Skip to main content
Erschienen in: Inflammation 3/2020

18.01.2020 | Original Article

Immunomodulatory Effect of Doxycycline Ameliorates Systemic and Pulmonary Inflammation in a Murine Polymicrobial Sepsis Model

verfasst von: Anasuya Patel, Hemant Khande, Hariharan Periasamy, Santosh Mokale

Erschienen in: Inflammation | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Acute lung injury is an inflammatory condition developed after severe sepsis in response to excessive secretion of pro-inflammatory cytokines. Doxycycline is widely reported to possess immunomodulatory activity through inhibition of various inflammatory pathways. Considering the broad spectrum of anti-inflammatory activity, protective effect of doxycycline was evaluated in clinically relevant murine polymicrobial sepsis model induced by caecal ligation and puncture (CLP). In this model, sepsis is accompanied with infection and therefore ceftriaxone at sub-protective dose was combined to retard the bacterial growth. Three hours after CLP challenge, mice were administered vehicle, ceftriaxone (100 mg/kg subcutaneously) alone and in combination with immunomodulatory dose of doxycycline (50 mg/kg, intraperitoneal) and survival were monitored for 5 days. Bacterial count in blood and peritoneal fluid along with cytokines [interleukin (IL)-6, IL-1β, tumour necrosis factor (TNF)-α] and myeloperoxidase (MPO) in plasma and lung homogenate were measured at 18 h post-CLP. Plasma glutathione (GSH) was also determined. Doxycycline in presence of ceftriaxone improved survival of septic mice by significantly reducing the plasma and lung pro-inflammatory cytokines and MPO levels. It also increased plasma GSH levels. Doxycycline did not improve antibacterial effect of ceftriaxone in combination, suggesting that the protective effect of doxycycline was due to its immunomodulatory activity. Doxycycline in the presence of ceftriaxone demonstrated improved survival of septic mice by modulating the immune response.
Literatur
1.
Zurück zum Zitat Varisco, B.M. 2011. The pharmacology of acute lung injury in sepsis. Advances in Pharmacological Sciences 2011: 254619.CrossRef Varisco, B.M. 2011. The pharmacology of acute lung injury in sepsis. Advances in Pharmacological Sciences 2011: 254619.CrossRef
2.
Zurück zum Zitat Kim, W.Y., and S.B. Hong. 2016. Sepsis and acute respiratory distress syndrome: recent update. Tuberculosis Respiratory Disease 79: 53–57.CrossRef Kim, W.Y., and S.B. Hong. 2016. Sepsis and acute respiratory distress syndrome: recent update. Tuberculosis Respiratory Disease 79: 53–57.CrossRef
3.
Zurück zum Zitat Fahmi, A.N.A., G.S.G. Shehatou, and H.A. Salem. 2018. Levocetirizine pretreatment mitigates lipopolysaccharide-induced lung inflammation in rats. BioMed Research International 2018: 7019759.CrossRef Fahmi, A.N.A., G.S.G. Shehatou, and H.A. Salem. 2018. Levocetirizine pretreatment mitigates lipopolysaccharide-induced lung inflammation in rats. BioMed Research International 2018: 7019759.CrossRef
4.
Zurück zum Zitat Aziz, M., A. Jacob, W.L. Yang, A. Matsuda, and P. Wang. 2013. Current trends in inflammatory and immunomodulatory mediators in sepsis. Journal of Leukocyte Biology 93: 329–342.CrossRef Aziz, M., A. Jacob, W.L. Yang, A. Matsuda, and P. Wang. 2013. Current trends in inflammatory and immunomodulatory mediators in sepsis. Journal of Leukocyte Biology 93: 329–342.CrossRef
5.
Zurück zum Zitat Cavaillon, J.M., M. Adib-Conquy, C. Fitting, C. Adrie, and D. Payen. 2003. Cytokine cascade in sepsis. Scandinavian Journal of Infectious Diseases 35: 535–544.CrossRef Cavaillon, J.M., M. Adib-Conquy, C. Fitting, C. Adrie, and D. Payen. 2003. Cytokine cascade in sepsis. Scandinavian Journal of Infectious Diseases 35: 535–544.CrossRef
6.
Zurück zum Zitat Harsha, N., P. Shuyu, and K. Cuk-Seong. 2018. Role of mitochondrial oxidative stress in sepsis. Acute and Critical Care 33: 65–72.CrossRef Harsha, N., P. Shuyu, and K. Cuk-Seong. 2018. Role of mitochondrial oxidative stress in sepsis. Acute and Critical Care 33: 65–72.CrossRef
7.
