Skip to main content

24.04.2024 | Scientific Article

Improved Resolution and Image Quality of Musculoskeletal Magnetic Resonance Imaging using Deep Learning-based Denoising Reconstruction: A Prospective Clinical Study

verfasst von: Hung P. Do, Carly A. Lockard, Dawn Berkeley, Brian Tymkiw, Nathan Dulude, Scott Tashman, Garry Gold, Jordan Gross, Erin Kelly, Charles P. Ho

Erschienen in: Skeletal Radiology

Einloggen, um Zugang zu erhalten

Abstract

Objective

To prospectively evaluate a deep learning-based denoising reconstruction (DLR) for improved resolution and image quality in musculoskeletal (MSK) magnetic resonance imaging (MRI).

Methods

Images from 137 contrast-weighted sequences in 40 MSK patients were evaluated. Each sequence was performed twice, first with the routine parameters and reconstructed with a routine reconstruction filter (REF), then with higher resolution and reconstructed with DLR, and with three conventional reconstruction filters (NL2, GA43, GA53). The five reconstructions (REF, DLR, NL2, GA43, and GA53) were de-identified, randomized, and blindly reviewed by three MSK radiologists using eight scoring criteria and a forced ranking. Quantitative SNR, CNR, and structure’s full width at half maximum (FWHM) for resolution assessment were measured and compared. To account for repeated measures, Generalized Estimating Equations (GEE) with Bonferroni adjustment was used to compare the reader’s scores, SNR, CNR, and FWHM between DLR vs. NL2, GA43, GA53, and REF.

Results

Compared to the routine REF images, the resolution was improved by 47.61% with DLR from 0.39 ± 0.15 mm2 to 0.20 ± 0.06 mm2 (p < 0.001). Per-sequence average scan time was shortened by 7.93% with DLR from 165.58 ± 21.86 s to 152.45 ± 25.65 s (p < 0.001). Based on the average scores, DLR images were rated significantly higher in all image quality criteria and the forced ranking (p < 0.001).

