Skip to main content
Erschienen in: BMC Ophthalmology 1/2020

Open Access 01.12.2020 | Research article

Integrated bioinformatics analysis of aberrantly-methylated differentially-expressed genes and pathways in age-related macular degeneration

verfasst von: Yinchen Shen, Mo Li, Kun Liu, Xiaoyin Xu, Shaopin Zhu, Ning Wang, Wenke Guo, Qianqian Zhao, Ping Lu, Fudong Yu, Xun Xu

Erschienen in: BMC Ophthalmology | Ausgabe 1/2020

Abstract

Background

Age-related macular degeneration (AMD) represents the leading cause of visual impairment in the aging population. The goal of this study was to identify aberrantly-methylated, differentially-expressed genes (MDEGs) in AMD and explore the involved pathways via integrated bioinformatics analysis.

Methods

Data from expression profile GSE29801 and methylation profile GSE102952 were obtained from the Gene Expression Omnibus database. We analyzed differentially-methylated genes and differentially-expressed genes using R software. Functional enrichment and protein–protein interaction (PPI) network analysis were performed using the R package and Search Tool for the Retrieval of Interacting Genes online database. Hub genes were identified using Cytoscape.

Results

In total, 827 and 592 genes showed high and low expression, respectively, in GSE29801; 4117 hyper-methylated genes and 511 hypo-methylated genes were detected in GSE102952. Based on overlap, we categorized 153 genes as hyper-methylated, low-expression genes (Hyper-LGs) and 24 genes as hypo-methylated, high-expression genes (Hypo-HGs). Four Hyper-LGs (CKB, PPP3CA, TGFB2, SOCS2) overlapped with AMD risk genes in the Public Health Genomics and Precision Health Knowledge Base. KEGG pathway enrichment analysis indicated that Hypo-HGs were enriched in the calcium signaling pathway, whereas Hyper-LGs were enriched in sphingolipid metabolism. In GO analysis, Hypo-HGs were enriched in fibroblast migration, membrane raft, and coenzyme binding, among others. Hyper-LGs were enriched in mRNA transport, nuclear speck, and DNA binding, among others. In PPI network analysis, 23 nodes and two edges were established from Hypo-HGs, and 151 nodes and 73 edges were established from Hyper-LGs. Hub genes (DHX9, MAPT, PAX6) showed the greatest overlap.

Conclusion

This study revealed potentially aberrantly MDEGs and pathways in AMD, which might improve the understanding of this disease.
Begleitmaterial
Hinweise
Yinchen Shen and Mo Li are co-first authors.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12886-020-01392-2.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AMD
Age-related macular degeneration
BP
Biological process
CC
Cellular component
CNV
Choroidal neovascularization
DEGs
Differentially expressed genes
DMGs
Differentially methylated genes
GEO
Gene Expression Omnibus
GO
Gene ontology
GWASs
Genome-wide association studies
Hyper-LGs
Hyper-methylated low-expression genes
Hypo-HGs
Hypo-methylated high-expression genes
KEGG
Kyoto Encyclopedia of Genes and Genomes
MDEGs
Methylated-differentially expressed genes
MF
Molecular function
NCBI
National Center for Biotechnology Information
PHGKB
Public Health Genomics and Precision Health Knowledge Base
PPI
Protein–protein interaction
RPE
Retinal pigment epithelium
STRING
Search Tool for the Retrieval of Interacting Genes

Background

Age-related macular degeneration (AMD) is the leading cause of adult blindness in developed countries, particularly in those over 55 years of age. Worldwide, this condition accounts for 7% of cases of blindness [1, 2] and is expected to affect 288 million people by the year 2040 [3]. AMD first appears as drusen (dry AMD) and advances to late AMD (wet AMD) characterized by choroidal neovascularization (CNV) [4]. Drusen is composed of lipoproteinaceous deposits and acellular debris [5]. CNV involves the growth of new abnormal blood vessels originating from the choroid through a break in the Bruch’s membrane, which then invade the subretinal pigment epithelium or sub-retinal space, resulting in severe vision loss [6, 7]. AMD affects central fine vision, significantly impairs a patient’s ability to drive, read, and recognize faces, and greatly affects quality of life [8]. As for wet-AMD (i.e. advanced stages), anti-vascular endothelial growth factor (anti-VEGF) therapy was shown to be effective and has become the first choice for the treatment of CNV [9]. However, anti-VEGF therapy requires repeated intra-vitreal injections, which are associated with a risk of infection and treatment burden for both the patients and the ophthalmologists [10]. Moreover, some patients have poor response to the drugs after a long-term treatment [11]. Apart from anti-VEGF drugs, some other therapies have also impacted macular disease treatment and showed their effectiveness, such as dexamethasone implant [1214].
Previous studies indicated that many environmental factors are associated with an increased risk of AMD, such as age, race, smoking, obesity, and hypertension [15, 16]. Additionally, genetic factors are regarded as important for the initiation and progression of AMD [17, 18]. Comparing to tumor tissue samples, ocular fundus tissue samples (i.e. retina and choroid) of patients with AMD are quite difficult to obtain in real world. The difficulties to obtain human fundus tissues restricted our understanding of this blinding disease. Over the past few years, most genetic studies on AMD were case-control genome-wide association studies (GWASs) of single-nucleotide polymorphisms in the patients’ peripheral blood [1921], which were valuable but provided limited information.
With the rapid development of gene assay technology, studies of disease pathogenesis are no longer limited to gene deletions, gene mutations, and gene insertions, among other changes. Microarrays based on high-throughput platforms are useful and efficient tools to search for meaningful genes and epigenetic alterations for the identification of diagnostic or prognostic biomarkers [22]. To better explore the molecular mechanism underlying AMD, it is necessary to conduct full transcriptome analysis at the tissue level; however, as mentioned previously herein, obtaining ocular tissue samples is difficult. Compared to retina or choroid tissue, blood samples are relatively easy to obtain from patients with AMD. Therefore, it would be helpful to evaluate gene expression in the ocular tissue of patients with AMD as biomarkers in the blood. In the present study, data from gene expression profiling microarrays of human retinal and choroidal samples from the Iowa and Oregon cohort AMD and control donors (GSE29801: https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE29801) [23], as well as gene methylation profiling microarrays of the peripheral blood of subjects with AMD (GSE102952: https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE102952), were integrated and analyzed using a series of bioinformatics tools. More precise screening results were obtained by overlapping these two AMD data sets. Few studies have attempted to combine gene expression profile microarrays and gene methylation profile microarrays to understand the development of AMD. The introduction of DNA methylation characteristics in the blood is useful to understand the characteristics of AMD disease at the tissue level.
In the present study, data from gene expression profiling microarrays and gene methylation profiling microarrays were integrated and analyzed. Functional enrichment and protein–protein interaction (PPI) network analyses of screened genes were performed using the R package “clusterProfiler” and Search Tool for the Retrieval of Interacting Genes (STRING) online database. We identified methylated genes in the peripheral blood, which might be useful as biomarkers for the precise diagnosis and treatment of AMD.

