Skip to main content
Erschienen in: Seminars in Immunopathology 5/2014

01.09.2014 | Review

Immune sensing of nucleic acids in inflammatory skin diseases

verfasst von: Olivier Demaria, Jeremy Di Domizio, Michel Gilliet

Erschienen in: Seminars in Immunopathology | Ausgabe 5/2014

Einloggen, um Zugang zu erhalten

Abstract

Endosomal and cytosolic nucleic acid receptors are important immune sensors required for the detection of infecting or replicating viruses. The intracellular location of these receptors allows viral recognition and, at the same time, avoids unnecessary immune activation to self-nucleic acids that are continuously released by dying host cells. Recent evidence, however, indicates that endogenous factors such as anti-microbial peptides have the ability to break this protective mechanism. Here, we discuss these factors and illustrate how they drive inflammatory responses by promoting immune recognition of self-nucleic acids in skin wounds and inflammatory skin diseases such as psoriasis and lupus.
Literatur
1.
Zurück zum Zitat Kadowaki N et al (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194(6):863–869PubMedPubMedCentral Kadowaki N et al (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194(6):863–869PubMedPubMedCentral
2.
Zurück zum Zitat Hemmi H et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745PubMed Hemmi H et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745PubMed
3.
Zurück zum Zitat Okuya K et al (2010) Spatiotemporal regulation of heat shock protein 90-chaperoned self-DNA and CpG-oligodeoxynucleotide for type I IFN induction via targeting to static early endosome. J Immunol 184(12):7092–7099PubMed Okuya K et al (2010) Spatiotemporal regulation of heat shock protein 90-chaperoned self-DNA and CpG-oligodeoxynucleotide for type I IFN induction via targeting to static early endosome. J Immunol 184(12):7092–7099PubMed
4.
Zurück zum Zitat Guiducci C et al (2006) Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med 203(8):1999–2008PubMedPubMedCentral Guiducci C et al (2006) Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med 203(8):1999–2008PubMedPubMedCentral
5.
Zurück zum Zitat Hemmi H et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3(2):196–200PubMed Hemmi H et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3(2):196–200PubMed
6.
Zurück zum Zitat Heil F et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303(5663):1526–1529PubMed Heil F et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303(5663):1526–1529PubMed
7.
Zurück zum Zitat Alexopoulou L et al (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857):732–738PubMed Alexopoulou L et al (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857):732–738PubMed
8.
Zurück zum Zitat Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384PubMed Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384PubMed
9.
Zurück zum Zitat Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788–792PubMed Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788–792PubMed
10.
Zurück zum Zitat Zhong B et al (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29(4):538–550PubMed Zhong B et al (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29(4):538–550PubMed
11.
Zurück zum Zitat Tanaka Y, Chen ZJ, 214 (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 5:ra20PubMedPubMedCentral Tanaka Y, Chen ZJ, 214 (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 5:ra20PubMedPubMedCentral
12.
13.
Zurück zum Zitat Unterholzner L et al (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11(11):997–1004PubMedPubMedCentral Unterholzner L et al (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11(11):997–1004PubMedPubMedCentral
14.
Zurück zum Zitat Kerur N et al (2011) IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9(5):363–375PubMedPubMedCentral Kerur N et al (2011) IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9(5):363–375PubMedPubMedCentral
15.
Zurück zum Zitat Takaoka A et al (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448(7152):501–505PubMed Takaoka A et al (2007) DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448(7152):501–505PubMed
16.
Zurück zum Zitat Rebsamen M et al (2009) DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep 10(8):916–922PubMedPubMedCentral Rebsamen M et al (2009) DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep 10(8):916–922PubMedPubMedCentral
17.
Zurück zum Zitat Zhang X et al (2014) The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6(3):421–430PubMedPubMedCentral Zhang X et al (2014) The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6(3):421–430PubMedPubMedCentral
18.
Zurück zum Zitat Li X et al (2013) Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39(6):1019–1031PubMed Li X et al (2013) Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39(6):1019–1031PubMed
19.
20.
Zurück zum Zitat Gao P et al (2013) Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153(5):1094–1107PubMed Gao P et al (2013) Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153(5):1094–1107PubMed
21.
Zurück zum Zitat Ablasser A et al (2013) cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498(7454):380–384PubMedPubMedCentral Ablasser A et al (2013) cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498(7454):380–384PubMedPubMedCentral
22.
