Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2-3/2014

01.09.2014 | NON-THEMATIC REVIEW

Immune regulation of therapy-resistant niches: emerging targets for improving anticancer drug responses

verfasst von: Masahisa Jinushi

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2-3/2014

Einloggen, um Zugang zu erhalten

Abstract

Emerging evidence has unveiled a critical role for immunological parameters in predicting tumor prognosis and clinical responses to anticancer therapeutics. On the other hand, responsiveness to anticancer drugs greatly modifies the repertoires, phenotypes, and immunogenicity of tumor-infiltrating immune cells, serving as a critical factor to regulate tumorigenic activities and the emergence of therapy-resistant phenotypes. Tumor-associated immune functions are influenced by distinct or overlapping sets of therapeutic modalities, such as cytotoxic chemotherapy, radiotherapy, or molecular-targeted therapy, and various anticancer modalities have unique properties to influence the mode of cross-talk between tumor cells and immune cells in tumor microenvironments. Thus, it is critical to understand precise molecular machineries whereby each anticancer strategy has a distinct or overlapping role in regulating the dynamism of reciprocal communication between tumor and immune cells in tumor microenvironments. Such an understanding will open new therapeutic opportunities by harnessing the immune system to overcome resistance to conventional anticancer drugs.
Literatur
1.
Zurück zum Zitat Higgins, C. F. (2007). Multiple molecular mechanisms for multidrug resistance transporters. Nature, 446, 749–757.PubMedCrossRef Higgins, C. F. (2007). Multiple molecular mechanisms for multidrug resistance transporters. Nature, 446, 749–757.PubMedCrossRef
2.
Zurück zum Zitat Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.PubMedCrossRef Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.PubMedCrossRef
3.
Zurück zum Zitat Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., et al. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 141, 69–80.PubMedCrossRefPubMedCentral Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., et al. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 141, 69–80.PubMedCrossRefPubMedCentral
4.
Zurück zum Zitat Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer, 13, 714–726.PubMedCrossRef Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer, 13, 714–726.PubMedCrossRef
5.
Zurück zum Zitat Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., et al. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141, 583–594.PubMedCrossRefPubMedCentral Roesch, A., Fukunaga-Kalabis, M., Schmidt, E. C., Zabierowski, S. E., Brafford, P. A., Vultur, A., et al. (2010). A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell, 141, 583–594.PubMedCrossRefPubMedCentral
6.
Zurück zum Zitat Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K. M., Speicher, D., et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 23, 811–825.PubMedCrossRef Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K. M., Speicher, D., et al. (2013). Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell, 23, 811–825.PubMedCrossRef
7.
Zurück zum Zitat Magee, J. A., Piskounova, E., & Morrison, S. J. (2012). Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell, 21, 283–296.PubMedCrossRef Magee, J. A., Piskounova, E., & Morrison, S. J. (2012). Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell, 21, 283–296.PubMedCrossRef
8.
Zurück zum Zitat Clevers, H. (2011). The cancer stem cell: premises, promises and challenges. Nature Medicine, 17, 313–319.PubMedCrossRef Clevers, H. (2011). The cancer stem cell: premises, promises and challenges. Nature Medicine, 17, 313–319.PubMedCrossRef
9.
Zurück zum Zitat Haber, D. A., Bell, D. W., Sordella, R., Kwak, E. L., Godin-Heymann, N., Sharma, S. V., et al. (2005). Molecular targeted therapy of lung cancer: EGFR mutations and response to EGFR inhibitors. Cold Spring Harbor Symposia on Quantitative Biology, 70, 419–426.PubMedCrossRef Haber, D. A., Bell, D. W., Sordella, R., Kwak, E. L., Godin-Heymann, N., Sharma, S. V., et al. (2005). Molecular targeted therapy of lung cancer: EGFR mutations and response to EGFR inhibitors. Cold Spring Harbor Symposia on Quantitative Biology, 70, 419–426.PubMedCrossRef
10.
Zurück zum Zitat Poulikakos, P. I., & Rosen, N. (2011). Mutant BRAF melanomas—dependence and resistance. Cancer Cell, 19(1), 11–15.PubMedCrossRef Poulikakos, P. I., & Rosen, N. (2011). Mutant BRAF melanomas—dependence and resistance. Cancer Cell, 19(1), 11–15.PubMedCrossRef
11.
Zurück zum Zitat Nahta, R., Yu, D., Hung, M. C., Hortobagyi, G. N., & Esteva, F. J. (2006). Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nature Clinical Practice Oncology, 3(5), 269–280.PubMedCrossRef Nahta, R., Yu, D., Hung, M. C., Hortobagyi, G. N., & Esteva, F. J. (2006). Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nature Clinical Practice Oncology, 3(5), 269–280.PubMedCrossRef
13.