Methods

The need for ethics approval was waived by the ethics committee of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (the document is attached as an additional file).

Microarray data information

We identified methylated, differentially-expressed genes (MDEGs) between AMD and control samples by analyzing mRNA microarray and methylation profiling datasets. In this study, a gene expression profiling dataset (GSE29801: https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE29801) and gene methylation dataset (GSE102952: https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE102952) were downloaded from the Gene Expression Omnibus (https://​www.​ncbi. nlm.​nih.​gov/​geo/) of the National Center for Biotechnology Information. The gene expression profiling data were based on the mRNA from the macular regions of human donor eyes from the retina and retinal pigment epithelium (RPE)-choroids. The gene methylation microarray data were assessed using genome-wide DNA methylation profiling of peripheral blood.
Microarray data from GSE29801 included 177 samples from the macular or extramacular regions of human donor eye RPE-choroids and 118 samples from the macular or extramacular region of human donor retinas with no reported ocular disease, with possible preclinical AMD or AMD [23]. RPE-choroid and retinal samples were isolated from human donor eyes obtained from the University of Iowa (GSH) and Lions Eye Bank of Oregon. The Iowa eyes were selected from a well-characterized repository derived from more than 3900 donors. The Oregon eyes were generally classified as AMD based on medical histories confirmed by ophthalmological records [23, 24]. Global transcriptome profiling was carried out using the Agilent Whole Human Genome 4 × 44 K in situ oligonucleotide array platform (G4112F, Agilent Technologies, Santa Clara, CA, USA). After removing redundant data, the microarray data of 41 patients with AMD and 42 normal controls were included in our analysis [23]. First, the authors removed redundant data and selected the subjects who had both macular retina and macular RPE-choroid records. Such selection criteria were implemented due to the fact that AMD mainly affects central vision acuity (i.e. the central macular area). Second, we compared the gene expression levels of macular retina and macular RPE-choroid, then, we chose the higher one of them to conduct the further bioinformatics analysis.
For the gene methylation microarray data, Oliver et al. previously performed genome-wide DNA methylation profiling of blood from nine patients with AMD and nine controls based on the GPL13534 Illumina HumanMethylation 450 BeadChip platform (HumanMethylation450_15017482, San Diego, CA, USA), which covers approximately 450,000 CpG sites in different gene regions including the transcription start sites 1500 and 200, 5′ untranslated region, 1st exon, body, and 3′ untranslated region. The authors generously shared their original data online for public use (GSE102952: https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE102952). The methylation profile data of all nine patients with AMD and nine normal controls were included in this analysis.

Data processing to identify differentially-expressed genes (DEGs) and differentially-methylated genes (DMGs)

We used the Limma package in R software (version 3.4.2; Bell Laboratories, formerly AT&T, now Lucent Technologies, Murray Hill, NJ, USA) to analyze GSE29801 and GSE102952 to identify DEGs and DMGs. P < 0.05 was regarded as statistically significant. For DEGs, we set the cut-off standard as P < 0.05 and the absolute value of the log (fold-change) > the median (fold-change). For DMGs, we set the cut-off criteria as P < 0.05 and absolute value of log (fold-change) > 3/4 sort [summary log (fold-change)]. For further analysis, hypomethylation-high expression genes (Hypo-HGs) were obtained by overlapping hypomethylated and upregulated genes; hypermethylation-low expression genes (Hyper-LGs) were obtained by overlapping hypermethylated and downregulated genes.

Functional enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the selected genes (Hypo-HGs and Hyper-LGs), and the enrichment results were illustrated using the R package “clusterProfiler”. This package can be used to extract biological meaning from large gene lists. We performed GO term enrichment analysis under the following three sub-ontologies: biological process (BP), molecular function (MF), and cellular component (CC). The cut-off criterion of significantly-enriched KEGG pathways was P < 0.05.

Comprehensive PPI network

Determination of the comprehensive PPI network is important to detect the molecular mechanisms of AMD. In this study, we used the online STRING (version 11.0) tool to construct the network of Hypo-HGs and Hyper-LGs. STRING is an online database used to predict PPIs, which are essential to interpret the molecular mechanisms of key cellular activities in AMD. The cut-off standard was defined as an interaction score of 0.4. The results were visualized in Cytoscape software (version 3.5.1). Hub genes were defined as the top three genes that appeared most frequently according to all cytoHubba ranking methods using Cytoscape software. Subsequently, the Molecular Complex Detection (MCODE) algorithm in Cytoscape software was used to screen the modules. An MCODE score > 3 and node number > 3 were used as the criteria to define a module.

Results

Identification of DEGs and DMGs in AMD

To identify DEGs or DMGs, we used the expression profile from GSE29801 (containing RPE-choroid and retina tissue samples from 41 patients with AMD and 42 normal samples) and the methylation profile from GSE102952 (containing peripheral blood samples of nine AMD patients and nine normal controls) after data preprocessing and quality assessment using R software. We identified 827 high-expression genes and 592 low-expression genes and 4117 hypermethylated genes and 511 hypomethylated genes. The top 100 most significant DEGs of GSE29801 are shown in Table S1, and the top 100 most significant DMGs of GSE102952 are shown in Table S2.

Identification of aberrantly-methylated DEGs in AMD

To further explore the aberrantly-methylated DEGs, Hypo-HGs were obtained by overlapping hypomethylated and upregulated genes, whereas Hyper-LGs were obtained by overlapping hypermethylated and downregulated genes. We identified 24 Hypo-HGs and 153 Hyper-LGs. The flowchart of this study is presented in Fig. 1. All genes are shown in Table S3. To confirm the reliability of the results, we compared aberrantly MDEGs from the GSE29801 and GSE102952 datasets with genes in the Public Health Genomics and Precision Health Knowledge Base (PHGKB; version. 5.8) (https://​phgkb.​cdc.​gov/​PHGKB/​startPagePhenoPe​dia.​action) studied in the category of “macular degeneration”; the results are shown in Fig. 2. We screened four Hyper-LGs (CKB, PPP3CA, TGFB2, and SOCS2) that overlapped with potential AMD risk genes in the PHGKB. However, no Hypo-HG overlapped in the PHGKB.

