Skip to main content
Erschienen in: Brain Structure and Function 4/2015

01.07.2015 | Original Article

Interneurons, tau and amyloid-β in the piriform cortex in Alzheimer’s disease

verfasst von: Daniel Saiz-Sanchez, Carlos De la Rosa-Prieto, Isabel Ubeda-Banon, Alino Martinez-Marcos

Erschienen in: Brain Structure and Function | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Abstract

Impaired olfaction has been described as an early symptom of Alzheimer’s disease. Neuroanatomical changes underlying this deficit in the olfactory system are largely unknown. Interestingly, neuropathology begins in the transentorhinal cortex and extends to the neighboring limbic system and basal telencephalic structures that mediate olfactory processing, including the anterior olfactory nucleus and olfactory bulb. The human piriform cortex has been described as a crucial area in odor quality coding; disruption of this region mediates early olfactory deficits in Alzheimer’s disease. Most neuropathological investigations have focused on the entorhinal cortex and hippocampus, whereas the piriform cortex has largely been neglected. This work aims to characterize the expression of the neuropathological amyloid-β peptide, tau protein and interneuron population markers (calretinin, parvalbumin and somatostatin) in the piriform cortex of ten Alzheimer-diagnosed (80.4 ± 8.3 years old) and five control (69.6 ± 11.1) cases. Here, we examined the distribution of different interneuronal markers as well as co-localization of interneurons and pathological markers. Results indicated preferential vulnerability of somatostatin- (p = 0.0001 < α = 0.05) and calretinin-positive (p = 0.013 < α = 0.05) cells that colocalized with amyloid-β peptide, while the prevalence of parvalbumin-positive cells was increased (p = 0.045 < α = 0.05) in the Alzheimer’s cases. These data may help to reveal the neural basis of olfactory deficits linked to Alzheimer’s disease as well as to characterize neuronal populations preferentially vulnerable to neuropathology in regions critically involved in early stages of the disease.
Literatur
Zurück zum Zitat Attems J, Lintner F, Jellinger KA (2005) Olfactory involvement in aging and Alzheimer’s disease: an autopsy study. J Alzheimers Dis 7:149–157 (discussion 173–180)PubMed Attems J, Lintner F, Jellinger KA (2005) Olfactory involvement in aging and Alzheimer’s disease: an autopsy study. J Alzheimers Dis 7:149–157 (discussion 173–180)PubMed
Zurück zum Zitat Attems J, Preusser M, Grosinger-Quass M, Wagner L, Lintner F, Jellinger K (2008) Calcium-binding protein secretagogin-expressing neurones in the human hippocampus are largely resistant to neurodegeneration in Alzheimer’s disease. Neuropathol Appl Neurobiol 34:23–32. doi:10.1111/j.1365-2990.2007.00854.x PubMed Attems J, Preusser M, Grosinger-Quass M, Wagner L, Lintner F, Jellinger K (2008) Calcium-binding protein secretagogin-expressing neurones in the human hippocampus are largely resistant to neurodegeneration in Alzheimer’s disease. Neuropathol Appl Neurobiol 34:23–32. doi:10.​1111/​j.​1365-2990.​2007.​00854.​x PubMed
Zurück zum Zitat Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMed Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMed
Zurück zum Zitat Braak H, Braak E, Bohl J, Bratzke H (1998) Evolution of Alzheimer’s disease related cortical lesions. J Neural Transm Suppl 54:97–106PubMed Braak H, Braak E, Bohl J, Bratzke H (1998) Evolution of Alzheimer’s disease related cortical lesions. J Neural Transm Suppl 54:97–106PubMed
Zurück zum Zitat Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. [pii]: S0197458002000659PubMed Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. [pii]: S0197458002000659PubMed
Zurück zum Zitat Brady DR, Mufson EJ (1997) Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer’s diseased brain. Neuroscience 80:1113–1125PubMed Brady DR, Mufson EJ (1997) Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer’s diseased brain. Neuroscience 80:1113–1125PubMed
