Skip to main content
Erschienen in: Lasers in Medical Science 5/2022

19.01.2022 | Original Article

Immune-modulating properties of blue light do not influence reepithelization in vitro

verfasst von: Markus Denzinger, Katharina B. M. Schenk, Sabrina Krauß, Manuel Held, Adrien Daigeler, Patricia Reis Wolfertstetter, Christian Knorr, Claudius Illg, Wiebke Eisler

Erschienen in: Lasers in Medical Science | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten

Abstract

Phototherapy is gaining more attention in the treatment of various diseases. Especially, blue light seems to be a promising approach for wound healing promotion due to its antimicrobial and immune-modulating properties. Despite this, there is only little research focusing on the immune-modulating properties of blue light and its possible effects on wound healing. Therefore, we investigated the effects of blue light irradiation on peripheral blood mononuclear cells (PBMC) and the influence on reepithelization in vitro. PBMCs were irradiated with DermoDyne® (DermoDyne HealthCare, Berlin, Germany) and effects on cell viability, cytokine expression, and scratch wound closure were evaluated afterwards. Irradiated cells showed a higher Interleukin-γ concentration while irradiation reduced resazurin concentration in a time-dependent manner. No differences in reepithelization were detectable when keratinocytes were treated with the supernatant of these blue light irradiated PBMCs. Blue light–mediated ex vivo stimulation of PBMCs does not cause faster reepithelization in an in vitro setting. Further research is needed to investigate the wound healing effects of phototherapy with blue light.
Literatur
1.
Zurück zum Zitat Whinfield AL, Aitkenhead I (2009) The light revival: does phototherapy promote wound healing? A review The Foot 19(2):117–124CrossRef Whinfield AL, Aitkenhead I (2009) The light revival: does phototherapy promote wound healing? A review The Foot 19(2):117–124CrossRef
2.
Zurück zum Zitat Caetano KS et al (2009) Phototherapy improves healing of chronic venous ulcers. Photomed Laser Surg 27(1):111–118CrossRef Caetano KS et al (2009) Phototherapy improves healing of chronic venous ulcers. Photomed Laser Surg 27(1):111–118CrossRef
3.
Zurück zum Zitat Minatel DG et al (2009) Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. Lasers Surg Med 41(6):433–441CrossRef Minatel DG et al (2009) Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. Lasers Surg Med 41(6):433–441CrossRef
4.
Zurück zum Zitat Bayat M et al (2005) Low-level laser therapy improves early healing of medial collateral ligament injuries in rats. Photomed Laser Surg 23(6):556–560CrossRef Bayat M et al (2005) Low-level laser therapy improves early healing of medial collateral ligament injuries in rats. Photomed Laser Surg 23(6):556–560CrossRef
5.
Zurück zum Zitat Reddy GK, Stehno-Bittel L, Enwemeka CS (1998) Laser photostimulation of collagen production in healing rabbit achilles tendons. Lasers Surg Med 22(5):281–287CrossRef Reddy GK, Stehno-Bittel L, Enwemeka CS (1998) Laser photostimulation of collagen production in healing rabbit achilles tendons. Lasers Surg Med 22(5):281–287CrossRef
6.
Zurück zum Zitat Nouruzian M et al (2013) Effect of low-level laser therapy on healing of tenotomized Achilles tendon in streptozotocin-induced diabetic rats. Lasers Med Sci 28(2):399–405CrossRef Nouruzian M et al (2013) Effect of low-level laser therapy on healing of tenotomized Achilles tendon in streptozotocin-induced diabetic rats. Lasers Med Sci 28(2):399–405CrossRef
7.
Zurück zum Zitat Morrone G et al (2000) Osteochondral lesion repair of the knee in the rabbit after low-power diode Ga-Al-As laser biostimulation: an experimental study. Artificial Cells, Blood Substitutes, and Biotechnology 28(4):321–336CrossRef Morrone G et al (2000) Osteochondral lesion repair of the knee in the rabbit after low-power diode Ga-Al-As laser biostimulation: an experimental study. Artificial Cells, Blood Substitutes, and Biotechnology 28(4):321–336CrossRef
8.
Zurück zum Zitat Guzzardella GA et al (2001) Low-power diode laser stimulation of surgical osteochondral defects: results after 24 weeks. Artificial Cells, Blood Substitutes, and Biotechnology 29(3):235–244CrossRef Guzzardella GA et al (2001) Low-power diode laser stimulation of surgical osteochondral defects: results after 24 weeks. Artificial Cells, Blood Substitutes, and Biotechnology 29(3):235–244CrossRef
