nagase, J., & Endo, M. (1995). Clinicopathological stages and pyrimidine nucleotide synthesis in human mammary carcinomas. Anticancer Research, 15, 1481–1484.PubMed Ebuchi, M., Sakamoto, S., Kudo, H., Nagase, J., & Endo, M. (1995). Clinicopathological stages and pyrimidine nucleotide synthesis in human mammary carcinomas. Anticancer Research, 15, 1481–1484.PubMed
93.
Zurück zum Zitat Sun, H., Mangner, T. J., Collins, J. M., Muzik, O., Douglas, K., & Shields, A. F. (2005). Imaging DNA synthesis in vivo with 18F-FMAU and PET. Journal of Nuclear Medicine, 46, 292–296.PubMed Sun, H., Mangner, T. J., Collins, J. M., Muzik, O., Douglas, K., & Shields, A. F. (2005). Imaging DNA synthesis in vivo with 18F-FMAU and PET. Journal of Nuclear Medicine, 46, 292–296.PubMed
94.
Zurück zum Zitat Sun, H., Sloan, A., Mangner, T. J., Vaishampayan, U., Muzik, O., Collins, J. M., et al. (2005). Imaging DNA synthesis with 18F-FMAU and positron emission tomography in patients with cancer. European Journal of Nuclear Medicine and Molecular Imaging, 32, 15–22.PubMed Sun, H., Sloan, A., Mangner, T. J., Vaishampayan, U., Muzik, O., Collins, J. M., et al. (2005). Imaging DNA synthesis with 18F-FMAU and positron emission tomography in patients with cancer. European Journal of Nuclear Medicine and Molecular Imaging, 32, 15–22.PubMed
95.
Zurück zum Zitat Collins, J. M., Klecker, R. W., & Katki, A. G. (1999). Suicide prodrugs activated by thymidylate synthase: Rationale for treatment and noninvasive imaging of tumors with deoxyuridine analogues. Clinical Cancer Research, 5, 1976–1981.PubMed Collins, J. M., Klecker, R. W., & Katki, A. G. (1999). Suicide prodrugs activated by thymidylate synthase: Rationale for treatment and noninvasive imaging of tumors with deoxyuridine analogues. Clinical Cancer Research, 5, 1976–1981.PubMed
96.
Zurück zum Zitat Kao, C. H., Waki, A., Sassaman, M. B., Jagoda, E. M., Szajek, L. P., Ravasi, L., et al. (2002). Evaluation of [76Br]FBAU 3′,5′-dibenzoate as a lipophilic prodrug for brain imaging. Nuclear Medicine and Biology, 29, 527–535.PubMed Kao, C. H., Waki, A., Sassaman, M. B., Jagoda, E. M., Szajek, L. P., Ravasi, L., et al. (2002). Evaluation of [76Br]FBAU 3′,5′-dibenzoate as a lipophilic prodrug for brain imaging. Nuclear Medicine and Biology, 29, 527–535.PubMed
97.
Zurück zum Zitat Lu, L., Bergstrom, M., Fasth, K. J., & Langstrom, B. (2000). Synthesis of [76Br]bromofluorodeoxyuridine and its validation with regard to uptake, DNA incorporation, and excretion modulation in rats. Journal of Nuclear Medicine, 41, 1746–1752.PubMed Lu, L., Bergstrom, M., Fasth, K. J., & Langstrom, B. (2000). Synthesis of [76Br]bromofluorodeoxyuridine and its validation with regard to uptake, DNA incorporation, and excretion modulation in rats. Journal of Nuclear Medicine, 41, 1746–1752.PubMed
98.
Zurück zum Zitat Borbath, I., Gregoire, V., Bergstrom, M., Laryea, D., Langstrom, B., & Pauwels, S. (2002). Use of 5-[(76)Br]bromo-2′-fluoro-2′-deoxyuridine as a ligand for tumour proliferation: Validation in an animal tumour model. European Journal of Nuclear Medicine and Molecular Imaging, 29, 19–27.PubMed Borbath, I., Gregoire, V., Bergstrom, M., Laryea, D., Langstrom, B., & Pauwels, S. (2002). Use of 5-[(76)Br]bromo-2′-fluoro-2′-deoxyuridine as a ligand for tumour proliferation: Validation in an animal tumour model. European Journal of Nuclear Medicine and Molecular Imaging, 29, 19–27.PubMed
99.
