Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 2/2013

01.02.2013 | Original article

Inhibitor of apoptosis protein (IAP) antagonists demonstrate divergent immunomodulatory properties in human immune subsets with implications for combination therapy

verfasst von: Ashley J. Knights, Jitka Fucikova, Anupama Pasam, Sandra Koernig, Jonathan Cebon

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 2/2013

Einloggen, um Zugang zu erhalten

Abstract

Inhibitor of apoptosis proteins (IAPs) are critical in regulating apoptosis resistance in cancer. Antagonists of IAPs, such as LCL161, are in clinical development and show promise as anti-cancer agents for solid and hematological cancers, with preliminary data suggesting they may act as immunomodulators. IAP antagonists hypersensitize tumor cells to TNF-α-mediated apoptosis, an effect that may work in synergy with that of cancer vaccines. This study aimed to further investigate the immunomodulatory properties of LCL161 on human immune subsets. T lymphocytes treated with LCL161 demonstrated significantly enhanced cytokine secretion upon activation, with little effect on CD4 and CD8 T-cell survival or proliferation. LCL161 treatment of peripheral blood mononuclear cells significantly enhanced priming of naïve T cells with synthetic peptides in vitro. Myeloid dendritic cells underwent phenotypic maturation upon IAP antagonism and demonstrated a reduced capacity to cross-present a tumor antigen-based vaccine. These effects are potentially mediated through an observed activation of the canonical and non-canonical NF-κB pathways, following IAP antagonism with a resulting upregulation of anti-apoptotic molecules. In conclusion, this study demonstrated the immunomodulatory properties of antagonists at physiologically relevant concentrations and indicates their combination with immunotherapy requires further investigation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
5.
Zurück zum Zitat Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42PubMedCrossRef Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42PubMedCrossRef
12.
14.
Zurück zum Zitat Fakler M, Loeder S, Vogler M, Schneider K, Jeremias I, Debatin KM, Fulda S (2009) Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood 113:1710–1722. doi:10.1182/blood-2007-09-114314 PubMedCrossRef Fakler M, Loeder S, Vogler M, Schneider K, Jeremias I, Debatin KM, Fulda S (2009) Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood 113:1710–1722. doi:10.​1182/​blood-2007-09-114314 PubMedCrossRef
16.
Zurück zum Zitat Matsuzawa A, Tseng PH, Vallabhapurapu S, Luo JL, Zhang W, Wang H, Vignali DA, Gallagher E, Karin M (2008) Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 321:663–668. doi:10.1126/science.1157340 PubMedCrossRef Matsuzawa A, Tseng PH, Vallabhapurapu S, Luo JL, Zhang W, Wang H, Vignali DA, Gallagher E, Karin M (2008) Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 321:663–668. doi:10.​1126/​science.​1157340 PubMedCrossRef
17.
Zurück zum Zitat Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H, Vignali DA, Bergsagel PL, Karin M (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nat Immunol 9:1364–1370. doi:10.1038/ni.1678 PubMedCrossRef Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H, Vignali DA, Bergsagel PL, Karin M (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nat Immunol 9:1364–1370. doi:10.​1038/​ni.​1678 PubMedCrossRef
18.
Zurück zum Zitat Gardam S, Turner VM, Anderton H, Limaye S, Basten A, Koentgen F, Vaux DL, Silke J, Brink R (2011) Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 117:4041–4051. doi:10.1182/blood-2010-10-312793 PubMedCrossRef Gardam S, Turner VM, Anderton H, Limaye S, Basten A, Koentgen F, Vaux DL, Silke J, Brink R (2011) Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 117:4041–4051. doi:10.​1182/​blood-2010-10-312793 PubMedCrossRef
19.
Zurück zum Zitat Tseng PH, Matsuzawa A, Zhang W, Mino T, Vignali DA, Karin M (2010) Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 11:70–75. doi:10.1038/ni.1819 PubMedCrossRef Tseng PH, Matsuzawa A, Zhang W, Mino T, Vignali DA, Karin M (2010) Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 11:70–75. doi:10.​1038/​ni.​1819 PubMedCrossRef
20.