Zurück zum Zitat Buxbaum JD, Thinakaran G, Koliatsos V, O’Callahan J, Slunt HH, Price DL et al (1998) Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci 18:9629–9637PubMed Buxbaum JD, Thinakaran G, Koliatsos V, O’Callahan J, Slunt HH, Price DL et al (1998) Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci 18:9629–9637PubMed
Zurück zum Zitat Cao L, Schrank BR, Rodriguez S, Benz EG, Moulia TW, Rickenbacher GT et al (2012) Abeta alters the connectivity of olfactory neurons in the absence of amyloid plaques in vivo. Nat Commun 3:1009. doi:10.1038/ncomms2013 PubMedCentralPubMed Cao L, Schrank BR, Rodriguez S, Benz EG, Moulia TW, Rickenbacher GT et al (2012) Abeta alters the connectivity of olfactory neurons in the absence of amyloid plaques in vivo. Nat Commun 3:1009. doi:10.​1038/​ncomms2013 PubMedCentralPubMed
Zurück zum Zitat Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia. Nature 288:279–280PubMed Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia. Nature 288:279–280PubMed
Zurück zum Zitat Davis KL, Davidson M, Yang RK, Davis BM, Siever LJ, Mohs RC et al (1988) CSF somatostatin in Alzheimer’s disease, depressed patients, and control subjects. Biol Psychiatry 24:710–712PubMed Davis KL, Davidson M, Yang RK, Davis BM, Siever LJ, Mohs RC et al (1988) CSF somatostatin in Alzheimer’s disease, depressed patients, and control subjects. Biol Psychiatry 24:710–712PubMed
Zurück zum Zitat Devanand DP, Michaels-Marston KS, Liu X, Pelton GH, Padilla M, Marder K et al (2000) Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am J Psychiatry 157:1399–1405PubMed Devanand DP, Michaels-Marston KS, Liu X, Pelton GH, Padilla M, Marder K et al (2000) Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am J Psychiatry 157:1399–1405PubMed
Zurück zum Zitat Esiri MM, Wilcock GK (1984) The olfactory bulbs in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 47:56–60PubMedCentralPubMed Esiri MM, Wilcock GK (1984) The olfactory bulbs in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 47:56–60PubMedCentralPubMed
Zurück zum Zitat Florio T (2008) Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors. Front Biosci 13:822–840PubMed Florio T (2008) Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors. Front Biosci 13:822–840PubMed
Zurück zum Zitat Fonseca M, Soriano E (1995) Calretinin-immunoreactive neurons in the normal human temporal cortex and in Alzheimer’s disease. Brain Res 691:83–91. [pii]: 0006-8993(95)00622-WPubMed Fonseca M, Soriano E (1995) Calretinin-immunoreactive neurons in the normal human temporal cortex and in Alzheimer’s disease. Brain Res 691:83–91. [pii]: 0006-8993(95)00622-WPubMed
Zurück zum Zitat Gottfried JA, Deichmann R, Winston JS, Dolan RJ (2002) Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J Neurosci 22:10819–10828PubMed Gottfried JA, Deichmann R, Winston JS, Dolan RJ (2002) Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J Neurosci 22:10819–10828PubMed
Zurück zum Zitat Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G et al (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Investig 121:715–725. doi:10.1172/JCI43366 PubMedCentralPubMed Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G et al (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Investig 121:715–725. doi:10.​1172/​JCI43366 PubMedCentralPubMed
Zurück zum Zitat Hawkes C, Doty RL (2009) The neurology of olfaction. Cambridge University Press, Cambridge Hawkes C, Doty RL (2009) The neurology of olfaction. Cambridge University Press, Cambridge
Zurück zum Zitat Heizmann CW, Braun K (1992) Changes in Ca(2+)-binding proteins in human neurodegenerative disorders. Trends Neurosci 15:259–264. [pii]: 0166-2236(92)90067-IPubMed Heizmann CW, Braun K (1992) Changes in Ca(2+)-binding proteins in human neurodegenerative disorders. Trends Neurosci 15:259–264. [pii]: 0166-2236(92)90067-IPubMed
Zurück zum Zitat Hernandez F, Avila J (2008) Tau aggregates and tau pathology. J Alzheimers Dis 14:449–452PubMed Hernandez F, Avila J (2008) Tau aggregates and tau pathology. J Alzheimers Dis 14:449–452PubMed