Zurück zum Zitat Zhang X et al (2013) Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51(2):226–235PubMed Zhang X et al (2013) Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51(2):226–235PubMed
23.
Zurück zum Zitat Diner EJ et al (2013) The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3(5):1355–1361PubMedPubMedCentral Diner EJ et al (2013) The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3(5):1355–1361PubMedPubMedCentral
24.
Zurück zum Zitat Sun L et al (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791PubMed Sun L et al (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791PubMed
25.
Zurück zum Zitat Gao D et al (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341(6148):903–906PubMed Gao D et al (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341(6148):903–906PubMed
26.
Zurück zum Zitat Li XD et al (2013) Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341(6152):1390–1394PubMed Li XD et al (2013) Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341(6152):1390–1394PubMed
27.
Zurück zum Zitat Parvatiyar K et al (2012) The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 13(12):1155–1161PubMedPubMedCentral Parvatiyar K et al (2012) The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 13(12):1155–1161PubMedPubMedCentral
28.
Zurück zum Zitat Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847):607–614PubMed Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847):607–614PubMed
29.
Zurück zum Zitat Zhang X et al (2011) Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J Immunol 186(8):4541–4545PubMedPubMedCentral Zhang X et al (2011) Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J Immunol 186(8):4541–4545PubMedPubMedCentral
30.
Zurück zum Zitat Kim T et al (2010) Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 107(34):15181–15186PubMedPubMedCentral Kim T et al (2010) Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 107(34):15181–15186PubMedPubMedCentral
31.
Zurück zum Zitat Zhang Z et al (2011) DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. J Immunol 187(9):4501–4508PubMedPubMedCentral Zhang Z et al (2011) DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. J Immunol 187(9):4501–4508PubMedPubMedCentral
32.
Zurück zum Zitat Albrecht M, Choubey D, Lengauer T (2005) The HIN domain of IFI-200 proteins consists of two OB folds. Biochem Biophys Res Commun 327(3):679–687PubMed Albrecht M, Choubey D, Lengauer T (2005) The HIN domain of IFI-200 proteins consists of two OB folds. Biochem Biophys Res Commun 327(3):679–687PubMed
33.
Zurück zum Zitat Hornung V et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458(7237):514–518PubMedPubMedCentral Hornung V et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458(7237):514–518PubMedPubMedCentral
34.
Zurück zum Zitat Burckstummer T et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10(3):266–272PubMed Burckstummer T et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10(3):266–272PubMed
35.
Zurück zum Zitat Yoneyama M et al (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737PubMed Yoneyama M et al (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737PubMed
36.
Zurück zum Zitat Hornung V et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997PubMed Hornung V et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997PubMed
37.
Zurück zum Zitat Kato H et al (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205(7):1601–1610PubMedPubMedCentral Kato H et al (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205(7):1601–1610PubMedPubMedCentral
38.
Zurück zum Zitat Gitlin L et al (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A 103(22):8459–8464PubMedPubMedCentral Gitlin L et al (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A 103(22):8459–8464PubMedPubMedCentral
39.
Zurück zum Zitat Malathi K et al (2007) Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448(7155):816–819PubMedPubMedCentral Malathi K et al (2007) Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448(7155):816–819PubMedPubMedCentral
40.
Zurück zum Zitat Murali A et al (2008) Structure and function of LGP2, a DEX(D/H) helicase that regulates the innate immunity response. J Biol Chem 283(23):15825–15833PubMedPubMedCentral Murali A et al (2008) Structure and function of LGP2, a DEX(D/H) helicase that regulates the innate immunity response. J Biol Chem 283(23):15825–15833PubMedPubMedCentral
41.
Zurück zum Zitat Pippig DA et al (2009) The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37(6):2014–2025PubMedPubMedCentral Pippig DA et al (2009) The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37(6):2014–2025PubMedPubMedCentral
42.
Zurück zum Zitat Takahasi K et al (2009) Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors. J Biol Chem 284(26):17465–17474PubMedPubMedCentral Takahasi K et al (2009) Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors. J Biol Chem 284(26):17465–17474PubMedPubMedCentral
43.
Zurück zum Zitat Ablasser A et al (2009) RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10(10):1065–1072PubMed Ablasser A et al (2009) RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10(10):1065–1072PubMed
44.
Zurück zum Zitat Chiu YH, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138(3):576–591PubMedPubMedCentral Chiu YH, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138(3):576–591PubMedPubMedCentral
45.