Functional enrichment analysis

Functional enrichment analysis was conducted using the R package “clusterProfiler”, and all significantly enriched KEGG pathways associated with the 24 Hypo-HGs and 153 Hyper-LGs are shown in Table 1. The results of KEGG pathway enrichment analysis indicated that Hypo-HGs were significantly enriched in the phosphatidylinositol signaling system and calcium signaling pathway, whereas Hyper-LGs were significantly enriched in amphetamine addiction, morphine addiction, and sphingolipid metabolism. The top five GO terms in each category in which the 24 Hypo-HGs and 153 Hyper-LGs were significantly involved are shown in Tables 2 and 3, respectively. Functional enrichment analysis suggested that the 24 Hypo-HGs were enriched in the BP of fibroblast migration and positive regulation of neurological system process. The GO CC category revealed enrichment in membrane raft and membrane microdomain. The MF category showed enrichment in factors involved in neuropeptide receptor activity and coenzyme binding (Table 2). The 153 Hyper-LGs were enriched in the BP category of mRNA transport, among others. The CC category revealed enrichment in nuclear speck and neuronal cell body, among others. The MF category indicated enrichment in DNA binding and phosphoric ester hydrolase activity (Table 3).
Table 1
Kyoto encyclopedia of genes and genomes pathway analysis of aberrantly methylated differentially expressed genes in age-related macular degeneration (AMD)
Category
ID
Description
GeneRatio
BgRatio
P value
Q value
geneSymbol
Count
Hypomethylated with high expression
 KEGG_PATHWAY
hsa04070
Phosphatidylinositol signaling system
2/13
99/7866
0.01117
0.28231
PIP5K1A/PIP4P2
2
 KEGG_PATHWAY
hsa04020
Calcium signaling pathway
2/13
193/7866
0.03911
0.31445
NTSR1/TACR1
2
Hypermethylated with low expression
 KEGG_PATHWAY
hsa05031
Amphetamine addiction
3/59
68/7866
0.01423
0.73750
GRIN2C/PPP3CA/STX1A
3
 KEGG_PATHWAY
hsa05032
Morphine addiction
3/59
91/7866
0.03057
0.73750
GRK4/PDE10A/PDE4D
3
 KEGG_PATHWAY
hsa00600
Sphingolipid metabolism
2/59
47/7866
0.04820
0.73750
PLPP2/SGPL1
2
Table 1. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the selected genes. All significantly enriched KEGG pathways with the 24 hypo-methylated, high-expression genes (Hypo-HGs) and 153 hyper-methylated, low-expression genes (Hyper-LGs) are shown. The cut-off criterion was P < 0.05. The results indicated that Hypo-HGs were significantly enriched in the phosphatidylinositol signaling system and calcium signaling pathway, whereas Hyper-LGs were significantly enriched in amphetamine addiction, morphine addiction, and sphingolipid metabolism
Table 2
Gene Ontology analysis of hypomethylated with high expression genes in age-related macular degeneration (AMD)
Category
Term
Description
GeneRatio
BgRatio
P value
Q value
GeneSymbol
Count
Hypomethylated with high expression
 GOTERM_BP
GO:0010761
fibroblast migration
2/22
41/18493
0.00108
0.11666
DDR2/PIP5K1A
2
 GOTERM_BP
GO:0031646
positive regulation of neurological system process
2/22
58/18493
0.00214
0.11666
NTSR1/TNR
2
 GOTERM_BP
GO:1901616
organic hydroxy compound catabolic process
2/22
72/18493
0.00328
0.11666
LDHD/NTSR1
2
 GOTERM_BP
GO:0003333
amino acid transmembrane transport
2/22
86/18493
0.00465
0.11666
NTSR1/SLC7A4
2
 GOTERM_BP
GO:0031644
regulation of neurological system process
2/22
127/18493
0.00988
0.11666
NTSR1/TNR
2
 GOTERM_CC
GO:0045121
membrane raft
3/23
304/19659
0.00516
0.13697
NTSR1/SKAP1/TNR
3
 GOTERM_CC
GO:0098857
membrane microdomain
3/23
305/19659
0.00520
0.13697
NTSR1/SKAP1/TNR
3
 GOTERM_CC
GO:0098589
membrane region
3/23
316/19659
0.00574
0.13697
NTSR1/SKAP1/TNR
3
 GOTERM_CC
GO:0032280
symmetric synapse
1/23
11/19659
0.01280
0.16553
NTSR1
1
 GOTERM_CC
GO:0061827
sperm head
1/23
11/19659
0.01280
0.16553
TACR1
1
 GOTERM_MF
GO:0008188
neuropeptide receptor activity
2/20
50/17632
0.00145
0.07933
NTSR1/TACR1
2
 GOTERM_MF
GO:0050662
coenzyme binding
3/20
285/17632
0.00389
0.09513
GCAT/LDHD/UXS1
3
 GOTERM_MF
GO:0034596
phosphatidylinositol phosphate 4-phosphatase activity
1/20
10/17632
0.01129
0.09513
PIP4P2
1
 GOTERM_MF
GO:0008528
G protein-coupled peptide receptor activity
2/20
145/17632
0.01158
0.09513
NTSR1/TACR1
2
 GOTERM_MF
GO:0015174
basic amino acid transmembrane transporter activity
1/20
11/17632
0.01241
0.09513
SLC7A4
1
Table 2. Gene ontology (GO) pathway enrichment analyses were performed for the selected genes. The cut-off criterion was P < 0.05. The top 5 GO terms in each category in which the 24 hypo-methylated, high-expression genes were significantly involved are shown. They were enriched in the biological process of fibroblast migration and positive regulation of neurological system process. The cellular component category revealed enrichment in membrane raft and membrane microdomain. The molecular function category showed enrichment for factors involved in neuropeptide receptor activity and coenzyme binding
Table 3
Gene Ontology analysis of hypermethylated with low expression in age-related macular degeneration (AMD)
Category
Term
Description
GeneRatio
BgRatio
P value
Q value
GeneSymbol
Count
Hypermethylated with low expression
 GOTERM_BP
GO:0051028
mRNA transport
7/141
151/18493
0.00016
0.11773
DHX9/HNRNPA3/NUP58/SLU7/SMG1/SRSF11/YTHDC1
7
 GOTERM_BP
GO:0042698
ovulation cycle
5/141
68/18493
0.00017
0.11773
ADAMTS1/ADNP/PAM/SGPL1/TGFB2
5
 GOTERM_BP
GO:0022602
ovulation cycle process
4/141
47/18493
0.00045
0.11773
ADAMTS1/PAM/SGPL1/TGFB2
4
 GOTERM_BP
GO:0060021
roof of mouth development
5/141
89/18493
0.00060
0.11773
CHD7/FOXE1/MEF2C/SGPL1/TGFB2
5
 GOTERM_BP
GO:0021513
spinal cord dorsal/ventral patterning
3/141
22/18493
0.00060
0.11773
INTU/PAX6/SOX1
3
 GOTERM_CC
GO:0016607
nuclear speck
12/146
382/19659
0.00003
0.00790
BAZ2A/DPP3/FAM76B/MAPT/MEF2C/PNISR/SLU7/SREK1/SRSF11/TARDBP/WAC/YTHDC1
12
 GOTERM_CC
GO:0043025
neuronal cell body
12/146
483/19659
0.00027
0.03616
ADNP/CCK/CKB/GRK4/KCND3/MAPT/MPL/PAM/PDE10A/PTPRF/RTN4RL1/TGFB2
12
 GOTERM_CC
GO:0044441
ciliary part
9/146
441/19659
0.00575
0.36035
AHI1/CEP126/CEP131/DYNC2H1/GRK4/INTU/MLF1/NEK8/NIN
9
 GOTERM_CC
GO:0001669
acrosomal vesicle
4/146
106/19659
0.00808
0.36035
CEP131/FLOT2/SPAG8/SV2B
4
 GOTERM_CC
GO:1990351
transporter complex
7/146
333/19659
0.01232
0.36035
ABCD4/GRIK1/GRIN2C/KCND3/PDE4D/PEX13/STX1A
7
 GOTERM_MF
GO:0003680
AT DNA binding
2/141
10/17632
0.00274
0.26873
MAPT/MEF2C
2
 GOTERM_MF
GO:0042578
phosphoric ester hydrolase activity
9/141
369/17632
0.00290
0.26873
CTDSP1/PDE10A/PDE4D/PDPR/PFKFB2/PLPP2/PPP3CA/PTPDC1/PTPRF
9
 GOTERM_MF
GO:0044325
ion channel binding
5/141
125/17632
0.00332
0.26873
KCND3/PDE4D/SLC8A1/STX1A/YWHAZ
5
 GOTERM_MF
GO:0001046
core promoter sequence-specific DNA binding
3/141
38/17632
0.00344
0.26873
BAZ2A/H3F3A/PAX6
3
 GOTERM_MF
GO:0004721
phosphoprotein phosphatase activity
6/141
182/17632
0.00346
0.2687
CTDSP1/PDPR/PLPP2/PPP3CA/PTPDC1/PTPRF
6
Table 3. Gene ontology (GO) pathway enrichment analyses were performed for the selected genes. The cut-off criterion was P < 0.05. The top 5 GO terms in each category in which the 153 hyper-methylated, low-expression genes were significantly involved are shown. They were enriched in the biological process of mRNA transport, etc. The cellular component category revealed enrichment in nuclear speck, neuronal cell body, etc. The molecular function category indicated enrichment in DNA binding and phosphoric ester hydrolase activity