Zurück zum Zitat Hof PR, Morrison JH (1991) Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease. Exp Neurol 111:293–301PubMed Hof PR, Morrison JH (1991) Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease. Exp Neurol 111:293–301PubMed
Zurück zum Zitat Hof PR, Cox K, Young WG, Celio MR, Rogers J, Morrison JH (1991) Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer’s disease. J Neuropathol Exp Neurol 50:451–462PubMed Hof PR, Cox K, Young WG, Celio MR, Rogers J, Morrison JH (1991) Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer’s disease. J Neuropathol Exp Neurol 50:451–462PubMed
Zurück zum Zitat Hof PR, Nimchinsky EA, Celio MR, Bouras C, Morrison JH (1993) Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci Lett 152:145–148PubMed Hof PR, Nimchinsky EA, Celio MR, Bouras C, Morrison JH (1993) Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci Lett 152:145–148PubMed
Zurück zum Zitat Iacopino AM, Christakos S (1990) Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci USA 87:4078–4082PubMedCentralPubMed Iacopino AM, Christakos S (1990) Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci USA 87:4078–4082PubMedCentralPubMed
Zurück zum Zitat Iritani S, Niizato K, Emson PC (2001) Relationship of calbindin D28K-immunoreactive cells and neuropathological changes in the hippocampal formation of Alzheimer’s disease. Neuropathology 21:162–167PubMed Iritani S, Niizato K, Emson PC (2001) Relationship of calbindin D28K-immunoreactive cells and neuropathological changes in the hippocampal formation of Alzheimer’s disease. Neuropathology 21:162–167PubMed
Zurück zum Zitat Kovacs T, Cairns NJ, Lantos PL (1999) Beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 25:481–491. [pii]: nan208PubMed Kovacs T, Cairns NJ, Lantos PL (1999) Beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 25:481–491. [pii]: nan208PubMed
Zurück zum Zitat Leuba G, Kraftsik R, Saini K (1998) Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol 152:278–291. doi:10.1006/exnr.1998.6838 PubMed Leuba G, Kraftsik R, Saini K (1998) Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol 152:278–291. doi:10.​1006/​exnr.​1998.​6838 PubMed
Zurück zum Zitat Mai JK, Paxinos G, Voss T (2008) Atlas of the human brain. Elsevier, New York Mai JK, Paxinos G, Voss T (2008) Atlas of the human brain. Elsevier, New York
Zurück zum Zitat Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784. doi:10.1126/science.1131864 PubMed Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784. doi:10.​1126/​science.​1131864 PubMed
Zurück zum Zitat Mikkonen M, Alafuzoff I, Tapiola T, Soininen H, Miettinen R (1999) Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer’s disease. Neuroscience 92:515–532. [pii]: S0306-4522(99)00047-0PubMed Mikkonen M, Alafuzoff I, Tapiola T, Soininen H, Miettinen R (1999) Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer’s disease. Neuroscience 92:515–532. [pii]: S0306-4522(99)00047-0PubMed
Zurück zum Zitat Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G et al (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058PubMed Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G et al (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058PubMed
Zurück zum Zitat Nilsson CL, Brinkmalm A, Minthon L, Blennow K, Ekman R (2001) Processing of neuropeptide Y, galanin, and somatostatin in the cerebrospinal fluid of patients with Alzheimer’s disease and frontotemporal dementia. Peptides 22:2105–2112PubMed Nilsson CL, Brinkmalm A, Minthon L, Blennow K, Ekman R (2001) Processing of neuropeptide Y, galanin, and somatostatin in the cerebrospinal fluid of patients with Alzheimer’s disease and frontotemporal dementia. Peptides 22:2105–2112PubMed
Zurück zum Zitat Ohm TG, Braak H (1987) Olfactory bulb changes in Alzheimer’s disease. Acta Neuropathol 73:365–369PubMed Ohm TG, Braak H (1987) Olfactory bulb changes in Alzheimer’s disease. Acta Neuropathol 73:365–369PubMed