Zurück zum Zitat Yang P et al (2010) The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 11(6):487–494PubMed Yang P et al (2010) The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 11(6):487–494PubMed
46.
Zurück zum Zitat Haas T et al (2008) The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity 28(3):315–323PubMed Haas T et al (2008) The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity 28(3):315–323PubMed
47.
48.
Zurück zum Zitat Yan N et al (2010) The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11(11):1005–1013PubMedPubMedCentral Yan N et al (2010) The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11(11):1005–1013PubMedPubMedCentral
49.
Zurück zum Zitat Morita M et al (2004) Gene-targeted mice lacking the Trex1 (DNase III) 3′–5′ DNA exonuclease develop inflammatory myocarditis. Mol Cell Biol 24(15):6719–6727PubMedPubMedCentral Morita M et al (2004) Gene-targeted mice lacking the Trex1 (DNase III) 3′–5′ DNA exonuclease develop inflammatory myocarditis. Mol Cell Biol 24(15):6719–6727PubMedPubMedCentral
50.
Zurück zum Zitat Kawane K et al (2001) Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292(5521):1546–1549PubMed Kawane K et al (2001) Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292(5521):1546–1549PubMed
51.
Zurück zum Zitat Ahn J et al (2012) STING manifests self DNA-dependent inflammatory disease. Proc Natl Acad Sci U S A 109(47):19386–19391PubMedPubMedCentral Ahn J et al (2012) STING manifests self DNA-dependent inflammatory disease. Proc Natl Acad Sci U S A 109(47):19386–19391PubMedPubMedCentral
52.
Zurück zum Zitat Barton GM, Kagan JC, Medzhitov R (2006) Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7(1):49–56PubMed Barton GM, Kagan JC, Medzhitov R (2006) Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7(1):49–56PubMed
53.
Zurück zum Zitat Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395PubMed Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395PubMed
54.
Zurück zum Zitat Ganguly D et al (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 206(9):1983–1994PubMedPubMedCentral Ganguly D et al (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 206(9):1983–1994PubMedPubMedCentral
55.
Zurück zum Zitat Lande R et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569PubMed Lande R et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449(7162):564–569PubMed
56.
Zurück zum Zitat Chamilos G et al (2012) Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood 120(18):3699–3707PubMedPubMedCentral Chamilos G et al (2012) Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood 120(18):3699–3707PubMedPubMedCentral
57.
Zurück zum Zitat Stott K et al (2006) Structure of a complex of tandem HMG boxes and DNA. J Mol Biol 360(1):90–104PubMed Stott K et al (2006) Structure of a complex of tandem HMG boxes and DNA. J Mol Biol 360(1):90–104PubMed
58.
Zurück zum Zitat Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–195PubMed Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–195PubMed
59.
Zurück zum Zitat Tian J et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8(5):487–496PubMed Tian J et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8(5):487–496PubMed
60.
Zurück zum Zitat Sirois CM et al (2013) RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J Exp Med 210(11):2447–2463PubMedPubMedCentral Sirois CM et al (2013) RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J Exp Med 210(11):2447–2463PubMedPubMedCentral
61.
Zurück zum Zitat Sims GP et al (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388PubMed Sims GP et al (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388PubMed
62.
Zurück zum Zitat Sideras K, Gertz MA (2009) Amyloidosis. Adv Clin Chem 47:1–44PubMed Sideras K, Gertz MA (2009) Amyloidosis. Adv Clin Chem 47:1–44PubMed
63.
Zurück zum Zitat Di Domizio J et al (2012) Binding with nucleic acids or glycosaminoglycans converts soluble protein oligomers to amyloid. J Biol Chem 287(1):736–747PubMedPubMedCentral Di Domizio J et al (2012) Binding with nucleic acids or glycosaminoglycans converts soluble protein oligomers to amyloid. J Biol Chem 287(1):736–747PubMedPubMedCentral
64.
Zurück zum Zitat Di Domizio J et al (2012) Nucleic acid-containing amyloid fibrils potently induce type I interferon and stimulate systemic autoimmunity. Proc Natl Acad Sci U S A 109(36):14550–14555PubMedPubMedCentral Di Domizio J et al (2012) Nucleic acid-containing amyloid fibrils potently induce type I interferon and stimulate systemic autoimmunity. Proc Natl Acad Sci U S A 109(36):14550–14555PubMedPubMedCentral
65.