Zurück zum Zitat Pallasch, C. P., Leskov, I., Braun, C. J., Vorholt, D., Drake, A., & Soto-Feliciano, Y. M. (2014). Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell, 156(3), 590–602.PubMedCrossRef Pallasch, C. P., Leskov, I., Braun, C. J., Vorholt, D., Drake, A., & Soto-Feliciano, Y. M. (2014). Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell, 156(3), 590–602.PubMedCrossRef
14.
Zurück zum Zitat Farmer, P., Bonnefoi, H., Anderle, P., Cameron, D., Wirapati, P., Becette, V., et al. (2009). A stroma-related signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nature Medicine, 15, 68–74.PubMedCrossRef Farmer, P., Bonnefoi, H., Anderle, P., Cameron, D., Wirapati, P., Becette, V., et al. (2009). A stroma-related signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nature Medicine, 15, 68–74.PubMedCrossRef
15.
Zurück zum Zitat Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2010). An epigenetic switch involving NF-kB, Lin28, Let-7 MicroRNA, and IL-6 links inflammation to cell transformation. Cell, 139, 693–706.CrossRef Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2010). An epigenetic switch involving NF-kB, Lin28, Let-7 MicroRNA, and IL-6 links inflammation to cell transformation. Cell, 139, 693–706.CrossRef
16.
Zurück zum Zitat Gilvennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140, 883–899.CrossRef Gilvennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140, 883–899.CrossRef
17.
Zurück zum Zitat Lake, R. A., & Robinson, B. W. (2005). Immunotherapy and chemotherapy—a practical partnership. Nature Reviews Cancer, 5(5), 397–405.PubMedCrossRef Lake, R. A., & Robinson, B. W. (2005). Immunotherapy and chemotherapy—a practical partnership. Nature Reviews Cancer, 5(5), 397–405.PubMedCrossRef
18.
Zurück zum Zitat Zitvogel, L., Galluzzi, L., Smyth, M. J., & Kroemer, G. (2013). Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity, 39, 74–88.PubMedCrossRef Zitvogel, L., Galluzzi, L., Smyth, M. J., & Kroemer, G. (2013). Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity, 39, 74–88.PubMedCrossRef
19.
Zurück zum Zitat Jinushi, M., Yagita, H., Yoshiyama, H., & Tahara, H. (2013). Putting the brakes on anticancer therapies: suppression of innate immune pathways by tumor-associated myeloid cells. Trends in Molecular Medicine, 9, 536–545.CrossRef Jinushi, M., Yagita, H., Yoshiyama, H., & Tahara, H. (2013). Putting the brakes on anticancer therapies: suppression of innate immune pathways by tumor-associated myeloid cells. Trends in Molecular Medicine, 9, 536–545.CrossRef
20.
Zurück zum Zitat Bruchard, M., Mignot, G., Derangère, V., Chalmin, F., Chevriaux, A., Végran, F., et al. (2013). Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature Medicine, 19(1), 57–64.PubMedCrossRef Bruchard, M., Mignot, G., Derangère, V., Chalmin, F., Chevriaux, A., Végran, F., et al. (2013). Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature Medicine, 19(1), 57–64.PubMedCrossRef
21.
Zurück zum Zitat Huang, B., Zhao, J., Li, H., He, K. L., Chen, Y., & Chen, S. H. (2005). Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Research, 65(12), 5009–5014.PubMedCrossRef Huang, B., Zhao, J., Li, H., He, K. L., Chen, Y., & Chen, S. H. (2005). Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Research, 65(12), 5009–5014.PubMedCrossRef
22.
Zurück zum Zitat Huang, B., Zhao, J., Unkeless, J. C., Feng, Z. H., & Xiong, H. (2008). TLR signaling by tumor and immune cells: a double-edged sword. Oncogene, 27(2), 218–224.PubMedCrossRef Huang, B., Zhao, J., Unkeless, J. C., Feng, Z. H., & Xiong, H. (2008). TLR signaling by tumor and immune cells: a double-edged sword. Oncogene, 27(2), 218–224.PubMedCrossRef
23.
Zurück zum Zitat Dranoff, G. (2004). Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews Cancer, 4, 11–22.PubMedCrossRef Dranoff, G. (2004). Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews Cancer, 4, 11–22.PubMedCrossRef
24.
Zurück zum Zitat Lin, W. W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117, 1175–1183.PubMedCrossRefPubMedCentral Lin, W. W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117, 1175–1183.PubMedCrossRefPubMedCentral
25.
Zurück zum Zitat Tye, H., Kennedy, C. L., Najdovska, M., McLeod, L., McCormack, W., Hughes, N., et al. (2012). STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell, 22(4), 466–478.PubMedCrossRef Tye, H., Kennedy, C. L., Najdovska, M., McLeod, L., McCormack, W., Hughes, N., et al. (2012). STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell, 22(4), 466–478.PubMedCrossRef
26.