Comprehensive gene regulation network

The STRING database was used to construct PPI networks. Ultimately, 23 nodes and two edges were established from the Hypo-HGs and 151 nodes and 73 edges were established from the Hyper-LGs. The results are shown in Figs. 3 and 4. We use Cytoscape software to determine the largest subgroup interaction network of Hyper-LG genes (Fig. 5). We identified hub genes using cytoHubba and confirmed that DHX9, MAPT, and PAX6 showed the greatest overlap. Two-core module analysis of this subgroup network of Hyper-LG genes was performed, including module1 comprising HNRNPA3, DHX9, SRSF11, and SLU7 and module2 comprising SOX1, PAX6, and DLX2.

Discussion

AMD is a disease with complex inheritance and epigenetic changes [5]. Identification of the underlying genes has been difficult. Both genomic screening (locational) and candidate gene (functional) approaches have been used. Based on numerous genetic studies of AMD, approximately 50% of the heritability of AMD can be explained by two major loci harboring coding and non-coding variations at chromosomes 1q (CFH) and 10q (ARMS2/HTRA1) [2528]. Recently, a large GWAS highlighted new genes and pathways involved in the development of AMD, including complement activation, collagen synthesis, lipid metabolism/cholesterol transport, receptor-mediated endocytosis, endodermal cell differentiation, and extracellular matrix organization, indicating that many unknown genetic changes remain to be identified with respect to the initiation and development of AMD [20]. The application of novel drugs in the treatment of macular disease also indicated the complicated change of the micro-environment of the macular in the case of disease [2931]. In this study, we screened novel biomarkers by combining microarray information from RPE-choroid and retinal tissue samples from patients with AMD, as well as peripheral blood samples, by overlapping relevant datasets (GSE29801 and GSE10295) using integrated bioinformatics analysis for available microarray data. This is the first study to employ this approach.
The Hyper-LGs identified are potential biomarkers of AMD based on methylation microarrays for pre-clinical detection in peripheral blood. Among them, four Hyper-LGs (CKB, PPP3CA, TGFB2, and SOCS2) overlapped with risk genes in the category of “macular degeneration” in the PHGKB. One study revealed that CKB is unlikely to explain a significant portion of the risk of developing AMD in a family-based association dataset including 162 families and an independent case-control dataset of 399 cases and 159 fully evaluated controls [32]. PPP3CA is a druggable molecule that inactivates MAP3K5 but has not been widely investigated for its role in AMD. One previous study revealed AMD-related sequence variants in genes encoding PPP3CA, underlying its relationship with AMD [33]. TGFB2 induces RPE cell and collagen gel contraction. Subretinal fibrosis contributes to the loss of vision associated with AMD, and RPE cells play a key role in the fibrotic reaction [34]. Under hypoxic conditions, RPE cells can increase the secretion of TGFB2 and induce epithelial–mesenchymal transition, resulting in the formation of scar-like fibrous tissue in AMD [35]. Targeted inhibition of TGFB signaling might be an effective approach to retard AMD progression [36]. SOCS proteins are modulators of cytokine and growth factor signaling, and their aberrant regulation has been linked to a variety of inflammatory and neoplastic diseases [37]. In a GWAS of 919 patients with exudative AMD treated with intravitreal ranibizumab, SOCS2 was a candidate gene for which levels were associated with visual loss at month three [38]. These results provide insight into AMD pathogenesis but must be confirmed by in vivo and in vitro experiments. The methylation patterns of PPP3CA, TGFB2, and SOCS2 in AMD have not been previously described. We found that these genes were hypermethylated and expressed at low levels, suggesting that the aberrant methylation of these genes affects the pathogenesis of AMD. No Hypo-HGs overlapped in the PHGKB, likely because of the limited number of genes identified.
Among the top five pathways identified by KEGG and GO analyses, calcium signaling [39, 40], sphingolipid metabolism [41, 42], fibroblast migration [43, 44], membrane [45], coenzyme [4648], and DNA binding [49] have been investigated in AMD. Calcium signaling, sphingolipid metabolism, and coenzyme categories showed strong relationships with AMD, whereas the others require further evaluation. Calcium signaling plays a vital role in RPE cell function. Intracellular calcium mobilization activates gene expression and the secretion of inflammatory cytokines such as interleukin-8 in human RPE cells [39]. Complement attack on RPE cells, leading to cell death, is also modulated by extracellular calcium and intracellular signaling mechanisms [40]. Sphingosine 1-phosphate is a potent lipid mediator that modulates inflammatory responses and proangiogenic factors, and it has been suggested that this protein upregulates CNV and is deeply involved in the pathogenesis of exudative AMD [42]. Free radicals play a pathogenic role in AMD, whereas coenzyme Q10 has a protective effect [48]. A combination of acetyl-L-carnitine, n-3 fatty acids, and coenzyme Q10 was shown to be beneficial for visual functions in early AMD [47]. However, drug metabolism pathways such as amphetamine addiction and morphine addiction could have been identified by chance and might not be related to AMD. The specific manner in which the other pathways affect AMD development and progression must be further investigated.
In the PPI network, 23 nodes and two edges were established from the Hypo-HGs and 151 nodes and 73 edges were established from the Hyper-LGs. DHX9, MAPT, and PAX6 were identified as hub genes. Two core modules for Hyper-LGs were structured, including module1 comprising HNRNPA3, DHX9, SRSF11, and SLU7 and module2 comprising SOX1, PAX6, and DLX2. Among the hub genes and core modules previously mentioned, PAX6 is expressed in retinal progenitor cells throughout retinogenesis [50]. PAX6 is a novel regulatory gene among RPE transcription factors that controls the timing of RPE differentiation and adjacent choroid maturation, suggesting that PAX6 is involved in choroid development during the pathogenesis of AMD [51]. Other genes have not been previously investigated with respect to AMD.
This study aimed to find potential biomarkers of AMD based on public datasets and bioinformatics methods. However, the results of this study were not strong enough to switch the diagnosis and treatment of AMD so far. These years, ophthalmology has experienced significant developments with respect to imaging modalities. Optical coherence tomography (OCT) is a non-invasive imaging modality that produces high-resolution, cross-sectional images of ocular tissues. Compared to time-domain OCT, spectral-domain OCT yields a higher degree of axial resolution and provides more detailed views of intraretinal structure [52]. Swept-source OCT can offer improved images of the choroid and pigmented lesions [53]. The development of OCT benefits to the diagnosis and follow-up of AMD, and we guess the early detection based on MDEGs might help to identify AMD patients before the clinical symptoms appear. It might be possible to develop detection reagents in the blood for early detection and screening of AMD in the future.
There were some limitations of this study. First, we focused on Hyper-LGs and Hypo-HGs without analyzing contra-regulated genes; thus, further analysis is required to evaluate these genes. Second, our study was limited to only two datasets, and we did not conduct validation based on animals or patient samples. Thus, the results are preliminary and larger sample sizes as well as further fundamental experiments are needed to confirm these results. Third, the clinical characteristics of AMD patients included were not analyzed because these data were not available, and thus, the results should be conservatively interpreted.