Zurück zum Zitat Xing, T., Wu, F., Brodin, O., Fasth, K. J., Langstrom, B., & Bergstrom, M. (2000). In vitro PET evaluations in lung cancer cell lines. Anticancer Research, 20, 1375–1380.PubMed Xing, T., Wu, F., Brodin, O., Fasth, K. J., Langstrom, B., & Bergstrom, M. (2000). In vitro PET evaluations in lung cancer cell lines. Anticancer Research, 20, 1375–1380.PubMed
100.
Zurück zum Zitat Lu, L., Samuelsson, L., Bergstrom, M., Sato, K., Fasth, K. J., & Langstrom, B. (2002). Rat studies comparing 11C-FMAU, 18F-FLT, and 76Br-BFU as proliferation markers. Journal of Nuclear Medicine, 43, 1688–1698.PubMed Lu, L., Samuelsson, L., Bergstrom, M., Sato, K., Fasth, K. J., & Langstrom, B. (2002). Rat studies comparing 11C-FMAU, 18F-FLT, and 76Br-BFU as proliferation markers. Journal of Nuclear Medicine, 43, 1688–1698.PubMed
101.
Zurück zum Zitat Nimmagadda, S., Mangner, T. J., Sun, H., Klecker Jr., R. W., Muzik, O., Lawhorn-Crews, J. M., et al. (2005). Biodistribution and radiation dosimetry estimates of 1-(2′-deoxy-2′-18F-Fluoro-1-beta-d-arabinofuranosyl)-5-bromouracil: PET imaging studies in dogs. Journal of Nuclear Medicine, 46, 1916–1922.PubMed Nimmagadda, S., Mangner, T. J., Sun, H., Klecker Jr., R. W., Muzik, O., Lawhorn-Crews, J. M., et al. (2005). Biodistribution and radiation dosimetry estimates of 1-(2′-deoxy-2′-18F-Fluoro-1-beta-d-arabinofuranosyl)-5-bromouracil: PET imaging studies in dogs. Journal of Nuclear Medicine, 46, 1916–1922.PubMed
102.
Zurück zum Zitat Tehrani, O. S., Douglas, K. A., Lawhorn-Crews, J. M., & Shields, A. F. (2008). Tracking cellular stress with labeled FMAU reflects changes in mitochondrial TK2. European Journal of Nuclear Medicine and Molecular Imaging, In press (Feb 12). Tehrani, O. S., Douglas, K. A., Lawhorn-Crews, J. M., & Shields, A. F. (2008). Tracking cellular stress with labeled FMAU reflects changes in mitochondrial TK2. European Journal of Nuclear Medicine and Molecular Imaging, In press (Feb 12).
103.
Zurück zum Zitat Jackman, A. L., Taylor, G. A., Calvert, A. H., & Harrap, K. R. (1984). Modulation of anti-metabolite effects. Effects of thymidine on the efficacy of the quinazoline-based thymidylate synthetase inhibitor, CB3717. Biochemical Pharmacology, 33, 3269–3275.PubMed Jackman, A. L., Taylor, G. A., Calvert, A. H., & Harrap, K. R. (1984). Modulation of anti-metabolite effects. Effects of thymidine on the efficacy of the quinazoline-based thymidylate synthetase inhibitor, CB3717. Biochemical Pharmacology, 33, 3269–3275.PubMed
104.
Zurück zum Zitat Jackman, A. L., Taylor, G. A., Gibson, W., Kimbell, R., Brown, M., Calvert, A. H., et al. (1991). ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo: A new agent for clinical study. Cancer Research, 51, 5579–5586.PubMed Jackman, A. L., Taylor, G. A., Gibson, W., Kimbell, R., Brown, M., Calvert, A. H., et al. (1991). ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo: A new agent for clinical study. Cancer Research, 51, 5579–5586.PubMed
105.