Zurück zum Zitat Huang, B., Zhao, J., Shen, S., Li, H., He, K. L., Shen, G. X., et al. (2007). Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Research, 67(9), 4346–4352.PubMedCrossRef Huang, B., Zhao, J., Shen, S., Li, H., He, K. L., Shen, G. X., et al. (2007). Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Research, 67(9), 4346–4352.PubMedCrossRef
27.
Zurück zum Zitat Szajnik, M., Szczepanski, M. J., Czystowska, M., Elishaev, E., Mandapathil, M., Nowak-Markwitz, E., et al. (2009). TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene, 28, 4353–4563.PubMedCrossRefPubMedCentral Szajnik, M., Szczepanski, M. J., Czystowska, M., Elishaev, E., Mandapathil, M., Nowak-Markwitz, E., et al. (2009). TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene, 28, 4353–4563.PubMedCrossRefPubMedCentral
28.
Zurück zum Zitat Cherfils-Vicini, J., Platonova, S., Gillard, M., Laurans, L., Validire, P., Caliandro, R., et al. (2010). Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. Journal of Clinical Investigation, 120, 1285–1297.PubMedCrossRefPubMedCentral Cherfils-Vicini, J., Platonova, S., Gillard, M., Laurans, L., Validire, P., Caliandro, R., et al. (2010). Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. Journal of Clinical Investigation, 120, 1285–1297.PubMedCrossRefPubMedCentral
29.
Zurück zum Zitat Chiba, S., Baghdadi, M., Akiba, H., Yoshiyama, H., Kinoshita, I., Dosaka-Akita, H., et al. (2012). Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nature Immunology, 13, 832–842.PubMedCrossRefPubMedCentral Chiba, S., Baghdadi, M., Akiba, H., Yoshiyama, H., Kinoshita, I., Dosaka-Akita, H., et al. (2012). Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nature Immunology, 13, 832–842.PubMedCrossRefPubMedCentral
30.
Zurück zum Zitat Tang, D., & Lotze, M. T. (2012). Tumor immunity times out: TIM-3 and HMGB1. Nature Immunology, 9, 808–810.CrossRef Tang, D., & Lotze, M. T. (2012). Tumor immunity times out: TIM-3 and HMGB1. Nature Immunology, 9, 808–810.CrossRef
32.
Zurück zum Zitat Obeid, M., et al. (2007). Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine, 13, 54–61.PubMedCrossRef Obeid, M., et al. (2007). Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine, 13, 54–61.PubMedCrossRef
33.
Zurück zum Zitat Jinushi, M., et al. (2009). Milk fat globule EGF-8 triggers tumor destruction through coordinated cell-autonomous and immune-mediated mechanisms. Journal of Experimental Medicine, 206, 1317–1326.PubMedCrossRefPubMedCentral Jinushi, M., et al. (2009). Milk fat globule EGF-8 triggers tumor destruction through coordinated cell-autonomous and immune-mediated mechanisms. Journal of Experimental Medicine, 206, 1317–1326.PubMedCrossRefPubMedCentral
34.
Zurück zum Zitat Loges, S., Schmidt, T., Tjwa, M., van Geyte, K., Lievens, D., Lutgens, E., et al. (2010). Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood, 115(11), 2264–2273.PubMedCrossRef Loges, S., Schmidt, T., Tjwa, M., van Geyte, K., Lievens, D., Lutgens, E., et al. (2010). Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood, 115(11), 2264–2273.PubMedCrossRef
35.
Zurück zum Zitat Elliott, M. R., Chekeni, F. B., Trampont, P. C., Lazarowski, E. R., Kadl, A., Walk, S. F., et al. (2009). Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature, 461(7261), 282–286.PubMedCrossRefPubMedCentral Elliott, M. R., Chekeni, F. B., Trampont, P. C., Lazarowski, E. R., Kadl, A., Walk, S. F., et al. (2009). Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature, 461(7261), 282–286.PubMedCrossRefPubMedCentral
36.
Zurück zum Zitat Chao, M. P., Majeti, R., & Weissman, I. L. (2011). Programmed cell removal: a new obstacle in the road to developing cancer. Nature Reviews Cancer, 12, 58–67.PubMed Chao, M. P., Majeti, R., & Weissman, I. L. (2011). Programmed cell removal: a new obstacle in the road to developing cancer. Nature Reviews Cancer, 12, 58–67.PubMed
37.
