Skip to main content
Erschienen in: Journal of Medical Systems 1/2022

01.01.2022 | Image & Signal Processing

Improving the Classification Performance of Esophageal Disease on Small Dataset by Semi-supervised Efficient Contrastive Learning

verfasst von: Wenju Du, Nini Rao, Jiahao Yong, Yingchun Wang, Dingcan Hu, Tao Gan, Linlin Zhu, Bing Zeng

Erschienen in: Journal of Medical Systems | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Abstract

The classification of esophageal disease based on gastroscopic images is important in the clinical treatment, and is also helpful in providing patients with follow-up treatment plans and preventing lesion deterioration. In recent years, deep learning has achieved many satisfactory results in gastroscopic image classification tasks. However, most of them need a training set that consists of large numbers of images labeled by experienced experts. To reduce the image annotation burdens and improve the classification ability on small labeled gastroscopic image datasets, this study proposed a novel semi-supervised efficient contrastive learning (SSECL) classification method for esophageal disease. First, an efficient contrastive pair generation (ECPG) module was proposed to generate efficient contrastive pairs (ECPs), which took advantage of the high similarity features of images from the same lesion. Then, an unsupervised visual feature representation containing the general feature of esophageal gastroscopic images is learned by unsupervised efficient contrastive learning (UECL). At last, the feature representation will be transferred to the down-stream esophageal disease classification task. The experimental results have demonstrated that the classification accuracy of SSECL is 92.57%, which is better than that of the other state-of-the-art semi-supervised methods and is also higher than the classification method based on transfer learning (TL) by 2.28%. Thus, SSECL has solved the challenging problem of improving the classification result on small gastroscopic image dataset by fully utilizing the unlabeled gastroscopic images and the high similarity information among images from the same lesion. It also brings new insights into medical image classification tasks.
Literatur
5.
Zurück zum Zitat Mocanu, A., Bârla, R., Hoara, P. and Constantinoiu, S. (2015) Current endoscopic methods of radical therapy in early esophageal cancer. Journal of Medicine and Life p 150–6. Mocanu, A., Bârla, R., Hoara, P. and Constantinoiu, S. (2015) Current endoscopic methods of radical therapy in early esophageal cancer. Journal of Medicine and Life p 150–6.
6.
Zurück zum Zitat Guo, L.J., Xiao, X., Wu, C.C., Zeng, X., Zhang, Y., Du, J. et al. (2020) Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointestinal Endoscopy, American Society for Gastrointestinal Endoscopy. 91(1):41–51. https://doi.org/10.1016/j.gie.2019.08.018CrossRef Guo, L.J., Xiao, X., Wu, C.C., Zeng, X., Zhang, Y., Du, J. et al. (2020) Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointestinal Endoscopy, American Society for Gastrointestinal Endoscopy. 91(1):41–51. https://​doi.​org/​10.​1016/​j.​gie.​2019.​08.​018CrossRef
8.
Zurück zum Zitat Pang, X., Zhao, Z. and Weng, Y. (2021) The role and impact of deep learning methods in computer-aided diagnosis using gastrointestinal endoscopy. Diagnostics, 11(4):694.CrossRef Pang, X., Zhao, Z. and Weng, Y. (2021) The role and impact of deep learning methods in computer-aided diagnosis using gastrointestinal endoscopy. Diagnostics, 11(4):694.CrossRef
10.
Zurück zum Zitat Liu, D.Y., Gan, T., Rao, N.N., Xing, Y.W., Zheng, J., Li, S. et al. (2016) Identification of lesion images from gastrointestinal endoscope based on feature extraction of combinational methods with and without learning process. Medical Image Analysis, Elsevier B.V. 32281–94. https://doi.org/10.1016/j.media.2016.04.007 Liu, D.Y., Gan, T., Rao, N.N., Xing, Y.W., Zheng, J., Li, S. et al. (2016) Identification of lesion images from gastrointestinal endoscope based on feature extraction of combinational methods with and without learning process. Medical Image Analysis, Elsevier B.V. 32281–94. https://​doi.​org/​10.​1016/​j.​media.​2016.​04.​007
16.
