Skip to main content
Erschienen in: Reproductive Biology and Endocrinology 1/2013

Open Access 01.12.2013 | Short communication

Immunization against recombinant GnRH-I alters ultrastructure of gonadotropin cell in an experimental boar model

verfasst von: Fugui Fang, Shiping Su, Ya Liu, Yunhai Zhang, Yong Pu, Xijie Zhao, Yunsheng Li, Hongguo Cao, Juhua Wang, Jie Zhou, Xiaorong Zhang

Erschienen in: Reproductive Biology and Endocrinology | Ausgabe 1/2013

Abstract

Background

Gonadotropin cell is the main responsible for the secretion of follicle stimulating hormone (FSH) and luteinizing hormone (LH), and immunocastration reduces the concentrations of serum FSH and LH. A few studies have reported the histological structure of gonadotropin cells obtained from immunocastration animals at the light microscopy level. However, the ultrastructure of gonadotropin cells remains largely unexplored. The aim of this study was to evaluate and to compare ultrastructure of gonadotropin cell in gonadally intact boars and immunologically castrated male animals.

Findings

In this study, serum and adenohypophysis tissue were collected from nine gonadally intact boars and nine male pigs treated with recombinant gonadotropin releasing hormone I (GnRH-I). Anti-GnRH-I antibodies in serum and the ultrastructure of gonadotropin cell in adenohypophysis were determined by enzymelinked immunosorbent assay and electron microscopy, respectively. The results demonstrated that active immunization against recombinant GnRH-I increased serum GnRH-I antibody levels (P<0.05). Ultramicroscopic analysis of gonadotropin cell revealed a decrease (P<0.05) in the number and size of the large granules and small granules in the recombinant GnRH-I immunized animals.

Conclusions

We conclude that immunization against recombinant GnRH-I induces severe atrophy of granules in gonadotropin cell of boars, possibly reflecting GnRH-I regulation of gonadotropin cell.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1477-7827-11-63) contains supplementary material, which is available to authorized users.
Fugui Fang, Shiping Su contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

FGF conceived of the study, and participated in its design and coordination and drafted the manuscript. SPS carried out the same work with FGF. YL participated in the design of the study and performed the statistical analysis. YHZ have been involved in drafting the manuscript. YP participated in the observation of electron microscopy. XJZ helped to draft the manuscript and critical revision of the manuscript. YSL have been revised the manuscript critically for important intellectual content. HGC carried out the analysis of data.. JHW participated in the immunization of animals and the determination of antibody. JZ participated in analysis of electron microscopic images and the design and drafted the manuscript. XRZ participated in the design and coordination and helped to draft the manuscript and provided the fund. All authors read and approved the final manuscript.
Abkürzungen
FSH
Follicle stimulating hormone
LH
Luteinizing hormone
MBP–GnRH-I6
Maltose binding protein–gonadotropin releasing hormone I
MBP
Maltose binding protein
GnRH-I
Recombinant gonadotropin releasing hormone I.

Findings

One promising alternative to surgical castration as a method of controlling undesirable behavior and aggression that has been researched for many years [13] is active immunization against (GnRH-I). Immunological castration uses the animal’s own immune system to suppress GnRH-I and thus shut down the stimulus to the testes resulting in an inhibition of testicular function. Many researchers report that immunization against GnRH-I significantly reduce serum concentrations of FSH and LH [4, 5]. In sheep immunized against GnRH-I at prepubertal or peripubertal age, plasma LH concentrations were not restored after GnRH-I injection at a time when anti-GnRH-I antibodies are low [5, 6] or not detectable [7]. GnRH-I or eCG treatment fails to reproductive function in GnRH-I immunized ewes [8]. Therefore, these findings have led to the suggestion that active immunization against GnRH-I disrupt the secretion of the gonadotropin cell in pituitary. Previous studies on pituitary obtained from immunocastration animals at the light microscopy level [8, 9]. Nevertheless, to the best of our knowledge, there is no report to date on ultrastructural pituitary changes in the GnRH-I immunized animals. Thus, it is of interest to investigate the ultrastructure of gonadotropin cells in adenohypophysis of immunocastrated male pigs.
Fang et al. [10] used recombinant DNA technology to form maltose binding protein–gonadotropin releasing hormone I (MBP–GnRH-I6) vaccines, which had success in affecting the reproductive systems of pigs [11]. The objective of the present study was to evaluate the ultrastructure of gonadotrophin cells in MBP–GnRH-I6 immunized pigs.

Methods

Animals

Eighteen Chinese boars, reared at the DaDun Animal Farm, Shucheng, China, were used in the study. The study has been approved by Animal Care and Use Committee of Anhui Agricultural University. The animals were assigned randomly to two groups of the following treatments: MBP–GnRH-I6 immunization (n = 9) and MBP immunization (n = 9). All boars had access to food and water ad libitum.