Zurück zum Zitat Chao, M. P., Jaiswal, S., Weissman-Tsukamoto, R., Alizadeh, A. A., Gentles, A. J., Volkmer, J., et al. (2010). Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and counterbalanced by CD47. Science Translational Medicine, 2(63), 63ra94.PubMedCrossRef Chao, M. P., Jaiswal, S., Weissman-Tsukamoto, R., Alizadeh, A. A., Gentles, A. J., Volkmer, J., et al. (2010). Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and counterbalanced by CD47. Science Translational Medicine, 2(63), 63ra94.PubMedCrossRef
38.
Zurück zum Zitat Jaiswal, S., Jamieson, C. H., Pang, W. W., Park, C. Y., Chao, M. P., Majeti, R., et al. (2009). CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell, 138(2), 271–285.PubMedCrossRefPubMedCentral Jaiswal, S., Jamieson, C. H., Pang, W. W., Park, C. Y., Chao, M. P., Majeti, R., et al. (2009). CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell, 138(2), 271–285.PubMedCrossRefPubMedCentral
39.
Zurück zum Zitat Baghdadi, M., Yoneda, A., Yamashina, T., Nagao, H., Komohara, Y., Nagai, S., et al. (2013). TIM-4 glycoprotein-mediated degradation of dying tumor cells by autophagy leads to reduced antigen presentation and increased immune tolerance. Immunity, 39, 1070–1081.PubMedCrossRef Baghdadi, M., Yoneda, A., Yamashina, T., Nagao, H., Komohara, Y., Nagai, S., et al. (2013). TIM-4 glycoprotein-mediated degradation of dying tumor cells by autophagy leads to reduced antigen presentation and increased immune tolerance. Immunity, 39, 1070–1081.PubMedCrossRef
40.
Zurück zum Zitat Jinushi, M., Chiba, S., Baghdadi, M., Kinoshita, I., Dosaka-Akita, H., Ito, K., et al. (2012). ATM-mediated DNA damage signals mediate immune escape through integrin-αvβ3-dependent mechanisms. Cancer Research, 72(1), 56–65.PubMedCrossRef Jinushi, M., Chiba, S., Baghdadi, M., Kinoshita, I., Dosaka-Akita, H., Ito, K., et al. (2012). ATM-mediated DNA damage signals mediate immune escape through integrin-αvβ3-dependent mechanisms. Cancer Research, 72(1), 56–65.PubMedCrossRef
41.
Zurück zum Zitat Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 444, 638–642.PubMedCrossRef Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 444, 638–642.PubMedCrossRef
42.
Zurück zum Zitat Mooi, W. J., & Peeper, D. S. (2006). Oncogene-induced cell senescence—halting on the road to cancer. New England Journal of Medicine, 355, 1037–1046.PubMedCrossRef Mooi, W. J., & Peeper, D. S. (2006). Oncogene-induced cell senescence—halting on the road to cancer. New England Journal of Medicine, 355, 1037–1046.PubMedCrossRef
43.
Zurück zum Zitat Collado, M., Blasco, M. A., & Serrano, M. (2007). Cellular senescence in cancer and aging. Cell, 130, 223–233.PubMedCrossRef Collado, M., Blasco, M. A., & Serrano, M. (2007). Cellular senescence in cancer and aging. Cell, 130, 223–233.PubMedCrossRef
44.
Zurück zum Zitat Kuilman, T., & Peeper, D. S. (2009). Senescence-messaging secretome: SMS-ing cellular stress. Nature Reviews Cancer, 9(2), 81–94.PubMedCrossRef Kuilman, T., & Peeper, D. S. (2009). Senescence-messaging secretome: SMS-ing cellular stress. Nature Reviews Cancer, 9(2), 81–94.PubMedCrossRef
45.
Zurück zum Zitat Coppé, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology, 5, 99–118.PubMedCrossRef Coppé, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology, 5, 99–118.PubMedCrossRef
46.
Zurück zum Zitat Acosta, J. C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., & Morton, J. P. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 8, 978–990.CrossRef Acosta, J. C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., & Morton, J. P. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 8, 978–990.CrossRef
47.
Zurück zum Zitat Kuilman, T., Michaloglou, C., Vredeveld, L. C., Douma, S., van Doorn, R., Desmet, C. J., et al. (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell, 133(6), 1019–1031.PubMedCrossRef Kuilman, T., Michaloglou, C., Vredeveld, L. C., Douma, S., van Doorn, R., Desmet, C. J., et al. (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell, 133(6), 1019–1031.PubMedCrossRef
48.
Zurück zum Zitat Pazolli, E., Alspach, E., Milczarek, A., Prior, J., Piwnica-Worms, D., & Stewart, S. A. (2012). Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Research, 72(9), 225122–225161.CrossRef Pazolli, E., Alspach, E., Milczarek, A., Prior, J., Piwnica-Worms, D., & Stewart, S. A. (2012). Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Research, 72(9), 225122–225161.CrossRef
49.