Zurück zum Zitat Halle A et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865PubMedPubMedCentral Halle A et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865PubMedPubMedCentral
66.
Zurück zum Zitat Leadbetter EA et al (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416(6881):603–607PubMed Leadbetter EA et al (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416(6881):603–607PubMed
67.
Zurück zum Zitat Lau CM et al (2005) RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 202(9):1171–1177PubMedPubMedCentral Lau CM et al (2005) RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 202(9):1171–1177PubMedPubMedCentral
68.
Zurück zum Zitat Boule MW et al (2004) Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 199(12):1631–1640PubMedPubMedCentral Boule MW et al (2004) Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 199(12):1631–1640PubMedPubMedCentral
69.
Zurück zum Zitat Means TK et al (2005) Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115(2):407–417PubMedPubMedCentral Means TK et al (2005) Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115(2):407–417PubMedPubMedCentral
70.
Zurück zum Zitat Lovgren T et al (2006) Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjogren’s syndrome autoantigen-associated RNA. Arthritis Rheum 54(6):1917–1927PubMed Lovgren T et al (2006) Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjogren’s syndrome autoantigen-associated RNA. Arthritis Rheum 54(6):1917–1927PubMed
71.
Zurück zum Zitat Lande R et al (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3(73):73ra19PubMedPubMedCentral Lande R et al (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3(73):73ra19PubMedPubMedCentral
72.
Zurück zum Zitat Garcia-Romo GS et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3(73):73ra20PubMedPubMedCentral Garcia-Romo GS et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3(73):73ra20PubMedPubMedCentral
73.
Zurück zum Zitat Gregorio J et al (2010) Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med 207(13):2921–2930PubMedPubMedCentral Gregorio J et al (2010) Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med 207(13):2921–2930PubMedPubMedCentral
74.
Zurück zum Zitat Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306PubMed Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306PubMed
75.
Zurück zum Zitat Jarrossay D et al (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31(11):3388–3393PubMed Jarrossay D et al (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31(11):3388–3393PubMed
76.
Zurück zum Zitat Nestle FO et al (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 202(1):135–143PubMedPubMedCentral Nestle FO et al (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 202(1):135–143PubMedPubMedCentral
77.
Zurück zum Zitat Zheng Y et al (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445(7128):648–651PubMed Zheng Y et al (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445(7128):648–651PubMed
78.
Zurück zum Zitat Liang SC et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203(10):2271–2279PubMedPubMedCentral Liang SC et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203(10):2271–2279PubMedPubMedCentral
79.
Zurück zum Zitat Capon F et al (2007) Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet 122(2):201–206PubMed Capon F et al (2007) Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet 122(2):201–206PubMed
80.
Zurück zum Zitat Stuart PE et al (2012) Association of beta-defensin copy number and psoriasis in three cohorts of European origin. J Investig Dermatol 132(10):2407–2413PubMedPubMedCentral Stuart PE et al (2012) Association of beta-defensin copy number and psoriasis in three cohorts of European origin. J Investig Dermatol 132(10):2407–2413PubMedPubMedCentral
81.
Zurück zum Zitat Gilliet M et al (2004) Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol 140(12):1490–1495PubMed Gilliet M et al (2004) Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol 140(12):1490–1495PubMed
82.
Zurück zum Zitat van der Fits L et al (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182(9):5836–5845PubMed van der Fits L et al (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182(9):5836–5845PubMed
83.
Zurück zum Zitat Tortola L et al (2012) Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J Clin Invest 122(11):3965–3976PubMedPubMedCentral Tortola L et al (2012) Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J Clin Invest 122(11):3965–3976PubMedPubMedCentral
84.
Zurück zum Zitat Wohn C et al (2013) Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc Natl Acad Sci U S A 110(26):10723–10728PubMedPubMedCentral Wohn C et al (2013) Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc Natl Acad Sci U S A 110(26):10723–10728PubMedPubMedCentral
85.
Zurück zum Zitat Callahan JA et al (2013) Cutting edge: ABIN-1 protects against psoriasis by restricting MyD88 signals in dendritic cells. J Immunol 191(2):535–539PubMedPubMedCentral Callahan JA et al (2013) Cutting edge: ABIN-1 protects against psoriasis by restricting MyD88 signals in dendritic cells. J Immunol 191(2):535–539PubMedPubMedCentral
86.