Zurück zum Zitat Palop JJ, Jones B, Kekonius L, Chin J, Yu GQ, Raber J et al (2003) Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer’s disease-related cognitive deficits. Proc Natl Acad Sci USA 100:9572–9577. doi:10.1073/pnas.1133381100 PubMedCentralPubMed Palop JJ, Jones B, Kekonius L, Chin J, Yu GQ, Raber J et al (2003) Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer’s disease-related cognitive deficits. Proc Natl Acad Sci USA 100:9572–9577. doi:10.​1073/​pnas.​1133381100 PubMedCentralPubMed
Zurück zum Zitat Price JL, Davis PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 12:295–312PubMed Price JL, Davis PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiol Aging 12:295–312PubMed
Zurück zum Zitat Rubio A, Sanchez-Mut JV, Garcia E, Velasquez ZD, Oliver J, Esteller M et al (2012) Epigenetic control of somatostatin and cortistatin expression by beta amyloid peptide. J Neurosci Res 90:13–20. doi:10.1002/jnr.22731 PubMed Rubio A, Sanchez-Mut JV, Garcia E, Velasquez ZD, Oliver J, Esteller M et al (2012) Epigenetic control of somatostatin and cortistatin expression by beta amyloid peptide. J Neurosci Res 90:13–20. doi:10.​1002/​jnr.​22731 PubMed
Zurück zum Zitat Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM et al (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11:434–439. doi:10.1038/nm1206 PubMed Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM et al (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11:434–439. doi:10.​1038/​nm1206 PubMed
Zurück zum Zitat Saiz-Sanchez D, Ubeda-Banon I, de la Rosa-Prieto C, Argandona-Palacios L, Garcia-Munozguren S, Insausti R et al (2010) Somatostatin, tau, and beta-amyloid within the anterior olfactory nucleus in Alzheimer disease. Exp Neurol 223:347–350. doi:10.1016/j.expneurol.2009.06.010 PubMed Saiz-Sanchez D, Ubeda-Banon I, de la Rosa-Prieto C, Argandona-Palacios L, Garcia-Munozguren S, Insausti R et al (2010) Somatostatin, tau, and beta-amyloid within the anterior olfactory nucleus in Alzheimer disease. Exp Neurol 223:347–350. doi:10.​1016/​j.​expneurol.​2009.​06.​010 PubMed
Zurück zum Zitat Saiz-Sanchez D, Ubeda-Banon I, de La Rosa-Prieto C, Martinez-Marcos A (2012) Differential expression of interneuron populations and correlation with amyloid-deposition in the olfactory cortex of an APP/PS1 transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 30:1–17 Saiz-Sanchez D, Ubeda-Banon I, de La Rosa-Prieto C, Martinez-Marcos A (2012) Differential expression of interneuron populations and correlation with amyloid-deposition in the olfactory cortex of an APP/PS1 transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 30:1–17
Zurück zum Zitat Saiz-Sanchez D, De La Rosa-Prieto C, Ubeda-Banon I, Martinez-Marcos A (2013) Interneurons and beta-amyloid in the olfactory bulb, anterior olfactory nucleus and olfactory tubercle in APPxPS1 transgenic mice model of Alzheimer’s disease. Anat Rec (Hoboken) 296:1413–1423. doi:10.1002/ar.22750 Saiz-Sanchez D, De La Rosa-Prieto C, Ubeda-Banon I, Martinez-Marcos A (2013) Interneurons and beta-amyloid in the olfactory bulb, anterior olfactory nucleus and olfactory tubercle in APPxPS1 transgenic mice model of Alzheimer’s disease. Anat Rec (Hoboken) 296:1413–1423. doi:10.​1002/​ar.​22750
Zurück zum Zitat Sampson VL, Morrison JH, Vickers JC (1997) The cellular basis for the relative resistance of parvalbumin and calretinin immunoreactive neocortical neurons to the pathology of Alzheimer’s disease. Exp Neurol 145:295–302. doi:10.1006/exnr.1997.6433 PubMed Sampson VL, Morrison JH, Vickers JC (1997) The cellular basis for the relative resistance of parvalbumin and calretinin immunoreactive neocortical neurons to the pathology of Alzheimer’s disease. Exp Neurol 145:295–302. doi:10.​1006/​exnr.​1997.​6433 PubMed
Zurück zum Zitat Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMed Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMed
Zurück zum Zitat Serby M, Richardson SB, Twente S, Siekierski J, Corwin J, Rotrosen J (1984) CSF somatostatin in Alzheimer’s disease. Neurobiol Aging 5:187–189PubMed Serby M, Richardson SB, Twente S, Siekierski J, Corwin J, Rotrosen J (1984) CSF somatostatin in Alzheimer’s disease. Neurobiol Aging 5:187–189PubMed