Zurück zum Zitat Zhang, J., J. Bi, S. Liu, Q. Pang, R. Zhang, S. Wang, and C. Liu. 2017. 5-HT drives mortality in sepsis induced by cecal ligation and puncture in mice. Mediators of Inflammation 2017: 1-12. Zhang, J., J. Bi, S. Liu, Q. Pang, R. Zhang, S. Wang, and C. Liu. 2017. 5-HT drives mortality in sepsis induced by cecal ligation and puncture in mice. Mediators of Inflammation 2017: 1-12.
8.
Zurück zum Zitat Steckert, A.V., A.A. de Castro, J. Quevedo, and Dal-Pizzol. 2014. Sepsis in the central nervous system and antioxidant strategies with N-acetylcysteine, vitamins and statins. Current Neurovascular Research 11: 83–90.CrossRef Steckert, A.V., A.A. de Castro, J. Quevedo, and Dal-Pizzol. 2014. Sepsis in the central nervous system and antioxidant strategies with N-acetylcysteine, vitamins and statins. Current Neurovascular Research 11: 83–90.CrossRef
9.
Zurück zum Zitat Ng, H.H., T. Narasaraju, M.C. Phoon, M.K. Sim, J.E. Seet, and V.T. Chow. 2012. Doxycycline treatment attenuates acute lung injury in mice infected with virulent influenza H3N2 virus: involvement of matrix metalloproteinases. Experimental and Molecular Pathology 92: 287–295.CrossRef Ng, H.H., T. Narasaraju, M.C. Phoon, M.K. Sim, J.E. Seet, and V.T. Chow. 2012. Doxycycline treatment attenuates acute lung injury in mice infected with virulent influenza H3N2 virus: involvement of matrix metalloproteinases. Experimental and Molecular Pathology 92: 287–295.CrossRef
10.
Zurück zum Zitat Davey, A., D.F. McAuley, and C.M. O’Kane. 2011. Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. European Respiratory Journal 38: 959–970.CrossRef Davey, A., D.F. McAuley, and C.M. O’Kane. 2011. Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. European Respiratory Journal 38: 959–970.CrossRef
11.
Zurück zum Zitat Hutchins, N.A., J. Unsinger, R.S. Hotchkiss, and A. Ayala. 2014. The new normal: immuno-modulatory agents against sepsis immune suppression. Trends in Molecular Medicine 20: 224–233.CrossRef Hutchins, N.A., J. Unsinger, R.S. Hotchkiss, and A. Ayala. 2014. The new normal: immuno-modulatory agents against sepsis immune suppression. Trends in Molecular Medicine 20: 224–233.CrossRef
12.
Zurück zum Zitat Pasquale, R., and S. Tan. 2005. Nonantimicrobial effects of antibacterial agents. Clinical Infectious Diseases 40: 127–135.CrossRef Pasquale, R., and S. Tan. 2005. Nonantimicrobial effects of antibacterial agents. Clinical Infectious Diseases 40: 127–135.CrossRef
13.
Zurück zum Zitat Shapira, L., W.A. Soskolne, Y. Houri, V. Barak, A. Halabi, and A. Stabholz. 1996. Protection against endotoxic shock and lipopolysaccharide- induced local inflammation by tetracycline: correlation with inhibition of cytokine secretion. Infection and Immunity 64: 825–828.CrossRef Shapira, L., W.A. Soskolne, Y. Houri, V. Barak, A. Halabi, and A. Stabholz. 1996. Protection against endotoxic shock and lipopolysaccharide- induced local inflammation by tetracycline: correlation with inhibition of cytokine secretion. Infection and Immunity 64: 825–828.CrossRef
14.
Zurück zum Zitat Sapadin, A.N., and R. Fleischmajer. 2006. Tetracyclines: nonantibiotic properties and their clinical implications. Journal of the American Academy of Dermatology 54: 258–265.CrossRef Sapadin, A.N., and R. Fleischmajer. 2006. Tetracyclines: nonantibiotic properties and their clinical implications. Journal of the American Academy of Dermatology 54: 258–265.CrossRef
15.
Zurück zum Zitat Milano, S., F. Arcoleo, P. D’Agostino, and E. Cillari. 1997. Intraperitoneal injection of tetracyclines protects mice from lethal endotoxemia downregulating inducible nitric oxide synthase in various organs and cytokine and nitrate secretion in blood. Antimicrobial Agents and Chemotherapy 41: 117–121.CrossRef Milano, S., F. Arcoleo, P. D’Agostino, and E. Cillari. 1997. Intraperitoneal injection of tetracyclines protects mice from lethal endotoxemia downregulating inducible nitric oxide synthase in various organs and cytokine and nitrate secretion in blood. Antimicrobial Agents and Chemotherapy 41: 117–121.CrossRef
16.