Conclusions

In summary, data from gene expression profiling microarrays and gene methylation profiling microarrays of patients with AMD were integrated and analyzed using a series of bioinformatics tools. Our results indicated aberrantly MDEGs (PPP3CA, TGFB2, and SOCS2) and pathways (calcium signaling, sphingolipid metabolism, fibroblast migration, membrane, coenzyme, and DNA binding) associated with AMD. These genes might serve as biomarkers for the precise diagnosis and treatment of AMD. Further studies are needed to confirm the functional significance of the identified genes and pathways in AMD.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12886-020-01392-2.

Acknowledgements

Not applicable.
All procedures performed in the study were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was submitted to the ethics committee of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. The need for ethics approval and written consent was waived by the ethics committee of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China according to national regulations (the document is attached as an additional file).
As the manuscript did not contain any individual details, images or videos, the written consent was not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary information

Literatur
1.
Zurück zum Zitat Bressler NM. Age-related macular degeneration is the leading cause of blindness…. JAMA. 2004;291:1900–1.CrossRefPubMed Bressler NM. Age-related macular degeneration is the leading cause of blindness…. JAMA. 2004;291:1900–1.CrossRefPubMed
2.
Zurück zum Zitat Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health. 2013;1:e339–49.CrossRefPubMed Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health. 2013;1:e339–49.CrossRefPubMed
3.
Zurück zum Zitat Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106–16.CrossRefPubMed Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106–16.CrossRefPubMed
4.
Zurück zum Zitat Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study (AREDS): design implications. AREDS report no. 1. Control Clin Trials. 1999;20:573–600.CrossRef Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study (AREDS): design implications. AREDS report no. 1. Control Clin Trials. 1999;20:573–600.CrossRef
5.
Zurück zum Zitat DeAngelis MM, Owen LA, Morrison MA, Morgan DJ, Li M, Shakoor A, et al. Genetics of age-related macular degeneration (AMD). Hum Mol Genet. 2017;26:R45–50.CrossRefPubMedPubMedCentral DeAngelis MM, Owen LA, Morrison MA, Morgan DJ, Li M, Shakoor A, et al. Genetics of age-related macular degeneration (AMD). Hum Mol Genet. 2017;26:R45–50.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Jian L, Panpan Y, Wen X. Current choroidal neovascularization treatment. Ophthalmologica. 2013;230:55–61.CrossRefPubMed Jian L, Panpan Y, Wen X. Current choroidal neovascularization treatment. Ophthalmologica. 2013;230:55–61.CrossRefPubMed
7.
Zurück zum Zitat Do DV. Detection of new-onset choroidal neovascularization. Curr Opin Ophthalmol. 2013;24:244–7.CrossRefPubMed Do DV. Detection of new-onset choroidal neovascularization. Curr Opin Ophthalmol. 2013;24:244–7.CrossRefPubMed
8.
Zurück zum Zitat Handa JT. How does the macula protect itself from oxidative stress? Mol Asp Med. 2012;33:418–35.CrossRef Handa JT. How does the macula protect itself from oxidative stress? Mol Asp Med. 2012;33:418–35.CrossRef
9.
Zurück zum Zitat Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–31.CrossRefPubMed Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–31.CrossRefPubMed
10.
Zurück zum Zitat Wang F, Yu S, Liu K, Chen FE, Song F, Zhang X, et al. Acute intraocular inflammation caused by endotoxin after intravitreal injection of counterfeit bevacizumab in Shanghai, China. Ophthalmology. 2013;120:355–61.CrossRefPubMed Wang F, Yu S, Liu K, Chen FE, Song F, Zhang X, et al. Acute intraocular inflammation caused by endotoxin after intravitreal injection of counterfeit bevacizumab in Shanghai, China. Ophthalmology. 2013;120:355–61.CrossRefPubMed
11.
Zurück zum Zitat Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K, SEVEN-UP Study Group. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. 2013;120:2292–9.CrossRefPubMed Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K, SEVEN-UP Study Group. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology. 2013;120:2292–9.CrossRefPubMed
12.
Zurück zum Zitat Iglicki M, Busch C, Zur D, Okada M, Mariussi M, Chhablani JK, et al. Dexamethasone Implant for diabetic macular edema in naive compared with refractory eyes: The International Retina Group real-life 24-month multicenter study. The IRGREL-DEX study. Retina. 2019;39:44–51.CrossRefPubMed Iglicki M, Busch C, Zur D, Okada M, Mariussi M, Chhablani JK, et al. Dexamethasone Implant for diabetic macular edema in naive compared with refractory eyes: The International Retina Group real-life 24-month multicenter study. The IRGREL-DEX study. Retina. 2019;39:44–51.CrossRefPubMed
13.
Zurück zum Zitat Iglicki M, Zur D, Busch C, Okada M, Loewenstein A. Progression of diabetic retinopathy severity after treatment with dexamethasone implant: a 24-month cohort study the ‘DR-Pro-DEX Study’. Acta Diabetol. 2018;55:541–7.CrossRefPubMed Iglicki M, Zur D, Busch C, Okada M, Loewenstein A. Progression of diabetic retinopathy severity after treatment with dexamethasone implant: a 24-month cohort study the ‘DR-Pro-DEX Study’. Acta Diabetol. 2018;55:541–7.CrossRefPubMed
14.
Zurück zum Zitat Mello Filho P, Andrade G, Maia A, Maia M, Biccas Neto L, Muralha Neto A, et al. Effectiveness and safety of Intravitreal dexamethasone implant (Ozurdex) in patients with diabetic macular Edema: a real-world experience. Ophthalmologica. 2019;241:9–16.CrossRefPubMed Mello Filho P, Andrade G, Maia A, Maia M, Biccas Neto L, Muralha Neto A, et al. Effectiveness and safety of Intravitreal dexamethasone implant (Ozurdex) in patients with diabetic macular Edema: a real-world experience. Ophthalmologica. 2019;241:9–16.CrossRefPubMed
15.
Zurück zum Zitat Klein R, Klein BE, Knudtson MD, Meuer SM, Swift M, Gangnon RE. Fifteen-year cumulative incidence of age-related macular degeneration: the beaver dam eye study. Ophthalmology. 2007;114:253–62.CrossRefPubMed Klein R, Klein BE, Knudtson MD, Meuer SM, Swift M, Gangnon RE. Fifteen-year cumulative incidence of age-related macular degeneration: the beaver dam eye study. Ophthalmology. 2007;114:253–62.CrossRefPubMed
16.
Zurück zum Zitat Evans JR, Fletcher AE, Wormald RP. 28,000 cases of age related macular degeneration causing visual loss in people aged 75 years and above in the United Kingdom may be attributable to smoking. Br J Ophthalmol. 2005;89:550–3.CrossRefPubMedPubMedCentral Evans JR, Fletcher AE, Wormald RP. 28,000 cases of age related macular degeneration causing visual loss in people aged 75 years and above in the United Kingdom may be attributable to smoking. Br J Ophthalmol. 2005;89:550–3.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Hammond CJ, Webster AR, Snieder H, Bird AC, Gilbert CE, Spector TD. Genetic influence on early age-related maculopathy: a twin study. Ophthalmology. 2002;109:730–6.CrossRefPubMed Hammond CJ, Webster AR, Snieder H, Bird AC, Gilbert CE, Spector TD. Genetic influence on early age-related maculopathy: a twin study. Ophthalmology. 2002;109:730–6.CrossRefPubMed
18.
Zurück zum Zitat Shahid H, Khan JC, Cipriani V, Sepp T, Matharu BK, Bunce C, et al. Age-related macular degeneration: the importance of family history as a risk factor. Br J Ophthalmol. 2012;96:427–31.CrossRefPubMed Shahid H, Khan JC, Cipriani V, Sepp T, Matharu BK, Bunce C, et al. Age-related macular degeneration: the importance of family history as a risk factor. Br J Ophthalmol. 2012;96:427–31.CrossRefPubMed