Zurück zum Zitat Canino, C., Mori, F., Cambria, A., Diamantini, A., Germoni, S., Alessandrini, G., et al. (2012). SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells. Oncogene, 31(26), 3148–3163.PubMedCrossRef Canino, C., Mori, F., Cambria, A., Diamantini, A., Germoni, S., Alessandrini, G., et al. (2012). SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells. Oncogene, 31(26), 3148–3163.PubMedCrossRef
50.
Zurück zum Zitat Yoshimoto, S., Loo, T. M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., et al. (2013). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 499, 97–101.PubMedCrossRef Yoshimoto, S., Loo, T. M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., et al. (2013). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 499, 97–101.PubMedCrossRef
51.
Zurück zum Zitat Lujambio, A., Akkari, L., Simon, J., Grace, D., Tschaharganeh, D. F., & Bolden, J. E. (2013). Non-cell-autonomous tumor suppression by p53. Cell, 153, 449–460.PubMedCrossRefPubMedCentral Lujambio, A., Akkari, L., Simon, J., Grace, D., Tschaharganeh, D. F., & Bolden, J. E. (2013). Non-cell-autonomous tumor suppression by p53. Cell, 153, 449–460.PubMedCrossRefPubMedCentral
52.
Zurück zum Zitat Xue, W., Zender, L., Miething, C., Dickins, R. A., Hernando, E., Krizhanovsky, V., et al. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 445(7128), 656–660.PubMedCrossRef Xue, W., Zender, L., Miething, C., Dickins, R. A., Hernando, E., Krizhanovsky, V., et al. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 445(7128), 656–660.PubMedCrossRef
53.
Zurück zum Zitat Chien, Y., Scuoppo, C., Wang, X., Fang, X., Balgley, B., Bolden, J. E., et al. (2012). Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes and Development, 25(20), 2125–2136.CrossRef Chien, Y., Scuoppo, C., Wang, X., Fang, X., Balgley, B., Bolden, J. E., et al. (2012). Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes and Development, 25(20), 2125–2136.CrossRef
55.
Zurück zum Zitat Klug, F., Prakash, H., Huber, P. E., Seibel, T., Bender, N., Halama, N., et al. (2013). Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell, 24(5), 589–602.PubMedCrossRef Klug, F., Prakash, H., Huber, P. E., Seibel, T., Bender, N., Halama, N., et al. (2013). Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell, 24(5), 589–602.PubMedCrossRef
56.
Zurück zum Zitat Burnette, B. C., Liang, H., Lee, Y., Chlewicki, L., Khodarev, N. N., Weichselbaum, R. R., et al. (2011). The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Research, 71(7), 2488–2496.PubMedCrossRefPubMedCentral Burnette, B. C., Liang, H., Lee, Y., Chlewicki, L., Khodarev, N. N., Weichselbaum, R. R., et al. (2011). The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Research, 71(7), 2488–2496.PubMedCrossRefPubMedCentral
57.
Zurück zum Zitat Lee, Y., Auh, S. L., Wang, Y., Burnette, B., Wang, Y., Meng, Y., et al. (2009). Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood, 114(3), 589–595.PubMedCrossRefPubMedCentral Lee, Y., Auh, S. L., Wang, Y., Burnette, B., Wang, Y., Meng, Y., et al. (2009). Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood, 114(3), 589–595.PubMedCrossRefPubMedCentral
58.
Zurück zum Zitat Takeshima, T., Chamoto, K., Wakita, D., Ohkuri, T., Togashi, Y., Shirato, H., et al. (2010). Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Research, 70(7), 2697–2706.PubMedCrossRef Takeshima, T., Chamoto, K., Wakita, D., Ohkuri, T., Togashi, Y., Shirato, H., et al. (2010). Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Research, 70(7), 2697–2706.PubMedCrossRef
59.
Zurück zum Zitat Ludgate, C. M. (2012). Optimizing cancer treatments to induce an acute immune response: radiation Abscopal effects, PAMPs, and DAMPs. Clinical Cancer Research, 18, 4522–4525.PubMedCrossRef Ludgate, C. M. (2012). Optimizing cancer treatments to induce an acute immune response: radiation Abscopal effects, PAMPs, and DAMPs. Clinical Cancer Research, 18, 4522–4525.PubMedCrossRef
60.
Zurück zum Zitat Apetoh, L., Ghiringhelli, F., Tesniere, A., Criollo, A., Ortiz, C., Lidereau, R., et al. (2007). The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunology Reviews, 220, 47–59.CrossRef Apetoh, L., Ghiringhelli, F., Tesniere, A., Criollo, A., Ortiz, C., Lidereau, R., et al. (2007). The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunology Reviews, 220, 47–59.CrossRef
61.