Zurück zum Zitat D’Agostino, P., M. La Rosa, C. Barbera, F. Arcoleo, G. Di Bella, S. Milano, and E. Cillari. 1998. Doxycycline reduces mortality to lethal endotoxemia by reducing nitric oxide synthesis via an interleukin-10-independent mechanism. Journal of Infectious Diseases 177: 489–492.CrossRef D’Agostino, P., M. La Rosa, C. Barbera, F. Arcoleo, G. Di Bella, S. Milano, and E. Cillari. 1998. Doxycycline reduces mortality to lethal endotoxemia by reducing nitric oxide synthesis via an interleukin-10-independent mechanism. Journal of Infectious Diseases 177: 489–492.CrossRef
17.
Zurück zum Zitat Sun, J., H. Shigemi, Y. Tanaka, T. Yamauchi, T. Ueda, and H. Iwasaki. 2015. Tetracyclines downregulate the production of LPS-induced cytokines and chemokines in THP-1 cells via ERK, p38, and nuclear factor-κB signaling pathways. Biochemistry and Biophysics Reports 4: 397–404.CrossRef Sun, J., H. Shigemi, Y. Tanaka, T. Yamauchi, T. Ueda, and H. Iwasaki. 2015. Tetracyclines downregulate the production of LPS-induced cytokines and chemokines in THP-1 cells via ERK, p38, and nuclear factor-κB signaling pathways. Biochemistry and Biophysics Reports 4: 397–404.CrossRef
18.
Zurück zum Zitat Fujita, M., Q. Ye, H. Ouchi, E. Harada, I. Inoshima, K. Kuwano, and Y. Nakanishi. 2006. Doxycycline attenuated pulmonary fibrosis induced by bleomycin in mice. Antimicrobial Agents and Chemotherapy 50: 739–743.CrossRef Fujita, M., Q. Ye, H. Ouchi, E. Harada, I. Inoshima, K. Kuwano, and Y. Nakanishi. 2006. Doxycycline attenuated pulmonary fibrosis induced by bleomycin in mice. Antimicrobial Agents and Chemotherapy 50: 739–743.CrossRef
19.
Zurück zum Zitat Muri, L., M. Perny, J. Zemp, D. Grandgirard, and S.L. Leib. 2019. Combining ceftriaxone with doxycycline and daptomycin reduces mortality, neuroinflammation, brain damage, and hearing loss in infant rat pneumococcal meningitis. Antimicrobial Agents and Chemotherapy 63: e00220–e00219.CrossRef Muri, L., M. Perny, J. Zemp, D. Grandgirard, and S.L. Leib. 2019. Combining ceftriaxone with doxycycline and daptomycin reduces mortality, neuroinflammation, brain damage, and hearing loss in infant rat pneumococcal meningitis. Antimicrobial Agents and Chemotherapy 63: e00220–e00219.CrossRef
20.
Zurück zum Zitat Fredeking, T.M., J.E. Zavala-Castro, P. González-Martínez, W. Moguel-Rodríguez, E.C. Sanchez, M.J. Foster, and F.A. Diaz-Quijano. 2015. Dengue patients treated with doxycycline showed lower mortality associated to a reduction in IL-6 and TNF levels. Recent Patents on Anti-Infective Drug Discovery 10: 51–58.CrossRef Fredeking, T.M., J.E. Zavala-Castro, P. González-Martínez, W. Moguel-Rodríguez, E.C. Sanchez, M.J. Foster, and F.A. Diaz-Quijano. 2015. Dengue patients treated with doxycycline showed lower mortality associated to a reduction in IL-6 and TNF levels. Recent Patents on Anti-Infective Drug Discovery 10: 51–58.CrossRef
21.
Zurück zum Zitat Dejager, L., I. Pinheiro, E. Dejonckheere, and C. Libert. 2011. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends in Microbiology 19: 198–208.CrossRef Dejager, L., I. Pinheiro, E. Dejonckheere, and C. Libert. 2011. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends in Microbiology 19: 198–208.CrossRef
22.
Zurück zum Zitat Remick, D.G., D.E. Newcomb, G.L. Bolgos, and D.R. Call. 2000. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs cecal ligation and puncture. Shock 13: 110–116.CrossRef Remick, D.G., D.E. Newcomb, G.L. Bolgos, and D.R. Call. 2000. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs cecal ligation and puncture. Shock 13: 110–116.CrossRef
23.