Zurück zum Zitat Struyvenberg, M.R., de Groof, A.J., van der Putten, J., van der Sommen, F., Baldaque-Silva, F., Omae, M. et al. (2021) A computer-assisted algorithm for narrow-band imaging-based tissue characterization in Barrett’s esophagus. Gastrointestinal Endoscopy, American Society for Gastrointestinal Endoscopy. 93(1):89–98. https://doi.org/10.1016/j.gie.2020.05.050CrossRef Struyvenberg, M.R., de Groof, A.J., van der Putten, J., van der Sommen, F., Baldaque-Silva, F., Omae, M. et al. (2021) A computer-assisted algorithm for narrow-band imaging-based tissue characterization in Barrett’s esophagus. Gastrointestinal Endoscopy, American Society for Gastrointestinal Endoscopy. 93(1):89–98. https://​doi.​org/​10.​1016/​j.​gie.​2020.​05.​050CrossRef
17.
Zurück zum Zitat Nakagawa, K., Ishihara, R., Aoyama, K., Ohmori, M., Nakahira, H., Matsuura, N. et al. (2019) Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointestinal Endoscopy, American Society for Gastrointestinal Endoscopy. 90(3):407–14. https://doi.org/10.1016/j.gie.2019.04.245CrossRef Nakagawa, K., Ishihara, R., Aoyama, K., Ohmori, M., Nakahira, H., Matsuura, N. et al. (2019) Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointestinal Endoscopy, American Society for Gastrointestinal Endoscopy. 90(3):407–14. https://​doi.​org/​10.​1016/​j.​gie.​2019.​04.​245CrossRef
18.
Zurück zum Zitat Wang, C.C., Chiu, Y.C., Chen, W.L., Yang, T.W., Tsai, M.C. and Tseng, M.H. (2021) Article a deep learning model for classification of endoscopic gastroesophageal reflux disease. International Journal of Environmental Research and Public Health, 18(5):1–14. https://doi.org/10.3390/ijerph18052428CrossRef Wang, C.C., Chiu, Y.C., Chen, W.L., Yang, T.W., Tsai, M.C. and Tseng, M.H. (2021) Article a deep learning model for classification of endoscopic gastroesophageal reflux disease. International Journal of Environmental Research and Public Health, 18(5):1–14. https://​doi.​org/​10.​3390/​ijerph18052428CrossRef
19.
20.
Zurück zum Zitat Van Riel, S., Van Der Sommen, F., Zinger, S., Schoon, E.J. and De With, P.H.N. (2018) Automatic detection of early esophageal cancer with CNNS using transfer learning. Proceedings - International Conference on Image Processing, ICIP, Athens, Greece. p. 1383–7. https://doi.org/10.1109/ICIP.2018.8451771 Van Riel, S., Van Der Sommen, F., Zinger, S., Schoon, E.J. and De With, P.H.N. (2018) Automatic detection of early esophageal cancer with CNNS using transfer learning. Proceedings - International Conference on Image Processing, ICIP, Athens, Greece. p. 1383–7. https://​doi.​org/​10.​1109/​ICIP.​2018.​8451771
22.
Zurück zum Zitat Mahbod, A., Schaefer, G., Wang, C., Ecker, R. and Dorffner, G. (2021) Investigating and exploiting image resolution for transfer learning-based skin lesion classification. 2020 25th International Conference on Pattern Recognition (ICPR), p. 4047–53. Mahbod, A., Schaefer, G., Wang, C., Ecker, R. and Dorffner, G. (2021) Investigating and exploiting image resolution for transfer learning-based skin lesion classification. 2020 25th International Conference on Pattern Recognition (ICPR), p. 4047–53.
23.
Zurück zum Zitat Du, W., Rao, N., Wang, Y., Hu, D. and Yong, J. (2020) Efficient transfer learning used in the classification of gastroscopic images with small dataset. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2020, IEEE, Chengdu. p. 73–6. https://doi.org/10.1109/ICCWAMTIP51612.2020.9317450 Du, W., Rao, N., Wang, Y., Hu, D. and Yong, J. (2020) Efficient transfer learning used in the classification of gastroscopic images with small dataset. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2020, IEEE, Chengdu. p. 73–6. https://​doi.​org/​10.​1109/​ICCWAMTIP51612.​2020.​9317450
25.
Zurück zum Zitat Ouali, Y., Hudelot, C. and Tami, M. (2020) An overview of deep semi-supervised learning. ArXiv: 2006.05278, 2020. Ouali, Y., Hudelot, C. and Tami, M. (2020) An overview of deep semi-supervised learning. ArXiv: 2006.05278, 2020.
27.
Zurück zum Zitat Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E. et al. (2020) Bootstrap your own latent a new approach to self-supervised learning. Advances in Neural Information Processing Systems,. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E. et al. (2020) Bootstrap your own latent a new approach to self-supervised learning. Advances in Neural Information Processing Systems,.