Preparation of antigens and immunization

MBP-GnRH-I6 was prepared and using recombinant DNA techniques as has been previously described [10]. Nine milligrams of MBP-GnRH-I6 or MBP was dissolved in 9 mL phosphate-buffered saline (PBS) and 9 mL of Al(OH)3 adjuvant (Tianbang, Nanjing, China). The first immunization was administered at 9 weeks of age by intramuscular injection of 2 mL of emulsion. The booster injection was given by the same route and at the same dose 8 weeks later. The pigs were slaughtered 8 weeks after the booster immunization.

Analysis of anti-GnRH-I antibody

Blood samples were taken via the jugular vein when 9, 13, 17, 21 and 25 weeks old and centrifuged at 200 × g for 15 minutes at 4°C. Serum was harvested and stored at −80°C until assayed. The amount of anti-GnRH-I antibody in the collected serum from animals was measured as described by Fang et al. [11].

Transmission electron microscopy of thin sections

After slaughter, the tissue of adenohypophysis was fixed in 2.5% glutaraldehyde for 4 to 6 hours, and post-fixation was accomplished in 1% osmium tetroxide for 1 hour. The samples were subjected to an alcohol dehydration series (30% 15 minutes, 50% 15 minutes, 70% 6–12 hours, 80% 15 minutes, 95% 15 minutes, 100% 40 minutes). The tissues were immersed in 1, 2-epoxypropane (Lingfeng Chemical Co. Ltd) for 30 minutes, and then transferred to 1, 2-epoxypropane and resin Epon812 (1:1) for 2 hours. Samples were individually embedded in Epon812 (Serva) for 2 hours. Resin blocks were solidified at 45°C for 12 hours and 65°C for at least 48 hours. Ultrathin sections (70 nm thick) were prepared from each tissue with an ultrathin section machine (LKBNUBA, NOVA) and blade (LKB2178, knife maker II, BROMMA). Sections were stained with 1% (w/v) methanolic uranyl acetate (Lanzhou State-owned Factory 404) for 30 minutes, and then washed three times in deionized water for a total of 15 minutes, and stained with lead citrate for 30 minutes.
The sections were rinsed in a stream of distilled water and dried prior to examination. Sections were visualized on a transmission electron microscopy (JEM-1230, Japan).

Acquisition and analysis of data

Eight to 10 random sections were taken to represent tissue. The diameter and the number of the granules were measured using the specific software (Image-Pro plus 6.0). The data is expressed as mean ± standard deviation (SD). Statistical analysis was performed by the Student’s t-test. Significance was given at P<0.05.

Results

Results showed that serum level of the antibody against MBP–GnRH-I6 in vaccinated animals was increased significantly as compared with MBP mock-immunized boars (P<0.05) (Figure 1), suggesting MBP–GnRH-I6 immunization induced a strong anti-GnRH immune response.
A lot of large granules and small granules were found in cytoplasm of gonadotropin cell of adenohypophysis from electron microscopic images (Figure 2). The granules, round or oval in shape, main closely distributed at one side of nucleus (Figure 2). The gonadotropin cells showed evidence of severe changes in the granules. That is, the mean number and diameter of large granules and small granules in MBP mock- immunized boars (Figure 2A, C) were significantly more (P<0.05) than those of in MBP-GnRH-I6 immunized animals (Figure 2B, D) (Table 1).
Table 1
The number and diameter of granules of gonadotropin cells in boars immunized with MBPGnRH-I6
Group
Diameter of granules (nm)
The number of granules
 
Large
Small
Large
Small
MBP-GnRH-I6
259.27±31.75A
157.75±19.45 A
26.72±4.08 A
152.56±9.78 A
MBP
416.29±32.12B
216.89±17.19B
68.89±7.05B
201.05±12.89B
All data were shown as mean ± SD. Different superscripted letters in the column indicate a significant difference (P<0.05).
In conclusion, the results of the present study demonstrate that administration of recombinant GnRH-I to boars elicits clear increase in serum antibody levels and decrease in the number and diameter of the large granules and small granules in the gonadotropin cell.