19.
Zurück zum Zitat Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y, Thorleifsson G, et al. Seven new loci associated with age-related macular degeneration. Nat Genet. 2013;45:433–9 439e1-2.CrossRefPubMed Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y, Thorleifsson G, et al. Seven new loci associated with age-related macular degeneration. Nat Genet. 2013;45:433–9 439e1-2.CrossRefPubMed
20.
Zurück zum Zitat Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S, Bragg-Gresham JL, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48:34–43.CrossRef Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S, Bragg-Gresham JL, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48:34–43.CrossRef
21.
Zurück zum Zitat Hong N, Shen Y, Yu CY, Wang SQ, Tong JP. Association of the polymorphism Y402H in the CFH gene with response to anti-VEGF treatment in age-related macular degeneration: a systematic review and meta-analysis. Acta Ophthalmol. 2016;94:334–45.CrossRefPubMed Hong N, Shen Y, Yu CY, Wang SQ, Tong JP. Association of the polymorphism Y402H in the CFH gene with response to anti-VEGF treatment in age-related macular degeneration: a systematic review and meta-analysis. Acta Ophthalmol. 2016;94:334–45.CrossRefPubMed
22.
Zurück zum Zitat Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol. 2008;5:588–99.CrossRefPubMed Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol. 2008;5:588–99.CrossRefPubMed
23.
Zurück zum Zitat Newman AM, Gallo NB, Hancox LS, Miller NJ, Radeke CM, Maloney MA, et al. Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Med. 2012;4:16.CrossRefPubMedPubMedCentral Newman AM, Gallo NB, Hancox LS, Miller NJ, Radeke CM, Maloney MA, et al. Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Med. 2012;4:16.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Radeke MJ, Peterson KE, Johnson LV, Anderson DH. Disease susceptibility of the human macula: differential gene transcription in the retinal pigmented epithelium/choroid. Exp Eye Res. 2007;85:366–80.CrossRefPubMed Radeke MJ, Peterson KE, Johnson LV, Anderson DH. Disease susceptibility of the human macula: differential gene transcription in the retinal pigmented epithelium/choroid. Exp Eye Res. 2007;85:366–80.CrossRefPubMed
25.
Zurück zum Zitat Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–9.CrossRefPubMedPubMedCentral Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–9.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A. 2005;102:7227–32.CrossRefPubMedPubMedCentral Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A. 2005;102:7227–32.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, Meitingern T, et al. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet. 2005;14:3227–36.CrossRefPubMed Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, Meitingern T, et al. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet. 2005;14:3227–36.CrossRefPubMed
28.
Zurück zum Zitat Deangelis MM, Ji F, Adams S, Morrison MA, Harring AJ, Sweeney MO, et al. Alleles in the HtrA serine peptidase 1 gene alter the risk of neovascular age-related macular degeneration. Ophthalmology. 2008;115:1209–15.e7.CrossRefPubMed Deangelis MM, Ji F, Adams S, Morrison MA, Harring AJ, Sweeney MO, et al. Alleles in the HtrA serine peptidase 1 gene alter the risk of neovascular age-related macular degeneration. Ophthalmology. 2008;115:1209–15.e7.CrossRefPubMed
29.
Zurück zum Zitat Zur D, Iglicki M, Loewenstein A. The role of steroids in the management of diabetic macular Edema. Ophthalmic Res. 2019;62:231–6.CrossRefPubMed Zur D, Iglicki M, Loewenstein A. The role of steroids in the management of diabetic macular Edema. Ophthalmic Res. 2019;62:231–6.CrossRefPubMed
30.
Zurück zum Zitat Iglicki M, Zur D, Fung A, Gabrielle PH, Lupidi M, Santos R, et al. Tractional diabetic retinal detachment surgery with co-adjuvant intravitreal dexamethasONe implant: the TRADITION STUDY. Acta Diabetol. 2019;56:1141–7.CrossRefPubMed Iglicki M, Zur D, Fung A, Gabrielle PH, Lupidi M, Santos R, et al. Tractional diabetic retinal detachment surgery with co-adjuvant intravitreal dexamethasONe implant: the TRADITION STUDY. Acta Diabetol. 2019;56:1141–7.CrossRefPubMed
31.
Zurück zum Zitat Zur D, Iglicki M, Sala-Puigdollers A, Chhablani J, Lupidi M, Fraser-Bell S, et al. Disorganization of retinal inner layers as a biomarker in patients with diabetic macular oedema treated with dexamethasone implant. Acta Ophthalmol. 2020;98:e217–e223. Zur D, Iglicki M, Sala-Puigdollers A, Chhablani J, Lupidi M, Fraser-Bell S, et al. Disorganization of retinal inner layers as a biomarker in patients with diabetic macular oedema treated with dexamethasone implant. Acta Ophthalmol. 2020;98:e217–e223.
32.
Zurück zum Zitat Haines JL, Schnetz-Boutaud N, Schmidt S, Scott WK, Agarwal A, Postel EA, et al. Functional candidate genes in age-related macular degeneration: significant association with VEGF, VLDLR, and LRP6. Invest Ophthalmol Vis Sci. 2006;47:329–35. Haines JL, Schnetz-Boutaud N, Schmidt S, Scott WK, Agarwal A, Postel EA, et al. Functional candidate genes in age-related macular degeneration: significant association with VEGF, VLDLR, and LRP6. Invest Ophthalmol Vis Sci. 2006;47:329–35.
33.
Zurück zum Zitat SanGiovanni JP, Lee PH. AMD-associated genes encoding stress-activated MAPK pathway constituents are identified by interval-based enrichment analysis. PLoS One. 2013;8:e71239.CrossRefPubMedPubMedCentral SanGiovanni JP, Lee PH. AMD-associated genes encoding stress-activated MAPK pathway constituents are identified by interval-based enrichment analysis. PLoS One. 2013;8:e71239.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Kimura K, Orita T, Liu Y, Yang Y, Tokuda K, Kurakazu T, et al. Attenuation of EMT in RPE cells and subretinal fibrosis by an RAR-γ agonist. J Mol Med (Berl). 2015;93:749–58.CrossRef Kimura K, Orita T, Liu Y, Yang Y, Tokuda K, Kurakazu T, et al. Attenuation of EMT in RPE cells and subretinal fibrosis by an RAR-γ agonist. J Mol Med (Berl). 2015;93:749–58.CrossRef
35.
Zurück zum Zitat Feng Z, Li R, Shi H, Bi W, Hou W, Zhang X. Combined silencing of TGF-β2 and snail genes inhibit epithelial-mesenchymal transition of retinal pigment epithelial cells under hypoxia. Graefes Arch Clin Exp Ophthalmol. 2015;253:875–84.CrossRefPubMed Feng Z, Li R, Shi H, Bi W, Hou W, Zhang X. Combined silencing of TGF-β2 and snail genes inhibit epithelial-mesenchymal transition of retinal pigment epithelial cells under hypoxia. Graefes Arch Clin Exp Ophthalmol. 2015;253:875–84.CrossRefPubMed
36.
Zurück zum Zitat Radeke MJ, Radeke CM, Shih YH, Hu J, Bok D, Johnson LV, et al. Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: implications for age-related macular degeneration. Genome Med. 2015;7:58.CrossRefPubMedPubMedCentral Radeke MJ, Radeke CM, Shih YH, Hu J, Bok D, Johnson LV, et al. Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: implications for age-related macular degeneration. Genome Med. 2015;7:58.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Letellier E, Haan S. SOCS2: physiological and pathological functions. Front Biosci. 2016;8:189–204.CrossRef Letellier E, Haan S. SOCS2: physiological and pathological functions. Front Biosci. 2016;8:189–204.CrossRef
38.
Zurück zum Zitat Akiyama M, Takahashi A, Momozawa Y, Arakawa S, Miya F, Tsunoda T, et al. Genome-wide association study suggests four variants influencing outcomes with ranibizumab therapy in exudative age-related macular degeneration. J Hum Genet. 2018;63:1083–91.CrossRefPubMed Akiyama M, Takahashi A, Momozawa Y, Arakawa S, Miya F, Tsunoda T, et al. Genome-wide association study suggests four variants influencing outcomes with ranibizumab therapy in exudative age-related macular degeneration. J Hum Genet. 2018;63:1083–91.CrossRefPubMed