Zurück zum Zitat Cai Y et al (2011) Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 35(4):596–610PubMedPubMedCentral Cai Y et al (2011) Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 35(4):596–610PubMedPubMedCentral
87.
Zurück zum Zitat Pantelyushin S et al (2012) Rorγt+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest 122(6):2252–2256PubMedPubMedCentral Pantelyushin S et al (2012) Rorγt+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest 122(6):2252–2256PubMedPubMedCentral
88.
Zurück zum Zitat Van Belle AB et al (2012) IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J Immunol 188(1):462–469PubMed Van Belle AB et al (2012) IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J Immunol 188(1):462–469PubMed
89.
Zurück zum Zitat Croker JA, Kimberly RP (2005) SLE: challenges and candidates in human disease. Trends Immunol 26(11):580–586PubMed Croker JA, Kimberly RP (2005) SLE: challenges and candidates in human disease. Trends Immunol 26(11):580–586PubMed
90.
Zurück zum Zitat Munoz LE et al (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6(5):280–289PubMed Munoz LE et al (2010) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6(5):280–289PubMed
91.
92.
Zurück zum Zitat Brinkmann V et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535PubMed Brinkmann V et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535PubMed
93.
Zurück zum Zitat Fuchs TA et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241PubMedPubMedCentral Fuchs TA et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241PubMedPubMedCentral
94.
Zurück zum Zitat Papayannopoulos V et al (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691PubMedPubMedCentral Papayannopoulos V et al (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691PubMedPubMedCentral
95.
Zurück zum Zitat Hakkim A et al (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107(21):9813–9818PubMedPubMedCentral Hakkim A et al (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107(21):9813–9818PubMedPubMedCentral
96.
Zurück zum Zitat Baechler EC et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100(5):2610–2615PubMedPubMedCentral Baechler EC et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100(5):2610–2615PubMedPubMedCentral
97.
Zurück zum Zitat Guiducci C et al (2010) Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J Exp Med 207(13):2931–2942PubMedPubMedCentral Guiducci C et al (2010) Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J Exp Med 207(13):2931–2942PubMedPubMedCentral
98.
Zurück zum Zitat Lee YH et al (2012) Associations between TLR polymorphisms and systemic lupus erythematosus: a systematic review and meta-analysis. Clin Exp Rheumatol 30(2):262–265PubMed Lee YH et al (2012) Associations between TLR polymorphisms and systemic lupus erythematosus: a systematic review and meta-analysis. Clin Exp Rheumatol 30(2):262–265PubMed
99.
Zurück zum Zitat dos Santos BP et al (2012) TLR7/8/9 polymorphisms and their associations in systemic lupus erythematosus patients from southern Brazil. Lupus 21(3):302–309PubMed dos Santos BP et al (2012) TLR7/8/9 polymorphisms and their associations in systemic lupus erythematosus patients from southern Brazil. Lupus 21(3):302–309PubMed
100.
Zurück zum Zitat Komatsuda A et al (2008) Up-regulated expression of Toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Immunol 152(3):482–487PubMedPubMedCentral Komatsuda A et al (2008) Up-regulated expression of Toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin Exp Immunol 152(3):482–487PubMedPubMedCentral
101.
Zurück zum Zitat Fairhurst AM et al (2008) Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 38(7):1971–1978PubMedPubMedCentral Fairhurst AM et al (2008) Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 38(7):1971–1978PubMedPubMedCentral
102.
Zurück zum Zitat Wu X, Peng SL (2006) Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum 54(1):336–342PubMed Wu X, Peng SL (2006) Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum 54(1):336–342PubMed
103.
104.
Zurück zum Zitat Desnues B et al (2014) TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci U S A 111(4):1497–1502PubMedPubMedCentral Desnues B et al (2014) TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci U S A 111(4):1497–1502PubMedPubMedCentral
105.
Zurück zum Zitat Barrat FJ et al (2007) Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol 37(12):3582–3586PubMed Barrat FJ et al (2007) Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol 37(12):3582–3586PubMed
106.
Zurück zum Zitat Bave U et al (2003) Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J Immunol 171(6):3296–3302PubMed Bave U et al (2003) Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J Immunol 171(6):3296–3302PubMed
107.
Zurück zum Zitat Lovgren T et al (2004) Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum 50(6):1861–1872PubMed Lovgren T et al (2004) Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum 50(6):1861–1872PubMed
108.