28.
Zurück zum Zitat Chen, T., Kornblith, S., Norouzi, M. and Hinton, G. (2020) A simple framework for contrastive learning of visual representations. 37th International Conference on Machine Learning, ICML 2020, p. 1575–85. Chen, T., Kornblith, S., Norouzi, M. and Hinton, G. (2020) A simple framework for contrastive learning of visual representations. 37th International Conference on Machine Learning, ICML 2020, p. 1575–85.
29.
Zurück zum Zitat Caron, M., Bojanowski, P., Joulin, A. and Douze, M. (2018) Deep clustering for unsupervised learning of visual features. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), p. 139–56. https://doi.org/10.1007/978-3-030-01264-9_9 Caron, M., Bojanowski, P., Joulin, A. and Douze, M. (2018) Deep clustering for unsupervised learning of visual features. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), p. 139–56. https://​doi.​org/​10.​1007/​978-3-030-01264-9_​9
30.
Zurück zum Zitat Liu, Q., Yu, L., Luo, L. and Heng, P.-A. (2020) Semi-supervised medical image classification with relation-driven self-ensembling. IEEE Transactions on Medical Imaging, 39(11):3429–40.CrossRef Liu, Q., Yu, L., Luo, L. and Heng, P.-A. (2020) Semi-supervised medical image classification with relation-driven self-ensembling. IEEE Transactions on Medical Imaging, 39(11):3429–40.CrossRef
33.
Zurück zum Zitat Pogorelov, K., Randel, K.R., Griwodz, C., Eskeland, S.L., De Lange, T., Johansen, D. et al. (2017) Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detection. Proceedings of the 8th ACM Multimedia Systems Conference, MMSys 2017, p. 164–9. https://doi.org/10.1145/3083187.3083212 Pogorelov, K., Randel, K.R., Griwodz, C., Eskeland, S.L., De Lange, T., Johansen, D. et al. (2017) Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detection. Proceedings of the 8th ACM Multimedia Systems Conference, MMSys 2017, p. 164–9. https://​doi.​org/​10.​1145/​3083187.​3083212
34.
Zurück zum Zitat Ioffe, S. and Szegedy, C. (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. 32nd International Conference on Machine Learning, ICML 2015, 1448–56. Ioffe, S. and Szegedy, C. (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. 32nd International Conference on Machine Learning, ICML 2015, 1448–56.
35.
Zurück zum Zitat Hinton, G.E. Rectified linear units improve restricted boltzmann machines. International Conference on Machine Learning, ICML 2010, 807–14. Hinton, G.E. Rectified linear units improve restricted boltzmann machines. International Conference on Machine Learning, ICML 2010, 807–14.
38.
Zurück zum Zitat Zoph, B., Ghiasi, G., Lin, T.-Y., Cui, Y., Liu, H., Cubuk, E.D. et al. (2020) Rethinking Pre-training and Self-training. ArXiv: 2006.06882, 2020. Zoph, B., Ghiasi, G., Lin, T.-Y., Cui, Y., Liu, H., Cubuk, E.D. et al. (2020) Rethinking Pre-training and Self-training. ArXiv: 2006.06882, 2020.
39.
Zurück zum Zitat Van Der Maaten, L. and Hinton, G. (2008) Visualizing data using t-SNE. Journal of Machine Learning Research, 9(February):2579–625. Van Der Maaten, L. and Hinton, G. (2008) Visualizing data using t-SNE. Journal of Machine Learning Research, 9(February):2579–625.
40.
Zurück zum Zitat Du, W., Rao, N., Dong, C., Wang, Y., Hu, D., Zhu, L. et al. (2021) Automatic classification of esophageal disease in gastroscopic images using an efficient channel attention deep dense convolutional neural network. Biomedical Optics Express, 12(6):3066–81.CrossRef Du, W., Rao, N., Dong, C., Wang, Y., Hu, D., Zhu, L. et al. (2021) Automatic classification of esophageal disease in gastroscopic images using an efficient channel attention deep dense convolutional neural network. Biomedical Optics Express, 12(6):3066–81.CrossRef
Metadaten
Titel
Improving the Classification Performance of Esophageal Disease on Small Dataset by Semi-supervised Efficient Contrastive Learning
verfasst von
Wenju Du
Nini Rao
Jiahao Yong
Yingchun Wang
Dingcan Hu
Tao Gan
Linlin Zhu
Bing Zeng
Publikationsdatum
01.01.2022
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 1/2022
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-021-01782-z

Weitere Artikel der Ausgabe 1/2022

Journal of Medical Systems 1/2022 Zur Ausgabe