Zurück zum Zitat Krysko, D. V., Garg, A. D., Kaczmarek, A., Krysko, O., Agostinis, P., & Vandenabeele, P. (2012). Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer, 12, 860–875.PubMedCrossRef Krysko, D. V., Garg, A. D., Kaczmarek, A., Krysko, O., Agostinis, P., & Vandenabeele, P. (2012). Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer, 12, 860–875.PubMedCrossRef
62.
Zurück zum Zitat Kozin, S. V., Duda, D. G., Munn, L. L., & Jain, R. K. (2012). Neovascularization after irradiation: what is the source of newly formed vessels in recurring tumors? Journal of the National Cancer Institute, 104, 899–905.PubMedCrossRefPubMedCentral Kozin, S. V., Duda, D. G., Munn, L. L., & Jain, R. K. (2012). Neovascularization after irradiation: what is the source of newly formed vessels in recurring tumors? Journal of the National Cancer Institute, 104, 899–905.PubMedCrossRefPubMedCentral
63.
Zurück zum Zitat Xu, J., Escamilla, J., Mok, S., David, J., Priceman, S., West, B., et al. (2013). CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Research, 73(9), 2782–2794.PubMedCrossRefPubMedCentral Xu, J., Escamilla, J., Mok, S., David, J., Priceman, S., West, B., et al. (2013). CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Research, 73(9), 2782–2794.PubMedCrossRefPubMedCentral
64.
Zurück zum Zitat Sharma, S. V., Bell, D. W., Settleman, J., & Haber, D. A. (2007). Epidermal growth factor receptor mutations in lung cancer. Nature Reviews Cancer, 7(3), 169–181.PubMedCrossRef Sharma, S. V., Bell, D. W., Settleman, J., & Haber, D. A. (2007). Epidermal growth factor receptor mutations in lung cancer. Nature Reviews Cancer, 7(3), 169–181.PubMedCrossRef
65.
Zurück zum Zitat Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 350(21), 2129–2139.PubMedCrossRef Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 350(21), 2129–2139.PubMedCrossRef
66.
Zurück zum Zitat Kobayashi, S., Boggon, T. J., Dayaram, T., Jänne, P. A., Kocher, O., Meyerson, M., et al. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 352(8), 786–792.PubMedCrossRef Kobayashi, S., Boggon, T. J., Dayaram, T., Jänne, P. A., Kocher, O., Meyerson, M., et al. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 352(8), 786–792.PubMedCrossRef
67.
Zurück zum Zitat Bivona, T. G., Hieronymus, H., Parker, J., Chang, K., Taron, M., Rosell, R., et al. (2011). FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature, 47, 523–526.CrossRef Bivona, T. G., Hieronymus, H., Parker, J., Chang, K., Taron, M., Rosell, R., et al. (2011). FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature, 47, 523–526.CrossRef
68.
Zurück zum Zitat Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316, 1039–1043.PubMedCrossRef Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316, 1039–1043.PubMedCrossRef
69.
70.
Zurück zum Zitat Gao, S. P., Mark, K. G., Leslie, K., Pao, W., Motoi, N., Gerald, W. L., et al. (2007). Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. Journal of Clinical Investigation, 117, 3846–3856.PubMedCrossRefPubMedCentral Gao, S. P., Mark, K. G., Leslie, K., Pao, W., Motoi, N., Gerald, W. L., et al. (2007). Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. Journal of Clinical Investigation, 117, 3846–3856.PubMedCrossRefPubMedCentral
71.
Zurück zum Zitat Jinushi, M., Chiba, S., Yoshiyama, H., Masutomi, K., Kinoshita, I., Dosaka-Akita, H., et al. (2011). Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 108(30), 12425–12430.PubMedCrossRefPubMedCentral Jinushi, M., Chiba, S., Yoshiyama, H., Masutomi, K., Kinoshita, I., Dosaka-Akita, H., et al. (2011). Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 108(30), 12425–12430.PubMedCrossRefPubMedCentral
72.
Zurück zum Zitat Zhang, Z., Lee, J. C., Lin, L., Olivas, V., Au, V., LaFramboise, T., et al. (2012). Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nature Genetics, 44(8), 852–860.PubMedCrossRefPubMedCentral Zhang, Z., Lee, J. C., Lin, L., Olivas, V., Au, V., LaFramboise, T., et al. (2012). Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nature Genetics, 44(8), 852–860.PubMedCrossRefPubMedCentral
73.
Zurück zum Zitat Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., BRIM-3 Study Group, et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New England Journal of Medicine, 364, 2507–2516.PubMedCrossRefPubMedCentral Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., BRIM-3 Study Group, et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New England Journal of Medicine, 364, 2507–2516.PubMedCrossRefPubMedCentral
74.