9.
Zurück zum Zitat Torricelli P et al (2001) Laser biostimulation of cartilage: in vitro evaluation. Biomed Pharmacother 55(2):117–120CrossRef Torricelli P et al (2001) Laser biostimulation of cartilage: in vitro evaluation. Biomed Pharmacother 55(2):117–120CrossRef
10.
Zurück zum Zitat GUZZARDELLA, et al., Laser technology in orthopedics: preliminary study on low power laser therapy to improve the bone-biomaterial interface. Vol. 24. 2001, Milano, ITALIE: Wichtig. 5. GUZZARDELLA, et al., Laser technology in orthopedics: preliminary study on low power laser therapy to improve the bone-biomaterial interface. Vol. 24. 2001, Milano, ITALIE: Wichtig. 5.
11.
Zurück zum Zitat Shnitkind E et al (2006) Anti-inflammatory properties of narrow-band blue light. J Drugs Dermatol 5(7):605–610PubMed Shnitkind E et al (2006) Anti-inflammatory properties of narrow-band blue light. J Drugs Dermatol 5(7):605–610PubMed
12.
Zurück zum Zitat Masson-Meyers DS, Bumah VV, Enwemeka CS (2016) Blue light does not impair wound healing in vitro. J Photochem Photobiol, B 160:53–60CrossRef Masson-Meyers DS, Bumah VV, Enwemeka CS (2016) Blue light does not impair wound healing in vitro. J Photochem Photobiol, B 160:53–60CrossRef
13.
Zurück zum Zitat Dungel P et al (2014) Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg Med 46(10):773–780CrossRef Dungel P et al (2014) Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg Med 46(10):773–780CrossRef
14.
Zurück zum Zitat Wang Y et al (2017) Antimicrobial blue light inactivation of pathogenic microbes: state of the art. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 33–35:1–22CrossRef Wang Y et al (2017) Antimicrobial blue light inactivation of pathogenic microbes: state of the art. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 33–35:1–22CrossRef
15.
Zurück zum Zitat Dai T et al (2013) Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother 57(3):1238–1245CrossRef Dai T et al (2013) Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother 57(3):1238–1245CrossRef
16.
Zurück zum Zitat Guffey JS, Wilborn J (2006) Effects of combined 405-nm and 880-nm light on Staphylococcus aureus and Pseudomonas aeruginosa in vitro. Photomed Laser Surg 24(6):680–683CrossRef Guffey JS, Wilborn J (2006) Effects of combined 405-nm and 880-nm light on Staphylococcus aureus and Pseudomonas aeruginosa in vitro. Photomed Laser Surg 24(6):680–683CrossRef
17.
Zurück zum Zitat Kawada A et al (2002) Acne phototherapy with a high-intensity, enhanced, narrow-band, blue light source: an open study and in vitro investigation. J Dermatol Sci 30(2):129–135CrossRef Kawada A et al (2002) Acne phototherapy with a high-intensity, enhanced, narrow-band, blue light source: an open study and in vitro investigation. J Dermatol Sci 30(2):129–135CrossRef
18.
Zurück zum Zitat Bumah VV, Masson-Meyers DS, Enwemeka CS (2015) Blue 470 nm light suppresses the growth of Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 47(7):595–601CrossRef Bumah VV, Masson-Meyers DS, Enwemeka CS (2015) Blue 470 nm light suppresses the growth of Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 47(7):595–601CrossRef
19.
Zurück zum Zitat Dai T et al (2010) Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med 42(1):38–44CrossRef Dai T et al (2010) Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med 42(1):38–44CrossRef
20.
Zurück zum Zitat Enwemeka CS et al (2008) Visible 405 nm SLD light photo-destroys methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 40(10):734–737CrossRef Enwemeka CS et al (2008) Visible 405 nm SLD light photo-destroys methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 40(10):734–737CrossRef
21.
Zurück zum Zitat Enwemeka CS et al (2009) Blue 470-nm light kills methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Photomed Laser Surg 27(2):221–226CrossRef Enwemeka CS et al (2009) Blue 470-nm light kills methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Photomed Laser Surg 27(2):221–226CrossRef
22.