Zurück zum Zitat Sheng JG, Price DL, Koliatsos VE (2002) Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Abeta amyloidosis. J Neurosci 22:9794–9799PubMed Sheng JG, Price DL, Koliatsos VE (2002) Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Abeta amyloidosis. J Neurosci 22:9794–9799PubMed
Zurück zum Zitat Solodkin A, Veldhuizen SD, Van Hoesen GW (1996) Contingent vulnerability of entorhinal parvalbumin-containing neurons in Alzheimer’s disease. J Neurosci 16:3311–3321PubMed Solodkin A, Veldhuizen SD, Van Hoesen GW (1996) Contingent vulnerability of entorhinal parvalbumin-containing neurons in Alzheimer’s disease. J Neurosci 16:3311–3321PubMed
Zurück zum Zitat Suzuki N, Bekkers JM (2010) Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol 518:1670–1687. doi:10.1002/cne.22295 PubMed Suzuki N, Bekkers JM (2010) Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol 518:1670–1687. doi:10.​1002/​cne.​22295 PubMed
Zurück zum Zitat Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580. doi:10.1002/ana.410300410 PubMed Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580. doi:10.​1002/​ana.​410300410 PubMed
Zurück zum Zitat Tsuboi Y, Wszolek ZK, Graff-Radford NR, Cookson N, Dickson DW (2003) Tau pathology in the olfactory bulb correlates with Braak stage, Lewy body pathology and apolipoprotein epsilon4. Neuropathol Appl Neurobiol 29:503–510. [pii]: 453PubMed Tsuboi Y, Wszolek ZK, Graff-Radford NR, Cookson N, Dickson DW (2003) Tau pathology in the olfactory bulb correlates with Braak stage, Lewy body pathology and apolipoprotein epsilon4. Neuropathol Appl Neurobiol 29:503–510. [pii]: 453PubMed
Zurück zum Zitat Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL et al (2011) Intraneuronal amyloid beta oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 89:1031–1042. doi:10.1002/jnr.22640 PubMed Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL et al (2011) Intraneuronal amyloid beta oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 89:1031–1042. doi:10.​1002/​jnr.​22640 PubMed
Zurück zum Zitat Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog Neurobiol 60:139–165. [pii]: S0301008299000234PubMed Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog Neurobiol 60:139–165. [pii]: S0301008299000234PubMed
Zurück zum Zitat Wood PL, Etienne P, Lal S, Gauthier S, Cajal S, Nair NP (1982) Reduced lumbar CSF somatostatin levels in Alzheimer’s disease. Life Sci 31:2073–2079PubMed Wood PL, Etienne P, Lal S, Gauthier S, Cajal S, Nair NP (1982) Reduced lumbar CSF somatostatin levels in Alzheimer’s disease. Life Sci 31:2073–2079PubMed
Zurück zum Zitat Wu N, Rao X, Gao Y, Wang J, Xu F (2013) Amyloid-beta deposition and olfactory dysfunction in an Alzheimer’s disease model. J Alzheimers Dis 37:699–712. doi:10.3233/JAD-122443 PubMed Wu N, Rao X, Gao Y, Wang J, Xu F (2013) Amyloid-beta deposition and olfactory dysfunction in an Alzheimer’s disease model. J Alzheimers Dis 37:699–712. doi:10.​3233/​JAD-122443 PubMed
Zurück zum Zitat Zhang W, Hao J, Liu R, Zhang Z, Lei G, Su C et al (2011) Soluble Abeta levels correlate with cognitive deficits in the 12-month-old APPswe/PS1dE9 mouse model of Alzheimer’s disease. Behav Brain Res 222:342–350. doi:10.1016/j.bbr.2011.03.072 PubMed Zhang W, Hao J, Liu R, Zhang Z, Lei G, Su C et al (2011) Soluble Abeta levels correlate with cognitive deficits in the 12-month-old APPswe/PS1dE9 mouse model of Alzheimer’s disease. Behav Brain Res 222:342–350. doi:10.​1016/​j.​bbr.​2011.​03.​072 PubMed
Metadaten
Titel
Interneurons, tau and amyloid-β in the piriform cortex in Alzheimer’s disease
verfasst von
Daniel Saiz-Sanchez
Carlos De la Rosa-Prieto
Isabel Ubeda-Banon
Alino Martinez-Marcos
Publikationsdatum
01.07.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 4/2015
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0771-3

Weitere Artikel der Ausgabe 4/2015

Brain Structure and Function 4/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.