Acknowledgements

This work was supported by a grant from Anhui Provincial Natural Science Foundation (Grant 1208085MC39), and Specialized Research Fund for the Doctoral Program of Higher Education from Ministry of Education Science and Technology Development Center, Beijing, P. R. China (Grant 20123418110004), and National High-Tech R&D Program (2011AA100307).
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

FGF conceived of the study, and participated in its design and coordination and drafted the manuscript. SPS carried out the same work with FGF. YL participated in the design of the study and performed the statistical analysis. YHZ have been involved in drafting the manuscript. YP participated in the observation of electron microscopy. XJZ helped to draft the manuscript and critical revision of the manuscript. YSL have been revised the manuscript critically for important intellectual content. HGC carried out the analysis of data.. JHW participated in the immunization of animals and the determination of antibody. JZ participated in analysis of electron microscopic images and the design and drafted the manuscript. XRZ participated in the design and coordination and helped to draft the manuscript and provided the fund. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Bonneau M, Dufour R, Chouvet C, Roulet C, Squires EJ: The effects of immunization against luteinizing hormone-releasing hormone on performance, sexual development and levels of boar taint-related compounds in intact male pigs. J Anim Sci. 1994, 72: 14-20.PubMed Bonneau M, Dufour R, Chouvet C, Roulet C, Squires EJ: The effects of immunization against luteinizing hormone-releasing hormone on performance, sexual development and levels of boar taint-related compounds in intact male pigs. J Anim Sci. 1994, 72: 14-20.PubMed
2.
Zurück zum Zitat Albrecht A, Beilage EG, Henning M, Bekendorf T, Krieter J: Growth performance and carcass characteristics of Improvac-treated male pigs compared with barrows. Berl Munch Tierarztl Wochenschr. 2012, 125: 456-462.PubMed Albrecht A, Beilage EG, Henning M, Bekendorf T, Krieter J: Growth performance and carcass characteristics of Improvac-treated male pigs compared with barrows. Berl Munch Tierarztl Wochenschr. 2012, 125: 456-462.PubMed
3.
Zurück zum Zitat Kubale V, Batorek N, Skrlep M, Prunier A, Bonneau M, Fazarinc G, Candek-Potokar M: Steroid hormones, boar taint compounds, and reproductive organs in pigs according to the delay between immunocastration and slaughter. Theriogenology. 2013, 79: 69-80. 10.1016/j.theriogenology.2012.09.010.CrossRefPubMed Kubale V, Batorek N, Skrlep M, Prunier A, Bonneau M, Fazarinc G, Candek-Potokar M: Steroid hormones, boar taint compounds, and reproductive organs in pigs according to the delay between immunocastration and slaughter. Theriogenology. 2013, 79: 69-80. 10.1016/j.theriogenology.2012.09.010.CrossRefPubMed
4.
Zurück zum Zitat D'Occhio MJ, Aspden WJ, Trigg TE: Sustained testicular atrophy in bulls actively immunized against GnRH: potential to control carcase characteristics. Anim Reprod Sci. 2001, 66: 47-58. 10.1016/S0378-4320(01)00091-4.CrossRefPubMed D'Occhio MJ, Aspden WJ, Trigg TE: Sustained testicular atrophy in bulls actively immunized against GnRH: potential to control carcase characteristics. Anim Reprod Sci. 2001, 66: 47-58. 10.1016/S0378-4320(01)00091-4.CrossRefPubMed
5.
Zurück zum Zitat Brown BW, Mattner PE, Carroll PA, Hoskinson RM, Rigby RD: Immunization of sheep against GnRH early in life: effects on reproductive function and hormones in ewes. J Reprod Fertil. 1995, 103: 131-135. 10.1530/jrf.0.1030131.CrossRefPubMed Brown BW, Mattner PE, Carroll PA, Hoskinson RM, Rigby RD: Immunization of sheep against GnRH early in life: effects on reproductive function and hormones in ewes. J Reprod Fertil. 1995, 103: 131-135. 10.1530/jrf.0.1030131.CrossRefPubMed
6.
Zurück zum Zitat Brown BW, Mattner PE, Carroll PA, Holland EJ, Paull DR, Hoskinson RM, Rigby RD: Immunization of sheep against GnRH early in life: effects on reproductive function and hormones in rams. J Reprod Fertil. 1994, 101: 15-21. 10.1530/jrf.0.1010015.CrossRefPubMed Brown BW, Mattner PE, Carroll PA, Holland EJ, Paull DR, Hoskinson RM, Rigby RD: Immunization of sheep against GnRH early in life: effects on reproductive function and hormones in rams. J Reprod Fertil. 1994, 101: 15-21. 10.1530/jrf.0.1010015.CrossRefPubMed