Zurück zum Zitat Sumimoto, H., Imabayashi, F., Iwata, T., & Kawakami, Y. (2006). The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. Journal of Experimental Medicine, 203, 1651–1656.PubMedCrossRefPubMedCentral Sumimoto, H., Imabayashi, F., Iwata, T., & Kawakami, Y. (2006). The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. Journal of Experimental Medicine, 203, 1651–1656.PubMedCrossRefPubMedCentral
75.
Zurück zum Zitat Jiang, X., Zhou, J., Giobbie-Hurder, A., Wargo, J., & Hodi, F. S. (2013). The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clinical Cancer Research, 19, 598–609.PubMedCrossRef Jiang, X., Zhou, J., Giobbie-Hurder, A., Wargo, J., & Hodi, F. S. (2013). The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clinical Cancer Research, 19, 598–609.PubMedCrossRef
76.
Zurück zum Zitat Knight, D. A., Ngiow, S. F., Li, M., Parmenter, T., Mok, S., Cass, A., et al. (2013). Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. Journal of Clinical Investigation, 123, 1371–1381.PubMedCrossRefPubMedCentral Knight, D. A., Ngiow, S. F., Li, M., Parmenter, T., Mok, S., Cass, A., et al. (2013). Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. Journal of Clinical Investigation, 123, 1371–1381.PubMedCrossRefPubMedCentral
77.
Zurück zum Zitat Frederick, D. T., Piris, A., Cogdill, A. P., Cooper, Z. A., Lezcano, C., Ferrone, C. R., et al. (2013). BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clinical Cancer Research, 19, 1225–1231.PubMedCrossRefPubMedCentral Frederick, D. T., Piris, A., Cogdill, A. P., Cooper, Z. A., Lezcano, C., Ferrone, C. R., et al. (2013). BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clinical Cancer Research, 19, 1225–1231.PubMedCrossRefPubMedCentral
78.
Zurück zum Zitat Hudes, G., Carducci, M., Tomczak, P., Dutcher, J., Figlin, R., Kapoor, A., Global ARCC Trial, et al. (2007). Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. New England Journal of Medicine, 356, 2271–2281.PubMedCrossRef Hudes, G., Carducci, M., Tomczak, P., Dutcher, J., Figlin, R., Kapoor, A., Global ARCC Trial, et al. (2007). Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. New England Journal of Medicine, 356, 2271–2281.PubMedCrossRef
80.
Zurück zum Zitat Waickman, A. T., & Powell, J. D. (2012). mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunology Reviews, 49, 43–58.CrossRef Waickman, A. T., & Powell, J. D. (2012). mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunology Reviews, 49, 43–58.CrossRef
81.
Zurück zum Zitat Amiel, E., Everts, B., Freitas, T. C., King, I. L., Curtis, J. D., Pearce, E. L., et al. (2012). Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. Journal of Immunology, 189, 2151–2158.CrossRef Amiel, E., Everts, B., Freitas, T. C., King, I. L., Curtis, J. D., Pearce, E. L., et al. (2012). Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. Journal of Immunology, 189, 2151–2158.CrossRef
82.
Zurück zum Zitat Berezhnoy, A., Castro, I., Levay, A., Malek, T. R., & Gilboa, E. (2014). Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. Journal of Clinical Investigation, 124, 188–197.PubMedCrossRefPubMedCentral Berezhnoy, A., Castro, I., Levay, A., Malek, T. R., & Gilboa, E. (2014). Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. Journal of Clinical Investigation, 124, 188–197.PubMedCrossRefPubMedCentral
83.
Zurück zum Zitat Bianchini, G., & Gianni, L. (2014). The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncology, 2, e58–e68.CrossRef Bianchini, G., & Gianni, L. (2014). The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncology, 2, e58–e68.CrossRef
84.
Zurück zum Zitat Taylor, C., Hershman, D., Shah, N., Suciu-Foca, N., Petrylak, D. P., Taub, R., et al. (2007). Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clinical Cancer Research, 13, 5133–5143.PubMedCrossRef Taylor, C., Hershman, D., Shah, N., Suciu-Foca, N., Petrylak, D. P., Taub, R., et al. (2007). Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clinical Cancer Research, 13, 5133–5143.PubMedCrossRef
85.
Zurück zum Zitat DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1(1), 54–67.PubMedCrossRefPubMedCentral DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1(1), 54–67.PubMedCrossRefPubMedCentral
86.
Zurück zum Zitat Kohrt, H. E., Nouri, N., Nowels, K., Johnson, D., Holmes, S., & Lee, P. P. (2005). Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Medicine, 2(9), e284.PubMedCrossRefPubMedCentral Kohrt, H. E., Nouri, N., Nowels, K., Johnson, D., Holmes, S., & Lee, P. P. (2005). Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Medicine, 2(9), e284.PubMedCrossRefPubMedCentral
87.