Zurück zum Zitat Dupoux A, Cartier J, Cathelin S, Filomenko R, Solary E, Dubrez-Daloz L (2009) cIAP1-dependent TRAF2 degradation regulates the differentiation of monocytes into macrophages and their response to CD40 ligand. Blood 113:175–185. doi:10.1182/blood-2008-02-137919 PubMedCrossRef Dupoux A, Cartier J, Cathelin S, Filomenko R, Solary E, Dubrez-Daloz L (2009) cIAP1-dependent TRAF2 degradation regulates the differentiation of monocytes into macrophages and their response to CD40 ligand. Blood 113:175–185. doi:10.​1182/​blood-2008-02-137919 PubMedCrossRef
22.
Zurück zum Zitat Waldele K, Silbermann K, Schneider G, Ruckes T, Cullen BR, Grassmann R (2006) Requirement of the human T-cell leukemia virus (HTLV-1) tax-stimulated HIAP-1 gene for the survival of transformed lymphocytes. Blood 107:4491–4499. doi:10.1182/blood-2005-08-3138 PubMedCrossRef Waldele K, Silbermann K, Schneider G, Ruckes T, Cullen BR, Grassmann R (2006) Requirement of the human T-cell leukemia virus (HTLV-1) tax-stimulated HIAP-1 gene for the survival of transformed lymphocytes. Blood 107:4491–4499. doi:10.​1182/​blood-2005-08-3138 PubMedCrossRef
25.
Zurück zum Zitat Infante JR, Dees EC, Burris HAI et al (2010) A phase I study of LCL161, an oral IAP inhibitor, in patients with advanced cancer. The 101st annual meeting of the American Association for Cancer Research, Washington Infante JR, Dees EC, Burris HAI et al (2010) A phase I study of LCL161, an oral IAP inhibitor, in patients with advanced cancer. The 101st annual meeting of the American Association for Cancer Research, Washington
26.
Zurück zum Zitat Houghton PJ, Kang MH, Reynolds CP et al (2011) Initial testing (Stage 1) of LCL161, a SMAC mimetic, by the pediatric preclinical testing program. Pediatr Blood Cancer. doi:10.1002/pbc.23167 Houghton PJ, Kang MH, Reynolds CP et al (2011) Initial testing (Stage 1) of LCL161, a SMAC mimetic, by the pediatric preclinical testing program. Pediatr Blood Cancer. doi:10.​1002/​pbc.​23167
28.
Zurück zum Zitat Knights AJ, Nuber N, Thomson CW et al (2009) Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients. Cancer Immunol Immunother 58:325–338. doi:10.1007/s00262-008-0556-8 PubMedCrossRef Knights AJ, Nuber N, Thomson CW et al (2009) Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients. Cancer Immunol Immunother 58:325–338. doi:10.​1007/​s00262-008-0556-8 PubMedCrossRef
29.
Zurück zum Zitat Robson NC, McAlpine T, Knights AJ, Schnurr M, Shin A, Chen W, Maraskovsky E, Cebon J (2010) Processing and cross-presentation of individual HLA-A, -B, or -C epitopes from NY-ESO-1 or an HLA-A epitope for Melan-A differ according to the mode of antigen delivery. Blood 116:218–225. doi:10.1182/blood-2009-10-249458 PubMedCrossRef Robson NC, McAlpine T, Knights AJ, Schnurr M, Shin A, Chen W, Maraskovsky E, Cebon J (2010) Processing and cross-presentation of individual HLA-A, -B, or -C epitopes from NY-ESO-1 or an HLA-A epitope for Melan-A differ according to the mode of antigen delivery. Blood 116:218–225. doi:10.​1182/​blood-2009-10-249458 PubMedCrossRef
30.
Zurück zum Zitat Platt CD, Ma JK, Chalouni C, Ebersold M, Bou-Reslan H, Carano RA, Mellman I, Delamarre L (2010) Mature dendritic cells use endocytic receptors to capture and present antigens. Proc Natl Acad Sci USA 107:4287–4292. doi:10.1073/pnas.0910609107 PubMedCrossRef Platt CD, Ma JK, Chalouni C, Ebersold M, Bou-Reslan H, Carano RA, Mellman I, Delamarre L (2010) Mature dendritic cells use endocytic receptors to capture and present antigens. Proc Natl Acad Sci USA 107:4287–4292. doi:10.​1073/​pnas.​0910609107 PubMedCrossRef
32.
Zurück zum Zitat Zippelius A, Pittet MJ, Batard P et al (2002) Thymic selection generates a large T cell pool recognizing a self-peptide in humans. J Exp Med 195:485–494PubMedCrossRef Zippelius A, Pittet MJ, Batard P et al (2002) Thymic selection generates a large T cell pool recognizing a self-peptide in humans. J Exp Med 195:485–494PubMedCrossRef
33.
Zurück zum Zitat Duewell P, Kisser U, Heckelsmiller K et al (2011) ISCOMATRIX adjuvant combines immune activation with antigen delivery to dendritic cells in vivo leading to effective cross-priming of CD8+ T Cells. J Immunol 187:55–63. doi:10.4049/jimmunol.1004114 PubMedCrossRef Duewell P, Kisser U, Heckelsmiller K et al (2011) ISCOMATRIX adjuvant combines immune activation with antigen delivery to dendritic cells in vivo leading to effective cross-priming of CD8+ T Cells. J Immunol 187:55–63. doi:10.​4049/​jimmunol.​1004114 PubMedCrossRef