Zurück zum Zitat Bumah VV et al (2015) Optimization of the antimicrobial effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 47(3):266–272CrossRef Bumah VV et al (2015) Optimization of the antimicrobial effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 47(3):266–272CrossRef
23.
Zurück zum Zitat Kleinpenning MM et al (2010) Clinical and histological effects of blue light on normal skin. Photodermatol Photoimmunol Photomed 26(1):16–21CrossRef Kleinpenning MM et al (2010) Clinical and histological effects of blue light on normal skin. Photodermatol Photoimmunol Photomed 26(1):16–21CrossRef
24.
Zurück zum Zitat Rossi, F., et al. In vivo wound healing modulation after irradiation with a blue LED photocoagulator. in Medical Laser Applications and Laser-Tissue Interactions VIII. 2017. Munich: Optical Society of America. Rossi, F., et al. In vivo wound healing modulation after irradiation with a blue LED photocoagulator. in Medical Laser Applications and Laser-Tissue Interactions VIII. 2017. Munich: Optical Society of America.
25.
Zurück zum Zitat Rossi, F., et al. Healing process study in murine skin superficial wounds treated with the blue LED photocoagulator “EMOLED”. in Medical Laser Applications and Laser-Tissue Interactions VII. 2015. Munich: Optical Society of America. Rossi, F., et al. Healing process study in murine skin superficial wounds treated with the blue LED photocoagulator “EMOLED”. in Medical Laser Applications and Laser-Tissue Interactions VII. 2015. Munich: Optical Society of America.
26.
Zurück zum Zitat Adamskaya N et al (2011) Light therapy by blue LED improves wound healing in an excision model in rats. Injury 42(9):917–921CrossRef Adamskaya N et al (2011) Light therapy by blue LED improves wound healing in an excision model in rats. Injury 42(9):917–921CrossRef
27.
Zurück zum Zitat Denzinger M et al (2021) Does phototherapy promote wound healing? Limitations of Blue Light Irradiation Wounds 33(4):91–98PubMed Denzinger M et al (2021) Does phototherapy promote wound healing? Limitations of Blue Light Irradiation Wounds 33(4):91–98PubMed
28.
Zurück zum Zitat Teuschl A et al (2015) Phototherapy with LED light modulates healing processes in an in vitro scratch-wound model using 3 different cell types. Dermatol Surg 41(2):261–268CrossRef Teuschl A et al (2015) Phototherapy with LED light modulates healing processes in an in vitro scratch-wound model using 3 different cell types. Dermatol Surg 41(2):261–268CrossRef
29.
Zurück zum Zitat Mamalis A, Garcha M, Jagdeo J (2015) Light emitting diode-generated blue light modulates fibrosis characteristics: fibroblast proliferation, migration speed, and reactive oxygen species generation. Lasers Surg Med 47(2):210–215CrossRef Mamalis A, Garcha M, Jagdeo J (2015) Light emitting diode-generated blue light modulates fibrosis characteristics: fibroblast proliferation, migration speed, and reactive oxygen species generation. Lasers Surg Med 47(2):210–215CrossRef
30.
Zurück zum Zitat Krutmann J et al (2005) Ultraviolet-free phototherapy. Photodermatol Photoimmunol Photomed 21(2):59–61CrossRef Krutmann J et al (2005) Ultraviolet-free phototherapy. Photodermatol Photoimmunol Photomed 21(2):59–61CrossRef
31.
Zurück zum Zitat Skehan P et al (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82(13):1107–1112CrossRef Skehan P et al (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82(13):1107–1112CrossRef
32.
Zurück zum Zitat Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333CrossRef Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333CrossRef
33.
Zurück zum Zitat Denzinger M et al (2020) Complement activation at the interface of wound dressings and blood does not influence keratinocyte migration/proliferation in vitro. Wound Repair Regen 28(4):573–575CrossRef Denzinger M et al (2020) Complement activation at the interface of wound dressings and blood does not influence keratinocyte migration/proliferation in vitro. Wound Repair Regen 28(4):573–575CrossRef
34.
Zurück zum Zitat Denzinger M et al (2018) Keratinocyte growth factor modified messenger RNA accelerating cell proliferation and migration of keratinocytes. Nucleic Acid Ther 28(6):335–347CrossRef Denzinger M et al (2018) Keratinocyte growth factor modified messenger RNA accelerating cell proliferation and migration of keratinocytes. Nucleic Acid Ther 28(6):335–347CrossRef