Zurück zum Zitat Taylor, G. A., Jackman, A. L., Calvert, A. H., & Harrap, K. R. (1984). Plasma nucleoside and base levels following treatment with the new thymidylate synthetase inhibitor CB 3717. Advances in Experimental Medicine and Biology, 165 Pt B, 379–382.PubMed Taylor, G. A., Jackman, A. L., Calvert, A. H., & Harrap, K. R. (1984). Plasma nucleoside and base levels following treatment with the new thymidylate synthetase inhibitor CB 3717. Advances in Experimental Medicine and Biology, 165 Pt B, 379–382.PubMed
106.
Zurück zum Zitat Perumal, M., Pillai, R. G., Barthel, H., Leyton, J., Latigo, J. R., Forster, M., et al. (2006). Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography. Cancer Research, 66, 8558–8564.PubMed Perumal, M., Pillai, R. G., Barthel, H., Leyton, J., Latigo, J. R., Forster, M., et al. (2006). Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography. Cancer Research, 66, 8558–8564.PubMed
107.
Zurück zum Zitat Hu, Y. C., Komorowski, R. A., Graewin, S., Hostetter, G., Kallioniemi, O. P., Pitt, H. A., et al. (2003). Thymidylate synthase expression predicts the response to 5-fluorouracil-based adjuvant therapy in pancreatic cancer. Clinical Cancer Research, 9, 4165–4171.PubMed Hu, Y. C., Komorowski, R. A., Graewin, S., Hostetter, G., Kallioniemi, O. P., Pitt, H. A., et al. (2003). Thymidylate synthase expression predicts the response to 5-fluorouracil-based adjuvant therapy in pancreatic cancer. Clinical Cancer Research, 9, 4165–4171.PubMed
108.
Zurück zum Zitat Van Triest, B., & Peters, G. J. (1999). Thymidylate synthase: A target for combination therapy and determinant of chemotherapeutic response in colorectal cancer. Oncology, 57, 179–194.PubMed Van Triest, B., & Peters, G. J. (1999). Thymidylate synthase: A target for combination therapy and determinant of chemotherapeutic response in colorectal cancer. Oncology, 57, 179–194.PubMed
109.
Zurück zum Zitat Aschele, C., Lonardi, S., & Monfardini, S. (2002). Thymidylate Synthase expression as a predictor of clinical response to fluoropyrimidine-based chemotherapy in advanced colorectal cancer. Cancer Treatment Reviews, 28, 27–47.PubMed Aschele, C., Lonardi, S., & Monfardini, S. (2002). Thymidylate Synthase expression as a predictor of clinical response to fluoropyrimidine-based chemotherapy in advanced colorectal cancer. Cancer Treatment Reviews, 28, 27–47.PubMed
110.
Zurück zum Zitat Kissel, J., Brix, G., Bellemann, M. E., Strauss, L. G., Dimitrakopoulou-Strauss, A., Port, R., et al. (1997). Pharmacokinetic analysis of 5-[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Research, 57, 3415–3423.PubMed Kissel, J., Brix, G., Bellemann, M. E., Strauss, L. G., Dimitrakopoulou-Strauss, A., Port, R., et al. (1997). Pharmacokinetic analysis of 5-[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Research, 57, 3415–3423.PubMed
111.
Zurück zum Zitat Klecker, R. W., Katki, A. G., & Collins, J. M. (1994). Toxicity, metabolism, DNA incorporation with lack of repair, and lactate production for 1-(2′-fluoro-2′-deoxy-beta-d-arabinofuranosyl)-5-iodouracil in U-937 and MOLT-4 cells. Molecular Pharmacology, 46, 1204–1209.PubMed Klecker, R. W., Katki, A. G., & Collins, J. M. (1994). Toxicity, metabolism, DNA incorporation with lack of repair, and lactate production for 1-(2′-fluoro-2′-deoxy-beta-d-arabinofuranosyl)-5-iodouracil in U-937 and MOLT-4 cells. Molecular Pharmacology, 46, 1204–1209.PubMed
112.