Zurück zum Zitat Patel, A., J. Joseph, H. Periasamy, and S. Mokale. 2018. Azithromycin in combination with ceftriaxone reduces systemic inflammation and provides survival benefit in a murine model of polymicrobial sepsis. Antimicrobial Agents and Chemotherapy 62: e00752–e00718.CrossRef Patel, A., J. Joseph, H. Periasamy, and S. Mokale. 2018. Azithromycin in combination with ceftriaxone reduces systemic inflammation and provides survival benefit in a murine model of polymicrobial sepsis. Antimicrobial Agents and Chemotherapy 62: e00752–e00718.CrossRef
24.
Zurück zum Zitat Ebong, S., D. Call, J. Nemzek, G. Bolgos, D. Newcomb, and D. Remick. 1999. Immunopathologic alterations in murine models of sepsis of increasing severity. Infection and Immunity 67: 6603–6610.CrossRef Ebong, S., D. Call, J. Nemzek, G. Bolgos, D. Newcomb, and D. Remick. 1999. Immunopathologic alterations in murine models of sepsis of increasing severity. Infection and Immunity 67: 6603–6610.CrossRef
25.
Zurück zum Zitat Won-Young, K., and H. Sang-Bum. 2016. Sepsis and acute respiratory distress syndrome: recent update. Tuberculosis Respiratory Disease (Seoul) 79: 53–57.CrossRef Won-Young, K., and H. Sang-Bum. 2016. Sepsis and acute respiratory distress syndrome: recent update. Tuberculosis Respiratory Disease (Seoul) 79: 53–57.CrossRef
26.
Zurück zum Zitat Wibke, S., B. Jürgen, and B. Richard. 2013. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets—an updated view. Mediators of Inflammation 2013: 165974. Wibke, S., B. Jürgen, and B. Richard. 2013. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets—an updated view. Mediators of Inflammation 2013: 165974.
27.
Zurück zum Zitat Fjell, C.D., S. Thair, J.L. Hsu, K.R. Walley, J.A. Russell, and J. Boyd. 2013. Cytokines and signalling molecules predict clinical outcomes in sepsis. PLoS One 8: e79207.CrossRef Fjell, C.D., S. Thair, J.L. Hsu, K.R. Walley, J.A. Russell, and J. Boyd. 2013. Cytokines and signalling molecules predict clinical outcomes in sepsis. PLoS One 8: e79207.CrossRef
28.
Zurück zum Zitat Sener, G., H. Toklu, C. Kapucu, F. Ercan, G. Erkanli, A. Kaçmaz, M. Tilki, and B.C. Yeğen. 2005. Melatonin protects against oxidative organ injury in a rat model of sepsis. Surgery Today 35: 52–59.CrossRef Sener, G., H. Toklu, C. Kapucu, F. Ercan, G. Erkanli, A. Kaçmaz, M. Tilki, and B.C. Yeğen. 2005. Melatonin protects against oxidative organ injury in a rat model of sepsis. Surgery Today 35: 52–59.CrossRef
29.
Zurück zum Zitat Haegens, A., J.H. Vernooy, P. Heeringa, B.T. Mossman, and E.F. Wouters. 2008. Myeloperoxidase modulates lung epithelial responses to pro-inflammatory agents. The European Respiratory Journal 31: 252–260.CrossRef Haegens, A., J.H. Vernooy, P. Heeringa, B.T. Mossman, and E.F. Wouters. 2008. Myeloperoxidase modulates lung epithelial responses to pro-inflammatory agents. The European Respiratory Journal 31: 252–260.CrossRef
30.
Zurück zum Zitat Villa, P., A. Saccani, A. Sica, and P. Ghezzi. 2002. Glutathione protects mice from lethal sepsis by limiting inflammation and potentiating host defense. The Journal of Infectious Diseases 185: 1115–1120.CrossRef Villa, P., A. Saccani, A. Sica, and P. Ghezzi. 2002. Glutathione protects mice from lethal sepsis by limiting inflammation and potentiating host defense. The Journal of Infectious Diseases 185: 1115–1120.CrossRef
Metadaten
Titel
Immunomodulatory Effect of Doxycycline Ameliorates Systemic and Pulmonary Inflammation in a Murine Polymicrobial Sepsis Model
verfasst von
Anasuya Patel
Hemant Khande
Hariharan Periasamy
Santosh Mokale
Publikationsdatum
18.01.2020
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01188-y

Weitere Artikel der Ausgabe 3/2020

Inflammation 3/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.