7.
Zurück zum Zitat Clarke IJ, Brown BW, Tran VV, Scott CJ, Fry R, Millar RP, Rao A: Neonatal immunization against gonadotropin-releasing hormone (GnRH) results in diminished GnRH secretion in adulthood. Endocrinology. 1998, 139: 2007-2014. 10.1210/en.139.4.2007.CrossRefPubMed Clarke IJ, Brown BW, Tran VV, Scott CJ, Fry R, Millar RP, Rao A: Neonatal immunization against gonadotropin-releasing hormone (GnRH) results in diminished GnRH secretion in adulthood. Endocrinology. 1998, 139: 2007-2014. 10.1210/en.139.4.2007.CrossRefPubMed
8.
Zurück zum Zitat Gökdal O, Atay O, Ulker H, Yarali E, Helva IB, Deavila DM, Reeves JJ: GnRH or eCG treatment fails to restore reproductive function in GnRH immunized ewes. Anim Reprod Sci. 2009, 112: 251-260. 10.1016/j.anireprosci.2008.04.023.CrossRefPubMed Gökdal O, Atay O, Ulker H, Yarali E, Helva IB, Deavila DM, Reeves JJ: GnRH or eCG treatment fails to restore reproductive function in GnRH immunized ewes. Anim Reprod Sci. 2009, 112: 251-260. 10.1016/j.anireprosci.2008.04.023.CrossRefPubMed
9.
Zurück zum Zitat Hernandez JA, Zanella EL, Bogden R, de Avila DM, Gaskins CT, Reeves JJ: Reproductive characteristics of grass-fed, luteinizing hormone-releasing hormone-immunocastrated Bos indicus bulls. J Anim Sci. 2005, 83: 2901-2907.PubMed Hernandez JA, Zanella EL, Bogden R, de Avila DM, Gaskins CT, Reeves JJ: Reproductive characteristics of grass-fed, luteinizing hormone-releasing hormone-immunocastrated Bos indicus bulls. J Anim Sci. 2005, 83: 2901-2907.PubMed
10.
Zurück zum Zitat Fang F, Liu Y, Pu Y, Wang L, Wang S, Zhang X: Immunogenicity of recombinant maltose-binding protein (MBP)-gonadotropin releasing hormone I (GnRH-I). Syst Biol Reprod Med. 2010, 56: 478-486. 10.3109/19396368.2010.481005.CrossRefPubMed Fang F, Liu Y, Pu Y, Wang L, Wang S, Zhang X: Immunogenicity of recombinant maltose-binding protein (MBP)-gonadotropin releasing hormone I (GnRH-I). Syst Biol Reprod Med. 2010, 56: 478-486. 10.3109/19396368.2010.481005.CrossRefPubMed
11.
Zurück zum Zitat Fang F, Li H, Liu Y, Zhang Y, Tao Y, Li Y, Cao H, Wang S, Wang L, Zhang X: Active immunization with recombinant GnRH fusion protein in boars reduces both testicular development andmRNA expression levels of GnRH receptor in pituitary. Anim Reprod Sci. 2010, 119: 275-281. 10.1016/j.anireprosci.2010.01.003.CrossRefPubMed Fang F, Li H, Liu Y, Zhang Y, Tao Y, Li Y, Cao H, Wang S, Wang L, Zhang X: Active immunization with recombinant GnRH fusion protein in boars reduces both testicular development andmRNA expression levels of GnRH receptor in pituitary. Anim Reprod Sci. 2010, 119: 275-281. 10.1016/j.anireprosci.2010.01.003.CrossRefPubMed
Metadaten
Titel
Immunization against recombinant GnRH-I alters ultrastructure of gonadotropin cell in an experimental boar model
verfasst von
Fugui Fang
Shiping Su
Ya Liu
Yunhai Zhang
Yong Pu
Xijie Zhao
Yunsheng Li
Hongguo Cao
Juhua Wang
Jie Zhou
Xiaorong Zhang
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
Reproductive Biology and Endocrinology / Ausgabe 1/2013
Elektronische ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-11-63

Weitere Artikel der Ausgabe 1/2013

Reproductive Biology and Endocrinology 1/2013 Zur Ausgabe

Hirsutismus bei PCOS: Laser- und Lichttherapien helfen

26.04.2024 Hirsutismus Nachrichten

Laser- und Lichtbehandlungen können bei Frauen mit polyzystischem Ovarialsyndrom (PCOS) den übermäßigen Haarwuchs verringern und das Wohlbefinden verbessern – bei alleiniger Anwendung oder in Kombination mit Medikamenten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Weniger postpartale Depressionen nach Esketamin-Einmalgabe

Bislang gibt es kein Medikament zur Prävention von Wochenbettdepressionen. Das Injektionsanästhetikum Esketamin könnte womöglich diese Lücke füllen.

Bei RSV-Impfung vor 60. Lebensjahr über Off-Label-Gebrauch aufklären!

22.04.2024 DGIM 2024 Kongressbericht

Durch die Häufung nach der COVID-19-Pandemie sind Infektionen mit dem Respiratorischen Synzytial-Virus (RSV) in den Fokus gerückt. Fachgesellschaften empfehlen eine Impfung inzwischen nicht nur für Säuglinge und Kleinkinder.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.