Conclusion

This prospective clinical evaluation demonstrated that DLR allows approximately two times finer resolution and improved image quality compared to the standard-of-care images.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat McRobbie DW, Moore EA, Graves MJ, Prince MR. MRI from Picture to Proton. Cambridge University Press; 2017.CrossRef McRobbie DW, Moore EA, Graves MJ, Prince MR. MRI from Picture to Proton. Cambridge University Press; 2017.CrossRef
2.
Zurück zum Zitat Kidoh M, Shinoda K, Kitajima M, Isogawa K, Nambu M, Uetani H, et al. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers. Magn Reson Med Sci. 2020;19:195–206.CrossRefPubMed Kidoh M, Shinoda K, Kitajima M, Isogawa K, Nambu M, Uetani H, et al. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers. Magn Reson Med Sci. 2020;19:195–206.CrossRefPubMed
3.
Zurück zum Zitat Lebel RM. Performance characterization of a novel deep learning-based MR image reconstruction pipeline. 2020; arXiv preprint arXiv:2008.06559. Lebel RM. Performance characterization of a novel deep learning-based MR image reconstruction pipeline. 2020; arXiv preprint arXiv:2008.06559.
4.
Zurück zum Zitat Koch KM, Sherafati M, Arpinar VE, Bhave S, Ausman R, Nencka AS, et al. Analysis and Evaluation of a Deep Learning Reconstruction Approach with Denoising for Orthopedic MRI. Radiol Artif Intell. 2021;3: e200278.CrossRefPubMedPubMedCentral Koch KM, Sherafati M, Arpinar VE, Bhave S, Ausman R, Nencka AS, et al. Analysis and Evaluation of a Deep Learning Reconstruction Approach with Denoising for Orthopedic MRI. Radiol Artif Intell. 2021;3: e200278.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Ueda T, Ohno Y, Yamamoto K, Murayama K, Ikedo M, Yui M, et al. Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging. Radiology. 2022;303:373–81.CrossRefPubMed Ueda T, Ohno Y, Yamamoto K, Murayama K, Ikedo M, Yui M, et al. Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging. Radiology. 2022;303:373–81.CrossRefPubMed
6.
Zurück zum Zitat Kashiwagi N, Sakai M, Tsukabe A, Yamashita Y, Fujiwara M, Yamagata K, et al. Ultrafast cervcial spine MRI protocol using deep learning-based reconstruction: diagnostic equivalence to a conventional protocol. Eur J Radiol. 2022;156:110531. Kashiwagi N, Sakai M, Tsukabe A, Yamashita Y, Fujiwara M, Yamagata K, et al. Ultrafast cervcial spine MRI protocol using deep learning-based reconstruction: diagnostic equivalence to a conventional protocol. Eur J Radiol. 2022;156:110531.
7.
Zurück zum Zitat Kim M, Kim HS, Kim HJ, Park JE, Park SY, Kim Y-H, et al. Thin-Slice Pituitary MRI with Deep Learning–based Reconstruction: Diagnostic Performance in a Postoperative Setting. Radiology. 2021;298:114–22.CrossRefPubMed Kim M, Kim HS, Kim HJ, Park JE, Park SY, Kim Y-H, et al. Thin-Slice Pituitary MRI with Deep Learning–based Reconstruction: Diagnostic Performance in a Postoperative Setting. Radiology. 2021;298:114–22.CrossRefPubMed
8.
Zurück zum Zitat Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–72.CrossRefPubMedPubMedCentral Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–72.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009. Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009.
11.
Zurück zum Zitat McKinney W. Data Structures for Statistical Computing in Python. Proc 9th Python Sci Conf. 2010;56–61. McKinney W. Data Structures for Statistical Computing in Python. Proc 9th Python Sci Conf. 2010;56–61.
12.
13.
Zurück zum Zitat Sandino CM, Cheng JY, Chen F, Mardani M, Pauly JM, Vasanawala SS. Compressed Sensing: From Research to Clinical Practice With Deep Neural Networks: Shortening Scan Times for Magnetic Resonance Imaging. IEEE Signal Process Mag. 2020;37:117–27.CrossRef Sandino CM, Cheng JY, Chen F, Mardani M, Pauly JM, Vasanawala SS. Compressed Sensing: From Research to Clinical Practice With Deep Neural Networks: Shortening Scan Times for Magnetic Resonance Imaging. IEEE Signal Process Mag. 2020;37:117–27.CrossRef
14.
Zurück zum Zitat R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2021. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2021.
15.
Zurück zum Zitat Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13–22.CrossRef Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13–22.CrossRef
16.
Zurück zum Zitat Zeger SL, Liang K-Y. Longitudinal Data Analysis for Discrete and Continuous Outcomes. Biometrics. 1986;42:121.CrossRefPubMed Zeger SL, Liang K-Y. Longitudinal Data Analysis for Discrete and Continuous Outcomes. Biometrics. 1986;42:121.CrossRefPubMed
17.
Zurück zum Zitat Hardin JW, Hilbe JM. Generalized Estimating Equations. New York: Chapman and Hall/CRC; 2002.CrossRef Hardin JW, Hilbe JM. Generalized Estimating Equations. New York: Chapman and Hall/CRC; 2002.CrossRef
18.