39.
Zurück zum Zitat Yang IH, Wong JH, Chang CM, Chen BK, Tsai YT, Chen WC, et al. Involvement of intracellular calcium mobilization in IL-8 activation in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2015;56:761–9.CrossRefPubMed Yang IH, Wong JH, Chang CM, Chen BK, Tsai YT, Chen WC, et al. Involvement of intracellular calcium mobilization in IL-8 activation in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2015;56:761–9.CrossRefPubMed
40.
Zurück zum Zitat Yang P, Baciu P, Kerrigan BC, Etheridge M, Sung E, Toimil BA, et al. Retinal pigment epithelial cell death by the alternative complement cascade: role of membrane regulatory proteins, calcium, PKC, and oxidative stress. Invest Ophthalmol Vis Sci. 2014;55:3012–21.CrossRefPubMedPubMedCentral Yang P, Baciu P, Kerrigan BC, Etheridge M, Sung E, Toimil BA, et al. Retinal pigment epithelial cell death by the alternative complement cascade: role of membrane regulatory proteins, calcium, PKC, and oxidative stress. Invest Ophthalmol Vis Sci. 2014;55:3012–21.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Pujol-Lereis LM, Liebisch G, Schick T, Lin Y, Grassmann F, Uchida K, et al. Evaluation of serum sphingolipids and the influence of genetic risk factors in age-related macular degeneration. PLoS One. 2018;13:e0200739.CrossRefPubMedPubMedCentral Pujol-Lereis LM, Liebisch G, Schick T, Lin Y, Grassmann F, Uchida K, et al. Evaluation of serum sphingolipids and the influence of genetic risk factors in age-related macular degeneration. PLoS One. 2018;13:e0200739.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Terao R, Honjo M, Aihara M. Apolipoprotein M inhibits angiogenic and inflammatory response by Sphingosine 1-phosphate on retinal pigment epithelium cells. Int J Mol Sci. 2017;19:E112.CrossRefPubMed Terao R, Honjo M, Aihara M. Apolipoprotein M inhibits angiogenic and inflammatory response by Sphingosine 1-phosphate on retinal pigment epithelium cells. Int J Mol Sci. 2017;19:E112.CrossRefPubMed
43.
Zurück zum Zitat Theodoropoulou S, Copland DA, Liu J, Wu J, Gardner PJ, Ozaki E, et al. Interleukin-33 regulates tissue remodelling and inhibits angiogenesis in the eye. J Pathol. 2017;241:45–56.CrossRefPubMed Theodoropoulou S, Copland DA, Liu J, Wu J, Gardner PJ, Ozaki E, et al. Interleukin-33 regulates tissue remodelling and inhibits angiogenesis in the eye. J Pathol. 2017;241:45–56.CrossRefPubMed
44.
Zurück zum Zitat Santulli RJ, Kinney WA, Ghosh S, Decorte BL, Liu L, Tuman RW, et al. Studies with an orally bioavailable alpha V integrin antagonist in animal models of ocular vasculopathy: retinal neovascularization in mice and retinal vascular permeability in diabetic rats. J Pharmacol Exp Ther. 2008;324:894–901.CrossRefPubMed Santulli RJ, Kinney WA, Ghosh S, Decorte BL, Liu L, Tuman RW, et al. Studies with an orally bioavailable alpha V integrin antagonist in animal models of ocular vasculopathy: retinal neovascularization in mice and retinal vascular permeability in diabetic rats. J Pharmacol Exp Ther. 2008;324:894–901.CrossRefPubMed
45.
Zurück zum Zitat Kumar-Singh R. The role of complement membrane attack complex in dry and wet AMD - from hypothesis to clinical trials. Exp Eye Res. 2019;184:266–77.CrossRefPubMed Kumar-Singh R. The role of complement membrane attack complex in dry and wet AMD - from hypothesis to clinical trials. Exp Eye Res. 2019;184:266–77.CrossRefPubMed
46.
Zurück zum Zitat McGwin G Jr, Modjarrad K, Hall TA, Xie A, Owsley C. 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors and the presence of age-related macular degeneration in the cardiovascular health study. Arch Ophthalmol. 2006;124:33–7.CrossRefPubMed McGwin G Jr, Modjarrad K, Hall TA, Xie A, Owsley C. 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors and the presence of age-related macular degeneration in the cardiovascular health study. Arch Ophthalmol. 2006;124:33–7.CrossRefPubMed
47.
Zurück zum Zitat Feher J, Kovacs B, Kovacs I, Schveoller M, Papale A, Balacco GC. Improvement of visual functions and fundus alterations in early age-related macular degeneration treated with a combination of acetyl-L-carnitine, n-3 fatty acids, and coenzyme Q10. Ophthalmologica. 2005;219:154–66.CrossRefPubMed Feher J, Kovacs B, Kovacs I, Schveoller M, Papale A, Balacco GC. Improvement of visual functions and fundus alterations in early age-related macular degeneration treated with a combination of acetyl-L-carnitine, n-3 fatty acids, and coenzyme Q10. Ophthalmologica. 2005;219:154–66.CrossRefPubMed
48.
Zurück zum Zitat Blasi MA, Bovina C, Carella G, Genova ML, Jansen AM, Lenaz G, et al. Does coenzyme Q10 play a role in opposing oxidative stress in patients with age-related macular degeneration? Ophthalmologica. 2001;215:51–4.CrossRefPubMed Blasi MA, Bovina C, Carella G, Genova ML, Jansen AM, Lenaz G, et al. Does coenzyme Q10 play a role in opposing oxidative stress in patients with age-related macular degeneration? Ophthalmologica. 2001;215:51–4.CrossRefPubMed
49.
Zurück zum Zitat Paimela T, Ryhänen T, Mannermaa E, Ojala J, Kalesnykas G, Salminen A, et al. The effect of 17beta-estradiol on IL-6 secretion and NF-kappaB DNA-binding activity in human retinal pigment epithelial cells. Immunol Lett. 2007;110:139–44.CrossRefPubMed Paimela T, Ryhänen T, Mannermaa E, Ojala J, Kalesnykas G, Salminen A, et al. The effect of 17beta-estradiol on IL-6 secretion and NF-kappaB DNA-binding activity in human retinal pigment epithelial cells. Immunol Lett. 2007;110:139–44.CrossRefPubMed
50.
Zurück zum Zitat Remez LA, Onishi A, Menuchin-Lasowski Y, Biran A, Blackshaw S, Wahlin KJ, et al. Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis. Dev Biol. 2017;432:140–50.CrossRefPubMed Remez LA, Onishi A, Menuchin-Lasowski Y, Biran A, Blackshaw S, Wahlin KJ, et al. Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis. Dev Biol. 2017;432:140–50.CrossRefPubMed
51.
Zurück zum Zitat Cohen-Tayar Y, Cohen H, Mitiagin Y, Abravanel Z, Levy C, Idelson M, et al. Pax6 regulation of Sox9 in the mouse retinal pigmented epithelium controls its timely differentiation and choroid vasculature development. Development. 2018;145:dev163691.CrossRefPubMed Cohen-Tayar Y, Cohen H, Mitiagin Y, Abravanel Z, Levy C, Idelson M, et al. Pax6 regulation of Sox9 in the mouse retinal pigmented epithelium controls its timely differentiation and choroid vasculature development. Development. 2018;145:dev163691.CrossRefPubMed
52.
Zurück zum Zitat Koustenis A Jr, Harris A, Gross J, Januleviciene I, Shah A, Siesky B. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol. 2017;101:16–20.CrossRefPubMed Koustenis A Jr, Harris A, Gross J, Januleviciene I, Shah A, Siesky B. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol. 2017;101:16–20.CrossRefPubMed
53.
Zurück zum Zitat Francis JH, Pang CE, Abramson DH, Milman T, Folberg R, Mrejen S, et al. Swept-source optical coherence tomography features of choroidal nevi. Am J Ophthalmol. 2015;159:169–76.e1.CrossRefPubMed Francis JH, Pang CE, Abramson DH, Milman T, Folberg R, Mrejen S, et al. Swept-source optical coherence tomography features of choroidal nevi. Am J Ophthalmol. 2015;159:169–76.e1.CrossRefPubMed
Metadaten
Titel
Integrated bioinformatics analysis of aberrantly-methylated differentially-expressed genes and pathways in age-related macular degeneration
verfasst von
Yinchen Shen
Mo Li
Kun Liu
Xiaoyin Xu
Shaopin Zhu
Ning Wang
Wenke Guo
Qianqian Zhao
Ping Lu
Fudong Yu
Xun Xu
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Ophthalmology / Ausgabe 1/2020
Elektronische ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01392-2