35.
Zurück zum Zitat Geback T et al (2009) TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques 46(4):265–274CrossRef Geback T et al (2009) TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques 46(4):265–274CrossRef
36.
Zurück zum Zitat Avola, R., et al., Hydroxytyrosol from olive fruits prevents blue-light-induced damage in human keratinocytes and fibroblasts. Journal of Cellular Physiology. 0(0). Avola, R., et al., Hydroxytyrosol from olive fruits prevents blue-light-induced damage in human keratinocytes and fibroblasts. Journal of Cellular Physiology. 0(0).
37.
Zurück zum Zitat Godley BF et al (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280(22):21061–21066CrossRef Godley BF et al (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280(22):21061–21066CrossRef
38.
Zurück zum Zitat Fischer MR et al (2013) Blue light irradiation suppresses dendritic cells activation in vitro. Exp Dermatol 22(8):558–560CrossRef Fischer MR et al (2013) Blue light irradiation suppresses dendritic cells activation in vitro. Exp Dermatol 22(8):558–560CrossRef
39.
Zurück zum Zitat Becker D et al (2011) Clinical efficacy of blue light full body irradiation as treatment option for severe atopic dermatitis. PLoS ONE 6(6):e20566–e20566CrossRef Becker D et al (2011) Clinical efficacy of blue light full body irradiation as treatment option for severe atopic dermatitis. PLoS ONE 6(6):e20566–e20566CrossRef
40.
Zurück zum Zitat Monfrecola, G., et al., The effect of visible blue light on the differentiation of dendritic cells in vitro. Biochimie, 2014. 101. Monfrecola, G., et al., The effect of visible blue light on the differentiation of dendritic cells in vitro. Biochimie, 2014. 101.
41.
Zurück zum Zitat Tatini, F., et al. Blue light induced modulation in the early phase of wound healing. in European Conference on Biomedical Optics. 2019. Tatini, F., et al. Blue light induced modulation in the early phase of wound healing. in European Conference on Biomedical Optics. 2019.
42.
Zurück zum Zitat Cicchi R et al (2016) Observation of an improved healing process in superficial skin wounds after irradiation with a blue-LED haemostatic device. J Biophotonics 9(6):645–655CrossRef Cicchi R et al (2016) Observation of an improved healing process in superficial skin wounds after irradiation with a blue-LED haemostatic device. J Biophotonics 9(6):645–655CrossRef
43.
Zurück zum Zitat Cicchi, R., et al., Irradiation with EMOLED improves the healing process in superficial skin wounds. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2014. 8926. Cicchi, R., et al., Irradiation with EMOLED improves the healing process in superficial skin wounds. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2014. 8926.
44.
Zurück zum Zitat Avci P et al (2013) Low-Level Laser (Light) Therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32:41–52PubMedPubMedCentral Avci P et al (2013) Low-Level Laser (Light) Therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32:41–52PubMedPubMedCentral
45.
Zurück zum Zitat Duteil L et al (2014) Differences in visible light-induced pigmentation according to wavelengths: a clinical and histological study in comparison with UVB exposure. Pigment Cell Melanoma Res 27(5):822–826CrossRef Duteil L et al (2014) Differences in visible light-induced pigmentation according to wavelengths: a clinical and histological study in comparison with UVB exposure. Pigment Cell Melanoma Res 27(5):822–826CrossRef
46.
Zurück zum Zitat Regazzetti C et al (2018) Melanocytes sense blue light and regulate pigmentation through opsin-3. J Investig Dermatol 138(1):171–178CrossRef Regazzetti C et al (2018) Melanocytes sense blue light and regulate pigmentation through opsin-3. J Investig Dermatol 138(1):171–178CrossRef
Metadaten
Titel
Immune-modulating properties of blue light do not influence reepithelization in vitro
verfasst von
Markus Denzinger
Katharina B. M. Schenk
Sabrina Krauß
Manuel Held
Adrien Daigeler
Patricia Reis Wolfertstetter
Christian Knorr
Claudius Illg
Wiebke Eisler
Publikationsdatum
19.01.2022
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 5/2022
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-022-03502-6

Weitere Artikel der Ausgabe 5/2022

Lasers in Medical Science 5/2022 Zur Ausgabe