Zurück zum Zitat Højsgaard S, Halekoh U, Yan J. The R Package geepack for Generalized Estimating Equations. J Stat Softw. 2005;15:1–11. Højsgaard S, Halekoh U, Yan J. The R Package geepack for Generalized Estimating Equations. J Stat Softw. 2005;15:1–11.
19.
20.
Zurück zum Zitat Yan J. geepack: Yet Another Package for Generalized Estimating Equations. R-News. 2002;2(3):12–4. Yan J. geepack: Yet Another Package for Generalized Estimating Equations. R-News. 2002;2(3):12–4.
21.
Zurück zum Zitat Gwet KL. Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement among raters. 5. ed. Gaithersburg, MD: Advanced Analytics, LLC; 2021. Gwet KL. Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement among raters. 5. ed. Gaithersburg, MD: Advanced Analytics, LLC; 2021.
22.
Zurück zum Zitat Gwet KL. Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol. 2008;61:29–48.CrossRefPubMed Gwet KL. Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol. 2008;61:29–48.CrossRefPubMed
23.
Zurück zum Zitat Gwet KL. irrCAC: Computing Chance-Corrected Agreement Coefficients (CAC). R package version 1.0. 2019. Gwet KL. irrCAC: Computing Chance-Corrected Agreement Coefficients (CAC). R package version 1.0. 2019.
24.
Zurück zum Zitat Altman DG. Practical Statistics for Medical Research. Chapman & Hall / CRC Press; 1990.CrossRef Altman DG. Practical Statistics for Medical Research. Chapman & Hall / CRC Press; 1990.CrossRef
25.
Zurück zum Zitat Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 2007;9:90–5.CrossRef Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 2007;9:90–5.CrossRef
26.
Zurück zum Zitat Waskom ML. seaborn: statistical data visualization. J Open Source Softw. 2021;6:3021.CrossRef Waskom ML. seaborn: statistical data visualization. J Open Source Softw. 2021;6:3021.CrossRef
27.
Zurück zum Zitat Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.CrossRef Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.CrossRef
28.
Zurück zum Zitat Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans Image Process. 2004;13:600–12.CrossRefPubMed Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans Image Process. 2004;13:600–12.CrossRefPubMed
29.
Zurück zum Zitat Hore A, Ziou D. Image quality metrics: PSNR vs. SSIM. The 20th IntConf Pattern Recognit Istanbul, Turkey: IEEE. 2010;2366–2369. Hore A,  Ziou D. Image quality metrics: PSNR vs. SSIM. The 20th IntConf Pattern Recognit Istanbul, Turkey: IEEE. 2010;2366–2369.
30.
Zurück zum Zitat Wang Z, Simoncelli EP, Bovik AC. Multiscale structural similarity for image quality assessment. The thirty-seventh asilomar conference on signals, systems & computers, Pacific Grove, CA, USA: IEEE. 2003;2:1398–1402. Wang Z, Simoncelli EP,  Bovik AC.  Multiscale structural similarity for image quality assessment. The thirty-seventh asilomar conference on signals, systems & computers, Pacific Grove, CA, USA: IEEE. 2003;2:1398–1402.
31.
Zurück zum Zitat Wang Zhou, Bovik AC. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process Mag. 2009;26:98–117.CrossRef Wang Zhou, Bovik AC. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process Mag. 2009;26:98–117.CrossRef
32.
Zurück zum Zitat Knoll F, Murrell T, Sriram A, Yakubova N, Zbontar J, Rabbat M, et al. Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magn Reson Med. 2020;84:3054–70.CrossRefPubMedPubMedCentral Knoll F, Murrell T, Sriram A, Yakubova N, Zbontar J, Rabbat M, et al. Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magn Reson Med. 2020;84:3054–70.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Chaudhari AS, Sandino CM, Cole EK, Larson DB, Gold GE, Vasanawala SS, et al. Prospective Deployment of Deep Learning in MRI: A Framework for Important Considerations, Challenges, and Recommendations for Best Practices. J Magn Reson Imaging. 2021;54:357–71.CrossRefPubMed Chaudhari AS, Sandino CM, Cole EK, Larson DB, Gold GE, Vasanawala SS, et al. Prospective Deployment of Deep Learning in MRI: A Framework for Important Considerations, Challenges, and Recommendations for Best Practices. J Magn Reson Imaging. 2021;54:357–71.CrossRefPubMed
34.
Zurück zum Zitat Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, et al. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021;40:2306–17.CrossRefPubMedPubMedCentral Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, et al. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021;40:2306–17.CrossRefPubMedPubMedCentral
Metadaten
Titel
Improved Resolution and Image Quality of Musculoskeletal Magnetic Resonance Imaging using Deep Learning-based Denoising Reconstruction: A Prospective Clinical Study
verfasst von
Hung P. Do
Carly A. Lockard
Dawn Berkeley
Brian Tymkiw
Nathan Dulude
Scott Tashman
Garry Gold
Jordan Gross
Erin Kelly
Charles P. Ho
Publikationsdatum
24.04.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Skeletal Radiology
Print ISSN: 0364-2348
Elektronische ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-024-04679-3

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.