Weitere Artikel der Ausgabe 1/2020

BMC Ophthalmology 1/2020 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Ophthalmika in der Schwangerschaft

Die Verwendung von Ophthalmika in der Schwangerschaft und Stillzeit stellt immer eine Off-label-Anwendung dar. Ein Einsatz von Arzneimitteln muss daher besonders sorgfältig auf sein Risiko-Nutzen-Verhältnis bewertet werden. In der vorliegenden …

Operative Therapie und Keimnachweis bei endogener Endophthalmitis

Vitrektomie Originalie

Die endogene Endophthalmitis ist eine hämatogen fortgeleitete, bakterielle oder fungale Infektion, die über choroidale oder retinale Gefäße in den Augapfel eingeschwemmt wird [ 1 – 3 ]. Von dort infiltrieren die Keime in die Netzhaut, den …

Bakterielle endogene Endophthalmitis

Vitrektomie Leitthema

Eine endogene Endophthalmitis stellt einen ophthalmologischen Notfall dar, der umgehender Diagnostik und Therapie bedarf. Es sollte mit geeigneten Methoden, wie beispielsweise dem Freiburger Endophthalmitis-Set, ein Keimnachweis erfolgen. Bei der …

So erreichen Sie eine bestmögliche Wundheilung der Kornea

Die bestmögliche Wundheilung der Kornea, insbesondere ohne die Ausbildung von lichtstreuenden Narben, ist oberstes Gebot, um einer dauerhaften Schädigung der Hornhaut frühzeitig entgegenzuwirken und die Funktion des Auges zu erhalten.   

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.