Zurück zum Zitat Wang, H., Oliver, P., Nan, L., Wang, S., Wang, Z., Rhie, J. K., et al. (2002). Radiolabeled 2′-fluorodeoxyuracil-beta-d-arabinofuranoside (FAU) and 2′-fluoro-5-methyldeoxyuracil-beta-d-arabinofuranoside (FMAU) as tumor-imaging agents in mice. Cancer Chemotherapy and Pharmacology, 49, 419–424.PubMed Wang, H., Oliver, P., Nan, L., Wang, S., Wang, Z., Rhie, J. K., et al. (2002). Radiolabeled 2′-fluorodeoxyuracil-beta-d-arabinofuranoside (FAU) and 2′-fluoro-5-methyldeoxyuracil-beta-d-arabinofuranoside (FMAU) as tumor-imaging agents in mice. Cancer Chemotherapy and Pharmacology, 49, 419–424.PubMed
113.
Zurück zum Zitat Sun, H., Collins, J. M., Mangner, T. J., Muzik, O., & Shields, A. F. (2006). Imaging the pharmacokinetics of [18F-]FAU in patients with tumors: PET studies. Cancer Chemotherapy and Pharmacology, 57, 343–348.PubMed Sun, H., Collins, J. M., Mangner, T. J., Muzik, O., & Shields, A. F. (2006). Imaging the pharmacokinetics of [18F-]FAU in patients with tumors: PET studies. Cancer Chemotherapy and Pharmacology, 57, 343–348.PubMed
114.
Zurück zum Zitat Sun, H., Collins, J. M., Mangner, T. J., Muzik, O., & Shields, A. F. (2003). Imaging [18F]FAU [1-(2′-deoxy-2′-fluoro-beta-d-arabinofuranosyl) uracil] in dogs. Nuclear Medicine and Biology, 30, 25–30.PubMed Sun, H., Collins, J. M., Mangner, T. J., Muzik, O., & Shields, A. F. (2003). Imaging [18F]FAU [1-(2′-deoxy-2′-fluoro-beta-d-arabinofuranosyl) uracil] in dogs. Nuclear Medicine and Biology, 30, 25–30.PubMed
115.
Zurück zum Zitat Eiseman, J. L., Brown-Proctor, C., Kinahan, P. E., Collins, J. M., Anderson, L. W., Joseph, E., et al. (2004). Distribution of 1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl) uracil in mice bearing colorectal cancer xenografts: Rationale for therapeutic use and as a positron emission tomography probe for thymidylate synthase. Clinical Cancer Research, 10, 6669–6676.PubMed Eiseman, J. L., Brown-Proctor, C., Kinahan, P. E., Collins, J. M., Anderson, L. W., Joseph, E., et al. (2004). Distribution of 1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl) uracil in mice bearing colorectal cancer xenografts: Rationale for therapeutic use and as a positron emission tomography probe for thymidylate synthase. Clinical Cancer Research, 10, 6669–6676.PubMed
116.
Zurück zum Zitat Grierson, J. R., Brockenbrough, J. S., Rasey, J. S., Wiens, L. W., Schwartz, J. L., Jordan, R., et al. (2007). Evaluation of 5′-deoxy-5′-[18F-]fluorothymidine as a tracer of intracellular thymidine phosphorylase activity. Nuclear Medicine and Biology, 34, 471–478.PubMed Grierson, J. R., Brockenbrough, J. S., Rasey, J. S., Wiens, L. W., Schwartz, J. L., Jordan, R., et al. (2007). Evaluation of 5′-deoxy-5′-[18F-]fluorothymidine as a tracer of intracellular thymidine phosphorylase activity. Nuclear Medicine and Biology, 34, 471–478.PubMed
117.
Zurück zum Zitat Fei, X., Wang, J. Q., Miller, K. D., Sledge, G. W., Hutchins, G. D., & Zheng, Q. H. (2004). Synthesis of [18F-]Xeloda as a novel potential PET radiotracer for imaging enzymes in cancers. Nuclear Medicine and Biology, 31, 1033–1041.PubMed Fei, X., Wang, J. Q., Miller, K. D., Sledge, G. W., Hutchins, G. D., & Zheng, Q. H. (2004). Synthesis of [18F-]Xeloda as a novel potential PET radiotracer for imaging enzymes in cancers. Nuclear Medicine and Biology, 31, 1033–1041.PubMed
118.