Zurück zum Zitat Viglianti GA et al (2003) Activation of autoreactive B cells by CpG dsDNA. Immunity 19(6):837–847PubMed Viglianti GA et al (2003) Activation of autoreactive B cells by CpG dsDNA. Immunity 19(6):837–847PubMed
109.
Zurück zum Zitat Kimkong I, Avihingsanon Y, Hirankarn N (2009) Expression profile of HIN200 in leukocytes and renal biopsy of SLE patients by real-time RT-PCR. Lupus 18(12):1066–1072PubMed Kimkong I, Avihingsanon Y, Hirankarn N (2009) Expression profile of HIN200 in leukocytes and renal biopsy of SLE patients by real-time RT-PCR. Lupus 18(12):1066–1072PubMed
110.
Zurück zum Zitat Choubey D et al (2011) Emerging roles for the interferon-inducible p200-family proteins in sex bias in systemic lupus erythematosus. J Interferon Cytokine Res 31(12):893–906PubMedPubMedCentral Choubey D et al (2011) Emerging roles for the interferon-inducible p200-family proteins in sex bias in systemic lupus erythematosus. J Interferon Cytokine Res 31(12):893–906PubMedPubMedCentral
111.
Zurück zum Zitat Zhang W et al (2013) DNA-dependent activator of interferon-regulatory factors (DAI) promotes lupus nephritis by activating the calcium pathway. J Biol Chem 288(19):13534–13550PubMedPubMedCentral Zhang W et al (2013) DNA-dependent activator of interferon-regulatory factors (DAI) promotes lupus nephritis by activating the calcium pathway. J Biol Chem 288(19):13534–13550PubMedPubMedCentral
112.
Zurück zum Zitat Molineros JE et al (2013) Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet 9(2):e1003222PubMedPubMedCentral Molineros JE et al (2013) Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet 9(2):e1003222PubMedPubMedCentral
113.
Zurück zum Zitat Robinson T et al (2011) Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-alpha and serologic autoimmunity in lupus patients. J Immunol 187(3):1298–1303PubMedPubMedCentral Robinson T et al (2011) Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-alpha and serologic autoimmunity in lupus patients. J Immunol 187(3):1298–1303PubMedPubMedCentral
114.
Zurück zum Zitat Pothlichet J et al (2011) A loss-of-function variant of the antiviral molecule MAVS is associated with a subset of systemic lupus patients. EMBO Mol Med 3(3):142–152PubMedPubMedCentral Pothlichet J et al (2011) A loss-of-function variant of the antiviral molecule MAVS is associated with a subset of systemic lupus patients. EMBO Mol Med 3(3):142–152PubMedPubMedCentral
115.
Zurück zum Zitat Funabiki M et al (2014) Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40(2):199–212PubMed Funabiki M et al (2014) Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40(2):199–212PubMed
116.
Zurück zum Zitat Lebon P et al (2002) Interferon and Aicardi-Goutieres syndrome. Eur J Paediatr Neurol 6(Suppl A):A47–A53, discussion A55–8, A77–86PubMed Lebon P et al (2002) Interferon and Aicardi-Goutieres syndrome. Eur J Paediatr Neurol 6(Suppl A):A47–A53, discussion A55–8, A77–86PubMed
117.
Zurück zum Zitat Rice G et al (2007) Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am J Hum Genet 80(4):811–815PubMedPubMedCentral Rice G et al (2007) Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am J Hum Genet 80(4):811–815PubMedPubMedCentral
118.
Zurück zum Zitat Rice GI et al (2009) Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41(7):829–832PubMedPubMedCentral Rice GI et al (2009) Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41(7):829–832PubMedPubMedCentral
119.
Zurück zum Zitat Rice GI et al (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46(5):503–509PubMed Rice GI et al (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46(5):503–509PubMed
120.
Zurück zum Zitat Liu Y et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518 Liu Y et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518
121.
Zurück zum Zitat Dombrowski Y, 82 et al (2011) Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med 3:82ra38PubMedPubMedCentral Dombrowski Y, 82 et al (2011) Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med 3:82ra38PubMedPubMedCentral
Metadaten
Titel
Immune sensing of nucleic acids in inflammatory skin diseases
verfasst von
Olivier Demaria
Jeremy Di Domizio
Michel Gilliet
Publikationsdatum
01.09.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 5/2014
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-014-0445-5

Weitere Artikel der Ausgabe 5/2014

Seminars in Immunopathology 5/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.