34.
35.
Zurück zum Zitat Ouaaz F, Arron J, Zheng Y, Choi Y, Beg AA (2002) Dendritic cell development and survival require distinct NF-κB subunits. Immunity 16:257–270PubMedCrossRef Ouaaz F, Arron J, Zheng Y, Choi Y, Beg AA (2002) Dendritic cell development and survival require distinct NF-κB subunits. Immunity 16:257–270PubMedCrossRef
38.
Zurück zum Zitat Davis ID, Chen W, Jackson H et al (2004) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc Natl Acad Sci USA 101:10697–10702. doi:10.1073/pnas.0403572101 PubMedCrossRef Davis ID, Chen W, Jackson H et al (2004) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc Natl Acad Sci USA 101:10697–10702. doi:10.​1073/​pnas.​0403572101 PubMedCrossRef
40.
Zurück zum Zitat Garrett WS, Chen LM, Kroschewski R, Ebersold M, Turley S, Trombetta S, Galan JE, Mellman I (2000) Developmental control of endocytosis in dendritic cells by Cdc42. Cell 102:325–334PubMedCrossRef Garrett WS, Chen LM, Kroschewski R, Ebersold M, Turley S, Trombetta S, Galan JE, Mellman I (2000) Developmental control of endocytosis in dendritic cells by Cdc42. Cell 102:325–334PubMedCrossRef
42.
Zurück zum Zitat Schnurr M, Orban M, Robson NC, Shin A, Braley H, Airey D, Cebon J, Maraskovsky E, Endres S (2009) ISCOMATRIX adjuvant induces efficient cross-presentation of tumor antigen by dendritic cells via rapid cytosolic antigen delivery and processing via tripeptidyl peptidase II. J Immunol 182:1253–1259PubMedCrossRef Schnurr M, Orban M, Robson NC, Shin A, Braley H, Airey D, Cebon J, Maraskovsky E, Endres S (2009) ISCOMATRIX adjuvant induces efficient cross-presentation of tumor antigen by dendritic cells via rapid cytosolic antigen delivery and processing via tripeptidyl peptidase II. J Immunol 182:1253–1259PubMedCrossRef
43.
Zurück zum Zitat van de Laar L, van den Bosch A, van der Kooij SW, Janssen HL, Coffer PJ, van Kooten C, Woltman AM (2010) A nonredundant role for canonical NF-κB in human myeloid dendritic cell development and function. J Immunol 185:7252–7261. doi:10.4049/jimmunol.1000672 PubMedCrossRef van de Laar L, van den Bosch A, van der Kooij SW, Janssen HL, Coffer PJ, van Kooten C, Woltman AM (2010) A nonredundant role for canonical NF-κB in human myeloid dendritic cell development and function. J Immunol 185:7252–7261. doi:10.​4049/​jimmunol.​1000672 PubMedCrossRef
44.
Zurück zum Zitat O’Sullivan BJ, Thomas R (2002) CD40 ligation conditions dendritic cell antigen-presenting function through sustained activation of NF-κB. J Immunol 168:5491–5498PubMed O’Sullivan BJ, Thomas R (2002) CD40 ligation conditions dendritic cell antigen-presenting function through sustained activation of NF-κB. J Immunol 168:5491–5498PubMed
45.
Zurück zum Zitat Li M, Zhang X, Zheng X et al (2007) Immune modulation and tolerance induction by RelB-silenced dendritic cells through RNA interference. J Immunol 178:5480–5487PubMed Li M, Zhang X, Zheng X et al (2007) Immune modulation and tolerance induction by RelB-silenced dendritic cells through RNA interference. J Immunol 178:5480–5487PubMed
47.
Zurück zum Zitat Hernandez A, Burger M, Blomberg BB et al (2007) Inhibition of NF-κB during human dendritic cell differentiation generates anergy and regulatory T-cell activity for one but not two human leukocyte antigen DR mismatches. Hum Immunol 68:715–729. doi:10.1016/j.humimm.2007.05.010 PubMedCrossRef Hernandez A, Burger M, Blomberg BB et al (2007) Inhibition of NF-κB during human dendritic cell differentiation generates anergy and regulatory T-cell activity for one but not two human leukocyte antigen DR mismatches. Hum Immunol 68:715–729. doi:10.​1016/​j.​humimm.​2007.​05.​010 PubMedCrossRef
Metadaten
Titel
Inhibitor of apoptosis protein (IAP) antagonists demonstrate divergent immunomodulatory properties in human immune subsets with implications for combination therapy
verfasst von
Ashley J. Knights
Jitka Fucikova
Anupama Pasam
Sandra Koernig
Jonathan Cebon
Publikationsdatum
01.02.2013
Verlag
Springer-Verlag
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 2/2013
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-012-1342-1

Weitere Artikel der Ausgabe 2/2013

Cancer Immunology, Immunotherapy 2/2013 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.