Zurück zum Zitat Edler, D., Glimelius, B., Hallstrom, M., Jakobsen, A., Johnston, P. G., Magnusson, I., et al. (2002). Thymidylate synthase expression in colorectal cancer: A prognostic and predictive marker of benefit from adjuvant fluorouracil-based chemotherapy. Journal of Clinical Oncology, 20, 1721–1728.PubMed Edler, D., Glimelius, B., Hallstrom, M., Jakobsen, A., Johnston, P. G., Magnusson, I., et al. (2002). Thymidylate synthase expression in colorectal cancer: A prognostic and predictive marker of benefit from adjuvant fluorouracil-based chemotherapy. Journal of Clinical Oncology, 20, 1721–1728.PubMed
119.
Zurück zum Zitat Liang, Y., Diehn, M., Watson, N., Bollen, A. W., Aldape, K. D., Nicholas, M. K., et al. (2005). Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proceedings of the National Academy of Sciences of the United States of America, 102, 5814–5819.PubMed Liang, Y., Diehn, M., Watson, N., Bollen, A. W., Aldape, K. D., Nicholas, M. K., et al. (2005). Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proceedings of the National Academy of Sciences of the United States of America, 102, 5814–5819.PubMed
120.
Zurück zum Zitat Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 98, 10869–10874.PubMed Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 98, 10869–10874.PubMed
121.
Zurück zum Zitat Lau, S. K., Boutros, P. C., Pintilie, M., Blackhall, F. H., Zhu, C. Q., Strumpf, D., et al. (2007). Three-gene prognostic classifier for early-stage non small-cell lung cancer. Journal of Clinical Oncology, 25, 5562–5569.PubMed Lau, S. K., Boutros, P. C., Pintilie, M., Blackhall, F. H., Zhu, C. Q., Strumpf, D., et al. (2007). Three-gene prognostic classifier for early-stage non small-cell lung cancer. Journal of Clinical Oncology, 25, 5562–5569.PubMed
122.
Zurück zum Zitat Lu, Y., Lemon, W., Liu, P. Y., Yi, Y., Morrison, C., Yang, P., et al. (2006). A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Medicine, 3, e467.PubMed Lu, Y., Lemon, W., Liu, P. Y., Yi, Y., Morrison, C., Yang, P., et al. (2006). A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Medicine, 3, e467.PubMed
123.
Zurück zum Zitat Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., et al. (2004). Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proceedings of the National Academy of Sciences of the United States of America, 101, 9309–9314.PubMed Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., et al. (2004). Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proceedings of the National Academy of Sciences of the United States of America, 101, 9309–9314.PubMed
124.
Zurück zum Zitat Perou, C. M., Jeffrey, S. S., van de Rijn, M., Rees, C. A., Eisen, M. B., Ross, D. T., et al. (1999). Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proceedings of the National Academy of Sciences of the United States of America, 96, 9212–9217.PubMed Perou, C. M., Jeffrey, S. S., van de Rijn, M., Rees, C. A., Eisen, M. B., Ross, D. T., et al. (1999). Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proceedings of the National Academy of Sciences of the United States of America, 96, 9212–9217.PubMed
125.
Zurück zum Zitat Whitfield, M. L., Sherlock, G., Saldanha, A. J., Murray, J. I., Ball, C. A., Alexander, K. E., et al. (2002). Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell, 13, 1977–2000.PubMed Whitfield, M. L., Sherlock, G., Saldanha, A. J., Murray, J. I., Ball, C. A., Alexander, K. E., et al. (2002). Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell, 13, 1977–2000.PubMed
Metadaten
Titel
The role of DNA synthesis imaging in cancer in the era of targeted therapeutics
verfasst von
Sridhar Nimmagadda
Anthony F. Shields
Publikationsdatum
01.12.2008
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2008
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9148-5

Weitere Artikel der Ausgabe 4/2008

Cancer and Metastasis Reviews 4/2008 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.