Zurück zum Zitat Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P. G., & Anderson, K. C. (2007). Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nature Reviews Cancer, 8, 585–598.CrossRef Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P. G., & Anderson, K. C. (2007). Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nature Reviews Cancer, 8, 585–598.CrossRef
88.
Zurück zum Zitat Richardson, P. G., Sonneveld, P., Schuster, M. W., Irwin, D., Stadtmauer, E. A., Facon, T., Assessment of Proteasome Inhibition for Extending Remissions (APEX) Investigators, et al. (2005). Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. New England Journal of Medicine, 352, 2487–2498.PubMedCrossRef Richardson, P. G., Sonneveld, P., Schuster, M. W., Irwin, D., Stadtmauer, E. A., Facon, T., Assessment of Proteasome Inhibition for Extending Remissions (APEX) Investigators, et al. (2005). Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. New England Journal of Medicine, 352, 2487–2498.PubMedCrossRef
89.
Zurück zum Zitat Palumbo, A., Hajek, R., Delforge, M., Kropff, M., Petrucci, M. T., Catalano, J., MM-015 Investigators, et al. (2012). Continuous lenalidomide treatment for newly diagnosed multiple myeloma. New England Journal of Medicine, 366, 1759–1769.PubMedCrossRef Palumbo, A., Hajek, R., Delforge, M., Kropff, M., Petrucci, M. T., Catalano, J., MM-015 Investigators, et al. (2012). Continuous lenalidomide treatment for newly diagnosed multiple myeloma. New England Journal of Medicine, 366, 1759–1769.PubMedCrossRef
90.
Zurück zum Zitat Chauhan, D., Singh, A. V., Brahmandam, M., Carrasco, R., Bandi, M., Hideshima, T., et al. (2009). Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell, 16, 309–323.PubMedCrossRefPubMedCentral Chauhan, D., Singh, A. V., Brahmandam, M., Carrasco, R., Bandi, M., Hideshima, T., et al. (2009). Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell, 16, 309–323.PubMedCrossRefPubMedCentral
91.
Zurück zum Zitat Jinushi, M., Vanneman, M., Munshi, N. C., Tai, Y. T., Prabhala, R. H., Ritz, J., et al. (2008). MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 105, 1285–1290.PubMedCrossRefPubMedCentral Jinushi, M., Vanneman, M., Munshi, N. C., Tai, Y. T., Prabhala, R. H., Ritz, J., et al. (2008). MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 105, 1285–1290.PubMedCrossRefPubMedCentral
92.
Zurück zum Zitat Martiniani, R., Di Loreto, V., Di Sano, C., Lombardo, A., & Liberati, A. M. (2012). Biological activity of lenalidomide and its underlying therapeutic effects in multiple myeloma. Advances in Hematology, 2012, 842945.PubMedCrossRefPubMedCentral Martiniani, R., Di Loreto, V., Di Sano, C., Lombardo, A., & Liberati, A. M. (2012). Biological activity of lenalidomide and its underlying therapeutic effects in multiple myeloma. Advances in Hematology, 2012, 842945.PubMedCrossRefPubMedCentral
93.
Zurück zum Zitat Ghiringhelli, F., Apetoh, L., Tesniere, A., Aymeric, L., Ma, Y., Ortiz, C., et al. (2009). Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nature Medicine, 15, 1170–1178.PubMedCrossRef Ghiringhelli, F., Apetoh, L., Tesniere, A., Aymeric, L., Ma, Y., Ortiz, C., et al. (2009). Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nature Medicine, 15, 1170–1178.PubMedCrossRef
94.
Zurück zum Zitat Yamamoto, R., Nishikori, M., Tashima, M., Sakai, T., Ichinohe, T., Takaori-Kondo, A., et al. (2009). B7-H1 expression is regulated by MEK/ERK signaling pathway in anaplastic large cell lymphoma and Hodgkin lymphoma. Cancer Science, 100, 2093–2100.PubMedCrossRef Yamamoto, R., Nishikori, M., Tashima, M., Sakai, T., Ichinohe, T., Takaori-Kondo, A., et al. (2009). B7-H1 expression is regulated by MEK/ERK signaling pathway in anaplastic large cell lymphoma and Hodgkin lymphoma. Cancer Science, 100, 2093–2100.PubMedCrossRef
95.
Metadaten
Titel
Immune regulation of therapy-resistant niches: emerging targets for improving anticancer drug responses
verfasst von
Masahisa Jinushi
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2-3/2014
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9501-9

Weitere Artikel der Ausgabe 2-3/2014

Cancer and Metastasis Reviews 2-3/2014 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.